
1.1 TS Distributed Systems

Chapter 1: Introduction

Thanks to the authors of the textbook [TS] for providing the base slides. I made several changes/additions.
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.

So I would like to thank him, too.
Turgay Korkmaz

korkmaz@cs.utsa.edu

Grand tour of the Distributed Systems

1.2 TS Distributed Systems

Chapter 1: Introduction

 DEFINITION OF A DISTRIBUTED SYSTEM

 GOALS

 Making Resources Accessible

 Distribution Transparency

 Openness

 Scalability

 Pitfalls

 TYPES OF DISTRIBUTED SYSTEMS

 Distributed Computing Systems

 Distributed Information Systems

 Distributed Pervasive Systems

1.3 TS Distributed Systems

Objectives

 To provide a grand tour of the key issues in

distributed systems

1.4 TS Distributed Systems

Computer System Revolution

 Computers

 large/expensive  small/cheap

 Networks:

 LAN  WAN,

 bps  Kbps  Gbps

 Now, it is easy to put together many computers,

and people to:

 Solve problems

 Share resources

 Increase collaboration

 Centralized sys Distributed sys  Cloud

1.5 TS Distributed Systems

intranet

ISP

desktop computer:

backbone

satellite link

server:

%

network link:

%

%

%

What are Distributed Systems?

A collection of
networked independent computers

that appears to its users as a
single coherent system

1.6 TS Distributed Systems

Distributed Systems: Definition

 A distributed system (DS) is a piece of software

that ensures that

a collection of independent computers

appears to its users as a single coherent system

 But HOW can we

 hide the differences between independent computers &

 provide a single system view?

 Solutions for distributed systems

 Distributed OS

 Network OS

 Middleware

1.7 TS Distributed Systems

Distributed Operating Systems

 OS essentially tries to

maintain a single,

global view of the

resources it manages

(Tightly-coupled OS).

 Full transparency:

users feel a big system

and are not aware of

multiple different

machines

 Access to remote

services similar to local

resources
[From Wikipedia]

1.8 TS Distributed Systems

Network Operating Systems

 Collection of independent

OS augmented by

network services

(Loosely-coupled OS)

 No transparency:

users are aware of the

multiplicity of the machines

 explicitly log on into remote

machines, or copy files from

other machines

 Apps use network

services to access

resources

- No single view of the
distributed system

- Need multiple passwords, multiple

access permissions.

- Only means of communication
is message passing

+ Adding or removing a machine is

relatively simple.

1.9 TS Distributed Systems

Middleware-Based Distributed Systems

 Most modern distributed systems are designed to

provide a level of transparency through a software

layer on top of local OSes

 This software layer is called Middleware

1.10 TS Distributed Systems

Middleware-Based DS (cont.)

 Middleware

 A higher level of programming abstraction

Examples: RPC, RMI

 It hides the differences between various computers and

the ways in which they communicate

 It provides a single-system view

 …..

 As a result, middleware facilitates

 the integration and interaction of various

 networked applications in a

 consistent and uniform manner.

1.11 TS Distributed Systems

GOALS OF DISTRIBUTED

SYSTEMS

Make resources available/accessible

Distribution transparency

Openness

Scalability

1.12 TS Distributed Systems

Make resources available/accessible

 A7: Anytime Anywhere Affordable Access to Anything

by Anyone Authorized (Jeannette M. Wing, 2008)

+ share resources (economics)

+ increase collaboration

- security and privacy

- unwanted traffic

1.13 TS Distributed Systems

Distribution Transparency
 -- users and applications see the DS as a single coherent system --

Access Hides differences in data representation and

invocation mechanisms

Location Hides where an object resides

Migration Hides from an object the ability of a system to

change that object’s location

Relocation Hides that a resource may be moved to

another location while in use

Replication Hides the fact that an object or its state may be

replicated at different locations

Concurrency Hides coordination of activities between objects

to achieve consistency at a higher level

Failure Hides failure and possible recovery of Objects

Distribution transparency is a nice a goal, but achieving it is a different story.

1.14 TS Distributed Systems

Degree of Transparency

 Aiming at full distribution transparency is good, but too much

of it might hurt (like food :)

 Full transparency will cost performance

 Keeping Web caches exactly up-to-date with the master

 Immediately flushing write operations to disk for fault tolerance

 Completely hiding failures of networks and nodes is

(theoretically and practically) impossible

 Can we distinguish a slow computer from a failing one?

 Can we be sure that a server actually performed an operation before a crash?

 Moreover, some things cannot be hidden (e.g., propagation delay)

 Solution: Expose distribution of the system

 Let user be aware of distribution at various levels of transparency

 For example, would you prefer a busy printer in CS or the idle one in ECE?

1.15 TS Distributed Systems

Openness of Distributed Systems

 Offer services according to standard rules that

describe the syntax and semantics of those services

 So that different open systems would be able to

interact and use services from each other

 How to achieve openness

 Conform to well-defined interfaces (often described using IDL)
 Easy to define syntax. But semantic is hard so in practice it is defined in a natural language

 Support portability
 The same implementation (source code) should work on different machines

 Easily interoperate
 Two different implementations should work together irrespective of their environments

 Distributed system should be independent from

heterogeneity of the underlying environment

Hardware, Software Platforms, and Languages

1.16 TS Distributed Systems

Implementing Openness:
Separate Policies and Mechanisms

 What are they? Take web-caching as an example:

 Policies:
 What level of consistency do we require

 Which operations in a downloaded code do we allow

 Which QoS requirements do we adjust

 What level of secrecy do we require for communication?

 Mechanisms:
 Allow (dynamic) setting of caching policies

 Support different levels of trust for mobile code

 Provide adjustable QoS parameters per data stream

 Offer different encryption algorithms

 Separate them for flexibility and efficiency

 For this, design system as a collection of small

components instead of a monolithic large prog

1.17 TS Distributed Systems

Scalability in Distributed Systems

 Many developers of modern distributed system

easily use the adjective “scalable” without making

clear why their system actually scales.

 Three aspects of scalability

 Size Number of users and/or processes

 Geographical Maximum distance between nodes

 Administrative Number of administrative domains

 Most systems account for size scalability: powerful

servers (supercomputer)

 Challenges: geographical and administrative

scalability

1.18 TS Distributed Systems

Problems with Size Scalability

 What happens when more users/resources added?

 Limitations of centralized systems

 Service (e.g., single server) overloaded servers

 Data (e.g., single phone book) saturated communication links

 Algorithm (e.g., routing based on global info) too much traffic

 Use distributed service, database, and algorithm

 No machine has complete info

 Make decision based on local info

 Failure of one node does affect others (not always)

 No global clock (it can be done on LANs but trick in WANs)

1.19 TS Distributed Systems

Problems with Geographical Scalability

 Suppose we have an interactive application

working on a LAN, can we use it over a WAN?

 Delay

 Blocking read/write might be OK on LAN but not on

WAN

 Reliability

 Longer the distance higher the chance of loosing

messages

 Bandwidth
 Locating a service by broadcasting is OK on LAN (e.g., ARP) but

not on WAN

1.20 TS Distributed Systems

Problems with Administrative Scalability

 In a single domain:

 We can try to optimize resource usage because each

entity belongs to the same domain and can be trusted

 In case of multiple and independent

administrative domains:

 We do not own all resources and cannot trust others

 So, we try to get things done based on some policies

and agreements rather than optimization (e.g., BGP vs. OSPF)

 But there are several problems

Conflicting policies (who uses what and pays how much)

Management

Security (access rights and trust management)

1.21 TS Distributed Systems

Techniques for Scalability
to solve performance problems

 Use asynchronous communication
 Separate handler for incoming response and do something while waiting

 + hide communication latencies

 - what if there is nothing else to do

 Partition data and computations into smaller parts

and distribute them across multiple machines
 Decentralized naming services (DNS)

 Decentralized data, information systems (WWW)

 Decentralized algorithm (Distance Vector)

 Move computations to clients (Java applets)

 Minimize packet format and protocol overheads

 Use forward error coding instead of re-transmission

1.22 TS Distributed Systems

Techniques for Scalability (cont’d)
to solve performance problems

 Use Replication/caching that makes multiple copies of

the same services or data available at different machines

 Mirrored Web sites

 Replicated file servers and databases

 Web caches (in browsers and proxies)

 File caching (at server and client)

 + increase availability

 + improve load balance and performance

 + hide communication latency

 - Inconsistencies when one copy is modified

 - Global synchronization is needed for keeping copies consistent

but it precludes large-scale solutions

 - Tolerance to inconsistencies depends on application

1.23 TS Distributed Systems

Techniques for Scalability (cont’d)

 All the techniques discussed so far deal with

performance problems due to size and

geographical scalability

 How about administrative scalability?

 The most challenging one (why?)

 The problems are often non-technical (Politics!)

1.24 TS Distributed Systems

Developing Distributed Systems: Pitfalls

 A complex task: Sound SW Eng Principles help

 But a lot of mistakes are made because

 the dispersion of many components are not taken in to

account during design,

 Mistakes are often due to false assumptions:

 The same global time

 Perfect network/communication
Latency is zero

Bandwidth is infinite

The network is reliable

The network is secure

The network is homogeneous

 The topology does not change

 There is one administrator

1.25 TS Distributed Systems

DIFFERENT TYPES OF

DISTRIBUTED SYSTEMS

Distributed Computing Systems (DCS)
 Cluster computing, Grid computing, Cloud computing

Distributed Information Systems (DIS)
 Web servers, Distributed database applications

Distributed Pervasive Systems (DPS)
 Smart home systems, Electronic health systems, Sensor networks: surveillance systems

1.26 TS Distributed Systems

DCS: Distributed Computing Systems
Cluster Computing Systems

A group of high-end systems connected through a LAN

 Homogeneous: same OS, near-identical hardware

 Single managing node

1.27 TS Distributed Systems

DCS: Distributed Computing Systems
Grid Computing Systems

 Lots of nodes from everywhere share resources and collaborate

 Heterogeneous

 Dispersed across several organizations

 Can easily span a wide-area network

 To allow for collaborations, grids generally use

virtual organizations.

 In essence, this is a grouping of users (or better: their IDs)

that have the same access rights

 The key questions are

how to authorize users from different administrative domains and

how to provide these authorized users with the access to

resources

1.28 TS Distributed Systems

DCS: Distributed Computing Systems
Grid Computing Systems (cont’d)

 Application:

 Use the grid computing environment

 Collectivity layer:

 Handles access to multiple resources
(resource discovery)

 Connectivity layer:

 Communication protocols (access a remote

resource, security)

 Resource layer:

 Manage single resource (create a process)

 Fabric layer:

 Interface to local resources (query, locking)

1.29 TS Distributed Systems

DCS: Distributed Computing Systems
Cloud Computing Systems

 “Cloud computing has become another buzzword after Web 2.0.”

 “We won’t compute on local computers, but on centralized facilities

operated by third-party compute and storage utilities”

 “There are dozens of different definitions for cloud computing and there

seems to be no consensus on what a cloud is.” Here is one definition:

 “A large-scale distributed computing paradigm that is driven by

economies of scale, in which a pool of abstracted, virtualized,

dynamically-scalable, managed computing power, storage, platforms,

and services are delivered on demand to external customers over the

Internet.”

 “Cloud computing is not a completely new concept; it has intricate

connection to the relatively new but thirteen-year established grid

computing paradigm, and other relevant technologies such as utility

computing, cluster computing, and distributed systems in general.”

 I. Foster, Cloud Computing and Grid Computing 360-Degree
Compared, Grid Computing Environments Workshop, 2008. GCE '08

1.30 TS Distributed Systems

DIS: Distributed Information Systems

 Organizations have legacy networked applications,

but it is hard to make them interoperate

 Middleware can help

 Integration can take place at several levels

 Client-servers wrap a number of request into one and

have it executed as a Distributed Transaction (all or

none of requests would be executed)

 Applications can be detached from their databases or

divided into several components, these applications need

to directly communicate instead of req/reply: Enterprise

Application Integration (EAI)

1.31 TS Distributed Systems

DIS: Distributed Information Systems
Transaction Processing Systems

Characteristic properties of transactions (ACID)

 Atomic: To the outside world, the transaction

happens indivisibly;

 All operations either succeed, or all of them fail;

 Consistent: The transaction does not violate

system invariants;

 Not exclude the possibility of invalid, intermediate states

 Isolated: Concurrent transactions do not interfere

with each other

 Durable: Once a transaction commits, the

changes are permanent

1.32 TS Distributed Systems

DIS: Distributed Information Systems
Distributed Databases: Transaction Process

 TP Monitor:

coordinate the

execution of a

transaction (sub-

transactions) when

data is distributed

across several

servers

1.33 TS Distributed Systems

DIS: Distributed Information Systems
Enterprise Application Integration

 A TP monitor doesn’t separate

apps from their databases.

 But we can do that and allow these

applications to directly

communicate

 Use RPC or RMI

both applications must be up and running

know exactly how to refer to each other

 Message-Oriented Middleware (MOM)

send data to a logical contact

publish/subscribe

1.34 TS Distributed Systems

DPS: Distributed Pervasive Systems

 So far we considered stable distributed systems
(fixed nodes good connections)

 But this is not the case for the emerging next-
generation of distributed systems in which mobile
and embedded devices are used

 Some requirements

 Computing anywhere and anytime

 Contextual change: environment changes should be
immediately accounted for.

 Ad hoc composition: Each node may be used in a very
different ways by different users. Requires ease-of-configuration.

 Sharing is the default: Nodes come and go, providing
sharable services and information. Calls again for simplicity.

1.35 TS Distributed Systems

DPS: Distributed Pervasive Systems
Home Systems

 Should be completely self-organizing:

 There should be no system administrator

 Provide a personal space for each of its

users

 Simplest solution:

 a centralized home box?

 But how to access what you want?

Recommender programs will help…

1.36 TS Distributed Systems

DPS: Distributed Pervasive Systems
Electronic Health Care Systems

 Devices are physically close to a person

 Where and how should monitored data be stored?

 How can we prevent loss of crucial data?

 How can security be enforced?

 How can physicians provide online feedback?

1.37 TS Distributed Systems

DPS: Distributed Pervasive Systems
Sensor Networks

The nodes to which sensors are attached are:

 Many (10s-1000s)

 Simple (small memory/compute/communication capacity)

 Often battery-powered (or even battery-less)

1.38 TS Distributed Systems

END

