
1.1 TS Distributed Systems 

Chapter 1: Introduction 

Thanks to the authors of the textbook [TS] for providing the base slides. I made several changes/additions.  
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.  

So I would like to thank him, too.  
Turgay Korkmaz 

korkmaz@cs.utsa.edu 

Grand tour of the Distributed Systems  



1.2 TS Distributed Systems 

Chapter 1: Introduction 

 DEFINITION OF A DISTRIBUTED SYSTEM  

 GOALS  

 Making Resources Accessible  

 Distribution Transparency  

 Openness  

 Scalability  

 Pitfalls 

 TYPES OF DISTRIBUTED SYSTEMS  

 Distributed Computing Systems  

 Distributed Information Systems  

 Distributed Pervasive Systems 



1.3 TS Distributed Systems 

Objectives 

 To provide a grand tour of the key issues in 

distributed systems  

 



1.4 TS Distributed Systems 

Computer System Revolution 

 Computers 

  large/expensive   small/cheap 

 Networks:  

 LAN  WAN,   

 bps  Kbps  Gbps 

 Now, it is easy to put together many computers, 

and people to: 

 Solve problems 

 Share resources 

 Increase collaboration 

 Centralized sys Distributed sys  Cloud 



1.5 TS Distributed Systems 

intranet 

ISP 

desktop computer: 

backbone 

satellite link 

server: 

% 

network link: 

% 

% 

% 

What are Distributed Systems? 

A collection of  
networked independent computers  

that appears to its users as a  
single coherent system 



1.6 TS Distributed Systems 

Distributed Systems: Definition 

 A distributed system (DS) is a piece of software 

that ensures that  

a collection of independent computers  

appears to its users as a single coherent system 

 But HOW can we 

 hide the differences between independent computers & 

 provide a single system view? 

 Solutions for distributed systems 

 Distributed OS 

 Network OS 

 Middleware 

 



1.7 TS Distributed Systems 

Distributed Operating Systems 

 OS essentially tries to 

maintain a single, 

global view of the 

resources it manages 

(Tightly-coupled OS). 

 Full transparency: 

users feel a big system 

and are not aware of 

multiple different 

machines 

 Access to remote 

services similar to local 

resources 
[From Wikipedia] 



1.8 TS Distributed Systems 

Network Operating Systems 

 Collection of independent 

OS augmented by 

network services 

(Loosely-coupled OS) 

 No transparency:      

users are aware of the 

multiplicity of the machines 

 explicitly log on into remote 

machines, or copy files from 

other machines  

 Apps use network 

services to access 

resources 

- No single view of the 
distributed system 

- Need multiple passwords, multiple 

access permissions. 

- Only means of communication 
is message passing 

+  Adding or removing a machine is 

relatively simple.  



1.9 TS Distributed Systems 

Middleware-Based Distributed Systems 

 Most modern distributed systems are designed to 

provide a level of transparency through a software 

layer on top of local OSes 

 This software layer is called Middleware 



1.10 TS Distributed Systems 

Middleware-Based DS (cont.) 

 Middleware  

 A higher level of programming abstraction  

Examples: RPC, RMI 

 It hides the differences between various computers and 

the ways in which they communicate 

 It provides a single-system view 

 ….. 

 As a result, middleware facilitates  

 the integration and interaction of various  

 networked applications in a  

 consistent and uniform manner. 

 



1.11 TS Distributed Systems 

GOALS OF DISTRIBUTED 

SYSTEMS 

Make resources available/accessible 

Distribution transparency 

Openness 

Scalability 



1.12 TS Distributed Systems 

Make resources available/accessible 

 A7: Anytime Anywhere Affordable Access to Anything 

by Anyone Authorized (Jeannette M. Wing, 2008) 

 

+ share resources (economics)  

+ increase collaboration 

- security and privacy 

- unwanted traffic 



1.13 TS Distributed Systems 

Distribution Transparency 
 -- users and applications see the DS as a single coherent system -- 

Access Hides differences in data representation and 

invocation mechanisms 

Location Hides where an object resides 

Migration Hides from an object the ability of a system to 

change that object’s location 

Relocation Hides that a resource may be moved to 

another location while in use 

Replication Hides the fact that an object or its state may be 

replicated at different locations 

Concurrency Hides coordination of activities between objects 

to achieve consistency at a higher level 

Failure Hides failure and possible recovery of Objects 

Distribution transparency is a nice a goal, but achieving it is a different story. 



1.14 TS Distributed Systems 

Degree of Transparency 

 Aiming at full distribution transparency is good, but too much 

of it might hurt (like food :) 

 Full transparency will cost performance 

 Keeping Web caches exactly up-to-date with the master 

 Immediately flushing write operations to disk for fault tolerance 

 Completely hiding failures of networks and nodes is 

(theoretically and practically) impossible 

 Can we distinguish a slow computer from a failing one? 

 Can we be sure that a server actually performed an operation before a crash? 

 Moreover, some things cannot be hidden (e.g., propagation delay) 

 Solution: Expose distribution of the system  

 Let user be aware of  distribution at various levels of transparency 

 For example, would you prefer a busy printer in CS or the idle one in ECE? 

 



1.15 TS Distributed Systems 

Openness of Distributed Systems 

 Offer services according to standard rules that 

describe the syntax and semantics of those services 

 So that different open systems would be able to 

interact and use services from each other 

 How to achieve openness 

 Conform to well-defined interfaces (often described using IDL) 
 Easy to define syntax. But semantic is hard so in practice it is defined in a natural language 

 Support portability   
 The same implementation (source code)  should work on different machines 

 Easily interoperate  
 Two different implementations should  work together irrespective of their environments 

 Distributed system should be independent from 

heterogeneity of the underlying environment          

Hardware, Software Platforms, and Languages  



1.16 TS Distributed Systems 

Implementing Openness:  
Separate Policies and Mechanisms 

 What are they? Take web-caching as an example: 

 Policies: 
 What level of consistency do we require   

 Which operations in a downloaded code do we allow 

 Which QoS requirements do we adjust   

 What level of secrecy do we require for communication? 

 Mechanisms: 
 Allow (dynamic) setting of caching policies 

 Support different levels of trust for mobile code 

 Provide adjustable QoS parameters per data stream 

 Offer different encryption algorithms 

 Separate them for flexibility and efficiency 

 For this, design system as a collection of small 

components  instead of a monolithic large prog 



1.17 TS Distributed Systems 

Scalability in Distributed Systems 

 Many developers of modern distributed system 

easily use the adjective “scalable” without making 

clear why their system actually scales. 

 Three aspects of scalability 

 Size    Number of users and/or processes 

 Geographical  Maximum distance between nodes 

 Administrative  Number of administrative domains 

 Most systems account for size scalability: powerful 

servers (supercomputer) 

 Challenges: geographical and administrative 

scalability 



1.18 TS Distributed Systems 

Problems with Size Scalability 

 What happens when more users/resources added? 

 Limitations of centralized systems 

 Service  (e.g., single server) overloaded servers 

 Data   (e.g., single phone book) saturated communication links 

 Algorithm  (e.g., routing based on global info) too much traffic 

 Use distributed service, database, and algorithm 

 No machine has complete info 

 Make decision based on local info 

 Failure of one node does affect others (not always) 

 No global clock (it can be done on LANs but trick in WANs) 



1.19 TS Distributed Systems 

Problems with Geographical Scalability 

 Suppose we have an interactive application 

working on a LAN, can we use it over a WAN? 

 Delay  

 Blocking read/write might be OK on LAN but not on 

WAN 

 Reliability 

 Longer the distance higher the chance of loosing 

messages 

 Bandwidth  
 Locating a service by broadcasting is OK on LAN (e.g., ARP) but 

not on WAN  



1.20 TS Distributed Systems 

Problems with Administrative Scalability 

 In a single domain: 

 We can try to optimize resource usage because each 

entity belongs to the same domain and can be trusted 

 In case of multiple and independent 

administrative domains:  

 We do not own all resources and cannot trust others 

 So, we try to get things done based on some policies 

and agreements rather than optimization (e.g., BGP vs. OSPF) 

 But there are several problems 

Conflicting policies (who uses what and pays how much) 

Management 

Security (access rights and trust management) 



1.21 TS Distributed Systems 

Techniques for Scalability 
to solve performance problems 

 Use asynchronous communication 
 Separate handler for incoming response and do something while waiting 

 + hide communication latencies 

 -  what if there is nothing else to do   

 Partition data and computations into smaller parts 

and distribute them across multiple machines 
 Decentralized naming services (DNS) 

 Decentralized data, information systems (WWW) 

 Decentralized algorithm (Distance Vector) 

 Move computations to clients (Java applets) 

 Minimize packet format and protocol overheads 

 Use forward error coding instead of re-transmission 

 



1.22 TS Distributed Systems 

Techniques for Scalability (cont’d) 
to solve performance problems 

 Use Replication/caching that makes multiple copies of 

the same services or data available at different machines 

 Mirrored Web sites 

 Replicated file servers and databases 

 Web caches (in browsers and proxies) 

 File caching (at server and client) 
 

 + increase availability 

 + improve load balance and performance 

 + hide communication latency 
 

  - Inconsistencies when one copy is modified  

  - Global synchronization is needed for keeping copies consistent 

but it precludes large-scale solutions 

  - Tolerance to inconsistencies depends on application 



1.23 TS Distributed Systems 

Techniques for Scalability (cont’d) 

 All the techniques discussed so far deal with  

performance problems due to size and 

geographical scalability  

 How about administrative scalability? 

 The most challenging one (why?) 

 The problems are often non-technical (Politics!) 

 



1.24 TS Distributed Systems 

Developing Distributed Systems: Pitfalls 

 A complex task: Sound SW Eng Principles help  

 But a lot of mistakes are made because  

 the dispersion of many components are not taken in to 

account during design, 

 Mistakes are often due to false assumptions: 

 The same global time 

 Perfect network/communication 
Latency is zero  

Bandwidth is infinite 

The network is reliable 

The network is secure 

The network is homogeneous 

 The topology does not change 

 There is one administrator 



1.25 TS Distributed Systems 

DIFFERENT TYPES OF 

DISTRIBUTED SYSTEMS 

Distributed Computing Systems (DCS) 
 Cluster computing, Grid computing, Cloud computing 

Distributed Information Systems (DIS) 
 Web servers, Distributed database applications 

Distributed Pervasive Systems (DPS) 
 Smart home systems, Electronic health systems, Sensor networks: surveillance systems 



1.26 TS Distributed Systems 

DCS: Distributed Computing Systems  
Cluster Computing Systems 

A group of high-end systems connected through a LAN 

 Homogeneous: same OS, near-identical hardware 

 Single managing node 



1.27 TS Distributed Systems 

DCS: Distributed Computing Systems  
Grid Computing Systems 

 Lots of nodes from everywhere share resources and collaborate 

 Heterogeneous 

 Dispersed across several organizations 

 Can easily span a wide-area network 

 To allow for collaborations, grids generally use 

virtual organizations.  

 In essence, this is a grouping of users (or better: their IDs) 

that have the same access rights 

 The key questions are  

how to authorize users from different administrative domains and 

how to provide these authorized users with the access to 

resources  



1.28 TS Distributed Systems 

DCS: Distributed Computing Systems  
Grid Computing Systems (cont’d) 

 Application:  

 Use the grid computing environment 

 Collectivity layer:  

 Handles access to multiple resources 
(resource discovery) 

 Connectivity layer:  

 Communication protocols (access a remote 

resource, security)  

 Resource layer:  

 Manage single resource (create a process) 

 Fabric layer:  

 Interface to local resources (query, locking) 



1.29 TS Distributed Systems 

DCS: Distributed Computing Systems  
Cloud Computing Systems 

 “Cloud computing has become another buzzword after Web 2.0.” 

 “We won’t compute on local computers, but on centralized facilities 

operated by third-party compute and storage utilities”  

 “There are dozens of different definitions for cloud computing and there 

seems to be no consensus on what a cloud is.” Here is one definition: 

 “A large-scale distributed computing paradigm that is driven by 

economies of scale, in which a pool of abstracted, virtualized, 

dynamically-scalable, managed computing power, storage, platforms, 

and services are delivered on demand to external customers over the 

Internet.” 

 “Cloud computing is not a completely new concept; it has intricate 

connection to the relatively new but thirteen-year established grid 

computing paradigm, and other relevant technologies such as utility 

computing, cluster computing, and distributed systems in general.”   

 I. Foster, Cloud Computing and Grid Computing 360-Degree 
Compared, Grid Computing Environments Workshop, 2008. GCE '08 



1.30 TS Distributed Systems 

DIS: Distributed Information Systems 

 Organizations have legacy networked applications, 

but it is hard to make them interoperate  

 Middleware can help  

 Integration can take place at several levels 

 Client-servers wrap a number of request into one and 

have it executed as a Distributed Transaction (all or 

none of requests would be executed) 

 Applications can be detached from their databases or 

divided into several components, these applications need 

to directly communicate instead of req/reply: Enterprise 

Application Integration (EAI) 

 



1.31 TS Distributed Systems 

DIS: Distributed Information Systems 
Transaction Processing Systems 

Characteristic properties of transactions (ACID) 

 Atomic: To the outside world, the transaction 

happens indivisibly;  

 All operations either succeed, or all of them fail;  

 Consistent: The transaction does not violate 

system invariants;  

 Not exclude the possibility of invalid, intermediate states 

 Isolated: Concurrent transactions do not interfere 

with each other 

 Durable: Once a transaction commits, the 

changes are permanent  



1.32 TS Distributed Systems 

DIS: Distributed Information Systems 
Distributed Databases: Transaction Process 

 TP Monitor: 

coordinate the 

execution of a 

transaction (sub-

transactions) when 

data is distributed 

across several 

servers 



1.33 TS Distributed Systems 

DIS: Distributed Information Systems  
Enterprise Application Integration 

 A TP monitor doesn’t separate 

apps from their databases.  

 But we can do that and allow these 

applications to directly 

communicate 

 Use RPC or RMI 

both applications must be up and running 

know exactly how to refer to each other 

 Message-Oriented Middleware (MOM) 

send data to a logical contact 

publish/subscribe 



1.34 TS Distributed Systems 

DPS: Distributed Pervasive Systems 

 So far we considered stable distributed systems 
(fixed nodes good connections) 

 But this is not the case for the emerging next-
generation of distributed systems in which mobile 
and embedded devices are used   

 Some requirements 

 Computing anywhere and anytime 

 Contextual change: environment changes should be 
immediately accounted for. 

 Ad hoc composition: Each node may be used in a very 
different ways by different users. Requires ease-of-configuration. 

 Sharing is the default: Nodes come and go, providing 
sharable services and information. Calls again for simplicity. 



1.35 TS Distributed Systems 

DPS: Distributed Pervasive Systems 
Home Systems 

 Should be completely self-organizing: 

 There should be no system administrator 

 Provide a personal space for each of its 

users 

 Simplest solution:  

 a centralized home box? 

 But how to access what you want? 

Recommender programs will help… 



1.36 TS Distributed Systems 

 

DPS: Distributed Pervasive Systems 
Electronic Health Care Systems 

 Devices are physically close to a person 

 Where and how should monitored data be stored? 

 How can we prevent loss of crucial data? 

 How can security be enforced? 

 How can physicians provide online feedback? 



1.37 TS Distributed Systems 

DPS: Distributed Pervasive Systems 
Sensor Networks 

The nodes to which sensors are attached are: 

 Many (10s-1000s) 

 Simple (small memory/compute/communication capacity) 

 Often battery-powered (or even battery-less) 



1.38 TS Distributed Systems 

END 


