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Chapter 2: ARCHITECTURES  
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These slides may incorporate materials kindly provided by Prof. Dakai Zhu.  

So I would like to thank him, too.  
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Chapter 2: ARCHITECTURES  

 ARCHITECTURAL STYLES (SOFTWARE ARCHITECTURES) 

 SYSTEM ARCHITECTURES  
Centralized Architectures  

Decentralized Architectures  

Hybrid Architectures  

 ARCHITECTURES VERSUS MIDDLEWARE  
 Interceptors  

General Approaches to Adaptive Software  

 SELF-MANAGEMENT IN DISTRIBUTED SYSTEMS  
The Feedback Control Model  

Example: Systems Monitoring with Astrolabe  

Example: Differentiating Replication Strategies in Globule  
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Objectives 

 To learn how to organize a distributed system 

whose components are dispersed across 

multiple machines  

 To understand the differences between  

 software architecture (logical organization) and  

 system architecture (physical realization) 

 To understand trade-offs when providing 

distribution transparency 

 To understand adaptability and self-mng issues 

and mechanisms for flexibility and efficiency 
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Software Architecture  
(Architectural Style, Logical organization) 

 Divide the system into logically different software 

components, distribute them over multiple machines, 

and allow them to communicate through connectors 

 Component: a modular unit with well-defined required and provided interfaces, 

 Connector: a mechanism that mediates communication, coordination, and 

cooperation (e.g., RPC, msg passing) 

 Using components and connectors, we can create 

different configurations, which are classified into the 

following architectural styles:  

 Layered   

 Object-based  

 Event-based  

 Data-centered 

All try to achieve distributed  
transparency at a reasonable level  

and 
Each style would be more appropriate  

for a different application 
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Software Architecture  
(Architectural Style, Logical organization) 

 Layered style  
 used for client-server systems, 

request/reply model 

 Object-based  
 Used for distributed object systems, 

request/reply model 

 Event-based:  
 Publish/subscribe systems 

 Loosely coupled components 
 decoupled in space or referentially decoupled 

 Data-centered:  
 Communicate through common 

repository (e.g., shared distributed file system)      

 Can be combined with event-based, yielding 

shared dataspace  

 processes are now decoupled in space and time 

(processes do 
not need to refer 
to each other) 

(processes do 
not need to be 
active at the 
same time) 
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System Architecture  
(Physical realization) 

 Consider how and where to place software 

components  and realize their interactions 

 There are three major physical realization 

approaches: 

 Centralized  client-server 

 Decentralized   P2P (Structured vs. unstructured) 

 Hybrid:    combination of centralized and P2P 
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System Architecture: Client-Server 

 There are processes 

offering services (servers) 

 There are processes that 

use services (clients) 

 Clients and servers can be 

on different machines 

 Clients follow request/reply 

model to use services 

 Connection-oriented vs. 

connectionless  

 (most use TCP vs UDP)  
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Application Layering (logical) 

 User-interface layer 

 units for an application’s 
user interface 

 Processing layer:  

 functions of an application, 
i.e. without specific data 

 Data layer:   

 data that a client wants to 
manipulate through the 
application components 

How to draw a clear line between client end server? 

Observation: layering is found in many distributed information systems, 
using traditional database technology and accompanying applications. 
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Multitiered Architectures (physical realization) 

How to place the three layers on client and server? 

        Thin client   Fat client 

Single-tiered: dumb terminal/mainframe configuration 
Two-tiered: client/single-server configuration 
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Multitiered Architectures (physical realization) 

 The server part could be distributed over multiple  

machines, 

 Three-tiered: each layer on separate machine 
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Decentralized Architectures: P2P Systems 

 Multitiered architectures do 

vertical distribution: 

 We place logically different 

components in client-server 
(i.e., user interface, processing, 

data) on different machines 

 Processes are not equal and 

Interactions are asymmetric 

 One acts as client while the 

other acts as server 

 Traditional approach  

 

 P2P architectures do 

horizontal distribution: 

 We split up clients and 

servers into logically 

equivalent parts and let 

each part operate on its 

own share  

 Processes are equal and 

Interactions are symmetric 

 Each acts as both client and 

server 

 Tremendous growth in the 

last couple of years 
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Decentralized Architectures: P2P Systems 
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Decentralized Architectures: P2P Systems 

 Given the symmetric behavior, the key question is 

how to organize processes in an overlay network, 

where links are usually TCP channels… 

 How about fully connected overlay network? -/+ 

 There are three approaches to organize nodes into 

overlay networks through which data is routed 

 Structured P2P: nodes are organized following a 

specific distributed data structure and deterministic 

algorithms 

 Unstructured P2P: randomly selected neighbors 

 Hybrid P2P: some nodes are appointed special 

functions in a well-organized fashion 
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Structured P2P Systems  

 Distributed Hash Table (DHT) is the most used one 

 Assume we have a large ID space  (e.g., 128-bit) 

 Assign random keys   from  to data items 

 Assign random identifiers from  to nodes 

 The crux of every DHT is to implement an efficient and 

deterministic scheme that maps the key of a data item to 

node ID 

 When looking up a data item, the system should route the 

request to the associated node and return the network 

address of that node 

 Example: Chord 
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A DHT Example: Chord 

 Chord organizes the 

nodes in a structured 

overlay network such as 

a logical ring, and data 

item with key k is 

mapped to a node with 

the smallest ID >= k. 

 This node is called as 

the successor of key k 

and denoted by succ(k) 

LOOKUP(key=8) ? 
This should return succ(8) which is node 12. 

(Details of how this is done is in Ch 5) 
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A DHT Example: Chord 

 Membership management 

 Join  

 Leave 

 Lookup(key)  
 (search and routing is in Ch 5) 
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Another DHT Example: CAN 

 Content Addressable 

Network 

 Organize nodes in a d-

dimensional space and 

let every node take the 

responsibility for data in 

a specific region.  

 When a node joins, split 

a region. 

 When a node leaves, 

merge regions. 
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Unstructured P2P Systems 

 Maintain a random graph 

 Data items are randomly  

 placed on nodes 

 How to do Lookup?  

 flooding 

 Membership management 

 Join 

Get a random list (from a well-known list or server) 

Contact these nodes and run the algorithm presented next 

 Leave 

Easy just leave… 
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How to maintain random graph 

 Let each peer 

maintain a partial 

view of the network, 

consisting of c other 

nodes 

 Each node P 

periodically selects a 

node Q from its 

partial view  

 P and Q exchange 

information and 

exchange members 

from their respective 

partial views 
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Superpeers 

 When random graph 

gets bigger, it will be 

very hard to perform 

look up  

 Use supperpeers to 

maintain an index  

 Join/leave is easy 

 How about Lookup? 

 Regular peers may 

elect the supperpeer 

(Ch 6) 
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Hybrid Architectures: Edge-server systems 

 Content Distribution Network (CDN) 

 Edge servers can be used to optimize 

content distribution 
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Hybrid Architectures: Collaborative Distributed Systems  

 Combining a P2P with a client-server architecture 

 Basic idea: a node identifies where to download a 

file from and joins a swarm of downloaders; who 

get file chunks in parallel from the source, and 

distribute these chunks amongst each other 
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WHERE MIDDLEWARE FITS IN 

ALL THESE ARCHITECTURES? 
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Architectures Vs. Middleware 

 Middleware is between application and local OS 

and provides some degree of transparency  

 In practice, middleware systems follow a specific 

architectural style (software architecture, logical organization): 
 Layered 

 Object-based 

 Data centered 

 Event-based  

 Adv/DisAdv 

 + makes app design simple 

 - may not be optimized for what an app needs 

 - adding more features complicates the middleware 
 CORBA was initially object-based, later added msg passing 

 Middleware should be adaptable to applications 
 Several different versions, configurable, separate policy and mechanisms 
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How to achieve adaptability?  

 Interceptors: a 

software 

construct that 

will break the 

usual flow of 

control and 

allow other 

(app specific) 

code to be 

executed 



1.26 TS Distributed Systems 

General Approaches to Adaptive Software 

 In many cases, distributed systems/applications are developed according to a 

specific architectural style. The chosen style may not be optimal in all cases 

Then there is a need to (dynamically) adapt the behavior of the middleware. 

 Three basic approaches to adaptive software: 

 Separation of concerns:  

 Try to separate extra functionalities and later glue them together into a single 

implementation  aspect-oriented SW ,only toy examples so far. 

 Computational reflection:  

 Let a program inspect itself at runtime and adapt/change its settings 

dynamically if necessary  mostly at language level and applicability unclear. 

 Component-based design:  

 Organize a distributed application through components that can be dynamically 

replaced when needed (complex for DS, components are not independent) 

 Do we really need adaptive software or adaptive 

system that reacts to changes (self-management) 
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Do we really need adaptive software?  

 Software should expect all the environment 

changes and should have code in it to handle 

them 

 DS should be able to react to changes in 

environment by switching policies or 

mechanisms in the system 

 The challenge is how to achieve this reactive 

behavior without human intervention  
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Self-managing Distributed Systems 

 Distinction between system and software 

architectures blurs when automatic adaptivity 

needs to be taken into account: 

 Self-configuration 

 Self-managing 

 Self-healing 

 Self-optimizing 

 Self-* 
Warning 
There is a lot of hype 
going on in this field of 
autonomic computing. 
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Feedback Control Model 

 In many cases, self-* systems use a 

feedback control loop. 



1.30 TS Distributed Systems 

FEEDBACK CONTROL 

EXAMPLES 

if time permits 



1.31 TS Distributed Systems 

A general tool for observing system behavior 

Organize hosts into a hierarchy of zones. 

Collect information about each host and summarize it, 

Exchange this information so all agents will see the same view. 

 

 

Example: Systems Monitoring  

with Astrolab 



1.32 TS Distributed Systems 

Example: Differentiating Replication 

Strategies in Globule (1) 
 A collaborative CDN tries to minimize 

performance by replicating web pages. 
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Example: Differentiating Replication 

Strategies in Globule (2) 

 Figure 2-19. The dependency between 

prediction accuracy and trace length. 

Analogous to predicting  
weather for tomorrow  
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Example: Automatic Component 

Repair Management in Jade 

 Steps required in a repair procedure: 

• Terminate every binding between a component on 
a nonfaulty node, and a component on the node 
that just failed. 

• Request the node manager to start and add a new 
node to the domain. 

• Configure the new node with exactly the same 
components as those on the crashed node. 

• Re-establish all the bindings that were previously 
terminated. 


