
1.1 TS Distributed Systems

Chapter 2: ARCHITECTURES

Thanks to the authors of the textbook [TS] for providing the base slides. I made several changes/additions.
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.

So I would like to thank him, too.
Turgay Korkmaz

korkmaz@cs.utsa.edu

Software architectures and System architectures
Logical organization and Physical realization

1.2 TS Distributed Systems

Chapter 2: ARCHITECTURES

 ARCHITECTURAL STYLES (SOFTWARE ARCHITECTURES)

 SYSTEM ARCHITECTURES
Centralized Architectures

Decentralized Architectures

Hybrid Architectures

 ARCHITECTURES VERSUS MIDDLEWARE
 Interceptors

General Approaches to Adaptive Software

 SELF-MANAGEMENT IN DISTRIBUTED SYSTEMS
The Feedback Control Model

Example: Systems Monitoring with Astrolabe

Example: Differentiating Replication Strategies in Globule

1.3 TS Distributed Systems

Objectives

 To learn how to organize a distributed system

whose components are dispersed across

multiple machines

 To understand the differences between

 software architecture (logical organization) and

 system architecture (physical realization)

 To understand trade-offs when providing

distribution transparency

 To understand adaptability and self-mng issues

and mechanisms for flexibility and efficiency

1.4 TS Distributed Systems

Software Architecture
(Architectural Style, Logical organization)

 Divide the system into logically different software

components, distribute them over multiple machines,

and allow them to communicate through connectors

 Component: a modular unit with well-defined required and provided interfaces,

 Connector: a mechanism that mediates communication, coordination, and

cooperation (e.g., RPC, msg passing)

 Using components and connectors, we can create

different configurations, which are classified into the

following architectural styles:

 Layered

 Object-based

 Event-based

 Data-centered

All try to achieve distributed
transparency at a reasonable level

and
Each style would be more appropriate

for a different application

1.5 TS Distributed Systems

Software Architecture
(Architectural Style, Logical organization)

 Layered style
 used for client-server systems,

request/reply model

 Object-based
 Used for distributed object systems,

request/reply model

 Event-based:
 Publish/subscribe systems

 Loosely coupled components
 decoupled in space or referentially decoupled

 Data-centered:
 Communicate through common

repository (e.g., shared distributed file system)

 Can be combined with event-based, yielding

shared dataspace

 processes are now decoupled in space and time

(processes do
not need to refer
to each other)

(processes do
not need to be
active at the
same time)

1.6 TS Distributed Systems

System Architecture
(Physical realization)

 Consider how and where to place software

components and realize their interactions

 There are three major physical realization

approaches:

 Centralized client-server

 Decentralized P2P (Structured vs. unstructured)

 Hybrid: combination of centralized and P2P

1.7 TS Distributed Systems

System Architecture: Client-Server

 There are processes

offering services (servers)

 There are processes that

use services (clients)

 Clients and servers can be

on different machines

 Clients follow request/reply

model to use services

 Connection-oriented vs.

connectionless

 (most use TCP vs UDP)

S e r v e r

C lie n t

C lie n t

in v o c a t io n

r e s u lt

S e r v e r
in v o c a t io n

r e s u lt

P r o c e s s :
K e y :

C o m p u t e r :

1.8 TS Distributed Systems

Application Layering (logical)

 User-interface layer

 units for an application’s
user interface

 Processing layer:

 functions of an application,
i.e. without specific data

 Data layer:

 data that a client wants to
manipulate through the
application components

How to draw a clear line between client end server?

Observation: layering is found in many distributed information systems,
using traditional database technology and accompanying applications.

1.9 TS Distributed Systems

Multitiered Architectures (physical realization)

How to place the three layers on client and server?

 Thin client Fat client

Single-tiered: dumb terminal/mainframe configuration
Two-tiered: client/single-server configuration

V
e
r
ti

c
a
l

d
is

tr
ib

u
ti

o
n

1.10 TS Distributed Systems

Multitiered Architectures (physical realization)

 The server part could be distributed over multiple

machines,

 Three-tiered: each layer on separate machine

1.11 TS Distributed Systems

Decentralized Architectures: P2P Systems

 Multitiered architectures do

vertical distribution:

 We place logically different

components in client-server
(i.e., user interface, processing,

data) on different machines

 Processes are not equal and

Interactions are asymmetric

 One acts as client while the

other acts as server

 Traditional approach

 P2P architectures do

horizontal distribution:

 We split up clients and

servers into logically

equivalent parts and let

each part operate on its

own share

 Processes are equal and

Interactions are symmetric

 Each acts as both client and

server

 Tremendous growth in the

last couple of years

1.12 TS Distributed Systems

Decentralized Architectures: P2P Systems

Application

Application

Application

Peer 1

Peer 2

Peer 3

Peers 5 N

Sharable

objects

Application

Peer 4

Star War

Roman Holiday

The Beatles

1.13 TS Distributed Systems

Decentralized Architectures: P2P Systems

 Given the symmetric behavior, the key question is

how to organize processes in an overlay network,

where links are usually TCP channels…

 How about fully connected overlay network? -/+

 There are three approaches to organize nodes into

overlay networks through which data is routed

 Structured P2P: nodes are organized following a

specific distributed data structure and deterministic

algorithms

 Unstructured P2P: randomly selected neighbors

 Hybrid P2P: some nodes are appointed special

functions in a well-organized fashion

1.14 TS Distributed Systems

Structured P2P Systems

 Distributed Hash Table (DHT) is the most used one

 Assume we have a large ID space  (e.g., 128-bit)

 Assign random keys from  to data items

 Assign random identifiers from  to nodes

 The crux of every DHT is to implement an efficient and

deterministic scheme that maps the key of a data item to

node ID

 When looking up a data item, the system should route the

request to the associated node and return the network

address of that node

 Example: Chord

1.15 TS Distributed Systems

A DHT Example: Chord

 Chord organizes the

nodes in a structured

overlay network such as

a logical ring, and data

item with key k is

mapped to a node with

the smallest ID >= k.

 This node is called as

the successor of key k

and denoted by succ(k)

LOOKUP(key=8) ?
This should return succ(8) which is node 12.

(Details of how this is done is in Ch 5)

1.16 TS Distributed Systems

A DHT Example: Chord

 Membership management

 Join

 Leave

 Lookup(key)
 (search and routing is in Ch 5)

1.17 TS Distributed Systems

Another DHT Example: CAN

 Content Addressable

Network

 Organize nodes in a d-

dimensional space and

let every node take the

responsibility for data in

a specific region.

 When a node joins, split

a region.

 When a node leaves,

merge regions.

1.18 TS Distributed Systems

Unstructured P2P Systems

 Maintain a random graph

 Data items are randomly

 placed on nodes

 How to do Lookup?

 flooding

 Membership management

 Join

Get a random list (from a well-known list or server)

Contact these nodes and run the algorithm presented next

 Leave

Easy just leave…

Application

Application

Application

Peer 1

Peer 2

Peer 3

Peers 5 N

Sharable

objects

Application

Peer 4

1.19 TS Distributed Systems

How to maintain random graph

 Let each peer

maintain a partial

view of the network,

consisting of c other

nodes

 Each node P

periodically selects a

node Q from its

partial view

 P and Q exchange

information and

exchange members

from their respective

partial views

1.20 TS Distributed Systems

Superpeers

 When random graph

gets bigger, it will be

very hard to perform

look up

 Use supperpeers to

maintain an index

 Join/leave is easy

 How about Lookup?

 Regular peers may

elect the supperpeer

(Ch 6)

1.21 TS Distributed Systems

Hybrid Architectures: Edge-server systems

 Content Distribution Network (CDN)

 Edge servers can be used to optimize

content distribution

1.22 TS Distributed Systems

Hybrid Architectures: Collaborative Distributed Systems

 Combining a P2P with a client-server architecture

 Basic idea: a node identifies where to download a

file from and joins a swarm of downloaders; who

get file chunks in parallel from the source, and

distribute these chunks amongst each other

1.23 TS Distributed Systems

WHERE MIDDLEWARE FITS IN

ALL THESE ARCHITECTURES?

1.24 TS Distributed Systems

Architectures Vs. Middleware

 Middleware is between application and local OS

and provides some degree of transparency

 In practice, middleware systems follow a specific

architectural style (software architecture, logical organization):
 Layered

 Object-based

 Data centered

 Event-based

 Adv/DisAdv

 + makes app design simple

 - may not be optimized for what an app needs

 - adding more features complicates the middleware
 CORBA was initially object-based, later added msg passing

 Middleware should be adaptable to applications
 Several different versions, configurable, separate policy and mechanisms

1.25 TS Distributed Systems

How to achieve adaptability?

 Interceptors: a

software

construct that

will break the

usual flow of

control and

allow other

(app specific)

code to be

executed

1.26 TS Distributed Systems

General Approaches to Adaptive Software

 In many cases, distributed systems/applications are developed according to a

specific architectural style. The chosen style may not be optimal in all cases

Then there is a need to (dynamically) adapt the behavior of the middleware.

 Three basic approaches to adaptive software:

 Separation of concerns:

 Try to separate extra functionalities and later glue them together into a single

implementation  aspect-oriented SW ,only toy examples so far.

 Computational reflection:

 Let a program inspect itself at runtime and adapt/change its settings

dynamically if necessary  mostly at language level and applicability unclear.

 Component-based design:

 Organize a distributed application through components that can be dynamically

replaced when needed (complex for DS, components are not independent)

 Do we really need adaptive software or adaptive

system that reacts to changes (self-management)

1.27 TS Distributed Systems

Do we really need adaptive software?

 Software should expect all the environment

changes and should have code in it to handle

them

 DS should be able to react to changes in

environment by switching policies or

mechanisms in the system

 The challenge is how to achieve this reactive

behavior without human intervention

1.28 TS Distributed Systems

Self-managing Distributed Systems

 Distinction between system and software

architectures blurs when automatic adaptivity

needs to be taken into account:

 Self-configuration

 Self-managing

 Self-healing

 Self-optimizing

 Self-*
Warning
There is a lot of hype
going on in this field of
autonomic computing.

1.29 TS Distributed Systems

Feedback Control Model

 In many cases, self-* systems use a

feedback control loop.

1.30 TS Distributed Systems

FEEDBACK CONTROL

EXAMPLES

if time permits

1.31 TS Distributed Systems

A general tool for observing system behavior

Organize hosts into a hierarchy of zones.

Collect information about each host and summarize it,

Exchange this information so all agents will see the same view.

Example: Systems Monitoring

with Astrolab

1.32 TS Distributed Systems

Example: Differentiating Replication

Strategies in Globule (1)
 A collaborative CDN tries to minimize

performance by replicating web pages.

1.33 TS Distributed Systems

Example: Differentiating Replication

Strategies in Globule (2)

 Figure 2-19. The dependency between

prediction accuracy and trace length.

Analogous to predicting
weather for tomorrow

1.34 TS Distributed Systems

Example: Automatic Component

Repair Management in Jade

 Steps required in a repair procedure:

• Terminate every binding between a component on
a nonfaulty node, and a component on the node
that just failed.

• Request the node manager to start and add a new
node to the domain.

• Configure the new node with exactly the same
components as those on the crashed node.

• Re-establish all the bindings that were previously
terminated.

