
1.1 TS Distributed Systems

Chapter 3: PROCESSES THREADS

Thanks to the authors of the textbook [TS] for providing the base slides. I made several changes/additions.
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.

So I would like to thank him, too.
Turgay Korkmaz

korkmaz@cs.utsa.edu

Processes and Threads in Distributed Systems

1.2 TS Distributed Systems

Chapter 3: PROCESSES THREADS

 THREADS
 Introduction to Threads

 Threads in Distributed Systems

 VIRTUALIZATION
 The Role of Virtualization in Distributed Systems

 Architectures of Virtual Machines

 CLIENTS and SERVERS
 Client-Side Software for Distribution Transparency

 Server Clusters and their Management

 CODE MIGRATION
 Approaches to Code Migration

 Migration and Local Resources

 Migration in Heterogeneous Systems

1.3 TS Distributed Systems

Objectives

 To understand threads and related issues in DS

 To understand the role of virtualization in DS

 To learn general design issues for clients and

servers in DS

 To understand code migration and its

implications

1.4 TS Distributed Systems

Introduction

 We already studied processes in OS part,

where the key issues were:
process management, scheduling, synchronization…

 We also studied threads (sgg-ch4)
User-level, kernel-level implementations, thread pool..

 Let us look at other equally important issues

in the context of DS

 Threads in DS

 Client-server design

 Code Migration

1.5 TS Distributed Systems

Thread Review

 Contrast Processes and Threads

 Different address space vs. ….

 CPU transparently switches processes vs. ….

 Concurrency is costly (context switch) vs. …

 Explain the advantages of threads

 In case of a blocking call, multithreaded application can

execute another thread

 Exploit parallelism when executed on multiprocessor

 Processes can only cooperate using IPC, requiring

expensive context switch, while threads…

 Make software development easier (e.g., editor example)

1.6 TS Distributed Systems

Thread Review
Contrast user-level and kernel-level threads

 +cheap, easy to

create/destroy threads
(memory allocation/release)

 +context switch is

done in a few

instruction (no need to

change MMU, TLB, etc)

 - blocking call will

block the entire

process (so no benefit in

editor :)

 + Circumvent problems

in user-level threads

 - requires system call

for every thread op

 -switching thread

context is as expensive

as switching processes

 Use hybrid form

Lightweight process

(LWP)

1.7 TS Distributed Systems

 Thread Review
Light-Weight Process (LWP)

 Lightweight process (LWP): intermediate structure

 Virtual processor: can execute user-level threads

 Each LWP attaches to a kernel thread

 Multiple user-level threads a single LWP

 Normally from the same process

 A process may be assigned multiple LWPs

 OS schedules kernel threads (hence, LWPs) on the

CPU

.

1.8 TS Distributed Systems

LWP: Advantages and Disadvantages

 + User level threads are

easy to

create/destroy/sync

 + A blocking call will not

suspend the process if

we have enough LWP

 + Application does not

need to know about

LWP

 +LWP can be executed

on different CPUs,

hiding multiprocessing

 Occasionally, we still

need to create/destroy

LWP (as expensive as

kernel threads)

 Makes up calls

(scheduler activation)

 + simplifies LWP

management

 - Violates the

layered structure

1.9 TS Distributed Systems

THREADS IN DISTRIBUTED

SYSTEMS

1.10 TS Distributed Systems

Threads in Distributed Systems
Example: Web client and server

 Client (browser) starts communication in a thread.

While it is waiting or getting the content, the other

threads can do something else (e.g., display incoming data,

allow users to click links, get different objects etc.)

 Allow blocking systems calls without blocking the entire

process

 Server creates a new thread to service a request.

 Simplifies code (retains the idea of sequential process

using blocking call)

 Makes it easy to exploit parallelism

while()

{

 keyboard input

 …

}

while()

{

 socket1 input

 …

}

while()

{

 keyboard input vs.

 socket1 input

}

1.11 TS Distributed Systems

Threads in Distributed Systems
Another example: File server

How can we implement this server?

1.12 TS Distributed Systems

Threaded Implementations

 Use multiple threads to improve performance

Server

N threads

Input-output

Client

Thread 2 makes

T1

Thread 1

requests to server

reads
requests

Requests

Receipt &
queuing

How should the server handle
the incoming requests?

1.13 TS Distributed Systems

Threaded Servers

a . T h r e a d - p e r - r e q u e s tb . T h r e a d - p e r - c o n n e c t io nc . T h r e a d - p e r - o b je c t

r e m o t e

w o r k e r s

I / O r e m o t er e m o t eI / O

p e r - c o n n e c t io n t h r e a d sp e r - o b je c t t h r e a d s

o b je c t so b je c t s
o b je c t s

1.14 TS Distributed Systems

Performance of Threaded Programs

 Assumptions

 A single CPU & single disk system

 CPU and disk can work concurrently

 Suppose that the processing of each request

 Takes X seconds for computation; and

 Takes Y seconds for reading data from I/O disk

 For single-thread program/process

 What is the maximum throughput (i.e., the number of

requests can be processed per second)?

.

1.15 TS Distributed Systems

Performance of Threaded Programs (cont’d)

 Suppose multi-thread implementation

 Single CPU & single disk system

 How many threads should be used?

Excessive number of threads higher overhead

Optimal number of threads to be used

 What is the maximum throughput (i.e., the number of

requests can be processed per second)?

 Where is the bottleneck?

 The slowest component determines the performance

 How to improve without extra hardware?

 If I/O is slow use main memory as data cache

.

1.16 TS Distributed Systems

Performance of Threaded Programs (cont)

 What about m-CPU and n-disk system

 How many threads should be used?

 What is the maximum throughput (i.e., the number

of requests can be processed per second)?

 How to achieve a given throughput?

 Balanced number of CPUs and I/O disks: m vs. n

.

1.17 TS Distributed Systems

VIRTUALIZATION

Parallelism among multiple threads on a single CPU is an illusion!

Generalization of this illusion to other resources is…

1.18 TS Distributed Systems

The Role of Virtualization in DS

 Extend or replace an existing interface so as

to mimic the behavior of another system

Reasons for Virtualization

1. Hardware changes faster than software

2. Ease of portability and code migration

3. Isolation of failing or attacked components

1.19 TS Distributed Systems

Architecture of VMs

 Virtualization can take place at very different

levels, strongly depending on the interfaces

offered by computer systems

 The essence of virtualization is to mimic the

behavior of these interfaces

1.20 TS Distributed Systems

Architecture of VMs (cont’d)

VM Monitor (VMM): A separate
software layer mimics the
instruction set of hardware.
So a complete operating system
and its applications can be
supported (Example: VMware,
VirtualBox).

Process VM: A program is
compiled to intermediate
(portable) code, which is then
executed by a runtime system
(Example: Java VM).

1.21 TS Distributed Systems

VM Monitors on operating systems

Practice

 We’re seeing VMMs run on top of existing

operating systems.

 Perform binary translation: while executing an

application or operating system, translate

instructions to that of the underlying machine.

 Distinguish sensitive instructions: traps to the

original kernel (think of system calls, or privileged instructions).

 Sensitive instructions are replaced with calls to

the VMM.

Very important for DS:
 reliability, security, isolation, portability

1.22 TS Distributed Systems

CLIENTS

1.23 TS Distributed Systems

Clients: User Interfaces and Communication Protocols

 A major part of client-side software is to develop a

(graphical) user interfaces (software engineering)

 The other major part is communication protocols

that make client to interact with the remote server

 Application-specific protocols: -/+?

 General (application-independent) solutions: -/+?

1.24 TS Distributed Systems

Example: The XWindow System

 May be OK on a LAN.

 How about WAN?

 Re- engineer the protocol to avoid delay and need

for excessive bandwidth for bitmaps

Cashing, (de)compression, consider app specific data

1.25 TS Distributed Systems

Clients: Distributed Transparency

 access transparency: client-side stubs for RPCs

provides the same interface at server

 location/migration transparency: server let client-

side software to know when it changes location, so

client can hide it from user and keep track of actual

location

 replication transparency:

 client stub sends multiple request to replicated

servers and collect incoming responses

 failure transparency: client can try to re-transmit a

request to mask server and communication failures

1.26 TS Distributed Systems

SERVERS

1.27 TS Distributed Systems

General Design issues

 A server is a process that

 waits for incoming service requests from clients,

 takes care of the requests, and

 sends results back to clients

 Iterative vs. Concurrent servers

 Where/how clients connect servers

 Each server listen to a specific transport address (e.g.,

IP address and port number)

 Well-known services have a well known port number

 What if the service is not offered on a well-known port

1.28 TS Distributed Systems

General Design issues (cont’d)

 Special daemons

keep track of the

port number of

each service
 If no client, waste of

resources

 Superservers

listen to several

ports, i.e., provide

several independent

services (UNIX inetd)

 + do not waste resources

 - slow response time

1.29 TS Distributed Systems

General Design issues (cont’d)

How to interrupt a service? (e.g., downloading a webpage)

 User abruptly kills the client application

 Use separate port for urgent data

 Server has a separate thread/process for urgent messages

 Urgent message comes in associated request is put on hold

 Require OS supports priority-based scheduling

 Use out-of-band communication facilities of the

transport layer:

 Example: TCP allows for urgent messages in same connection

 Urgent messages can be caught using OS signaling techniques

1.30 TS Distributed Systems

General Design issues (cont’d)
Should the server be stateless or stateful?

 Stateless servers never keep track of clients basic HTTP

 Clients and servers are completely independent

 State inconsistencies due to client or server crashes are reduced

 Possible loss of performance, e.g., a server cannot anticipate

client behavior (think of prefetching file blocks)

 Stateful servers keeps track of clients (e.g., file servers)

 In case of crash, recovery is not an easy task

 The performance of stateful servers can be extremely high,

provided clients are allowed to keep local copies.

 Record that a file has been opened, so that pre-fetching can be done

 Knows which data a client has cached, and allows clients to keep local

copies of shared data

 Soft state, temporary (session) states, cookies

 TCP, cookies in http?

1.31 TS Distributed Systems

Server Clusters

 The first tier hides the internal

organization (e.g., TCP handoff)

 It passes requests to an

appropriate server (important for load balancing)

 Could be the bottleneck

 Challenge: how to replace this single point of

failure by a fully distributed solution…

1.32 TS Distributed Systems

Distributed Servers

 Add multiple access points

having the same host name

and DNS returns their

address for the same name

 Clients can try different

addresses if one fails

 - Still have static access

points

 Stability and flexibility

requires distributed servers

 Mobile IP could be used

1.33 TS Distributed Systems

Managing Server Clusters

 Common approaches

 Extend traditional management functions of a

single machine so admin can log in and manage it

 Advanced forms

 Centralized interface that hide the fact that admin

needs to log into single machines

 Ad hoc

 More works need to be done

 Self-* solutions may help

1.34 TS Distributed Systems

Example: PlanetLab

 The basic organization of a PlanetLab node.

OPT

1.35 TS Distributed Systems

PlanetLab (1)

 PlanetLab management issues:

• Nodes belong to different organizations.

 Each organization should be allowed to specify who is

allowed to run applications on their nodes,

 And restrict resource usage appropriately.

• Monitoring tools available assume a very specific

combination of hardware and software.

 All tailored to be used within a single organization.

• Programs from different slices but running on the

same node should not interfere with each other.

OPT

1.36 TS Distributed Systems

PlanetLab (2)

 Figure 3-16. The management relationships

between various PlanetLab entities.

OPT

1.37 TS Distributed Systems

PlanetLab (3)

 Relationships between PlanetLab entities:

• A node owner puts its node under the regime of a

management authority, possibly restricting usage

where appropriate.

• A management authority provides the necessary

software to add a node to PlanetLab.

• A service provider registers itself with a

management authority, trusting it to provide well-

behaving nodes.

OPT

1.38 TS Distributed Systems

PlanetLab (4)

 Relationships between PlanetLab entities:

• A service provider contacts a slice authority to
create a slice on a collection of nodes.

• The slice authority needs to authenticate the
service provider.

• A node owner provides a slice creation service for
a slice authority to create slices. It essentially
delegates resource management to the slice
authority.

• A management authority delegates the creation of
slices to a slice authority.

OPT

1.39 TS Distributed Systems

CODE MIGRATION

So far we discussed passing data…

How about passing programs even when they are being executed…

1.40 TS Distributed Systems

 Performance

 Move processes from heavily-loaded to lightly-loaded

 Minimize communication (e.g., JavaScript to check forms)

 Exploit parallelism (e.g., mobile agent to search info)

 Flexibility

 fetch the necessary software,

 and then invoke the server.

+ no need to pre-install sw

+ client-server protocols can

 be changed easily

- Security (ch 9)

Reasons for Migrating Code

1.41 TS Distributed Systems

Models for Code Migration

 A process consists of three segments

 Code (set of instructions, program)

 Resource (external resources: files, printers, other processes)

 Execution (private data, stack, program counter, registers)

 Weak vs. Strong mobility

 Transfer only the code vs. transfer execution as well

 Simple, easy vs. general, hard

 Sender-initiated vs. Receiver-initiated

Code is at A and

 A initiates migration vs. B initiates migration

 Requires registration

 and authentication vs. simpler

1.42 TS Distributed Systems

Models for Code Migration (cont’d)

1.43 TS Distributed Systems

Migration and Local Resources

 Process to resource binding

 The strongest form is by identifier

Requires a specific instance of a resource (URL, ftp server)

 A weaker form is by value

Requires the value of a resource (cache entries, standard lib)

 The Weakest form is by type

Requires a resource of specific type (monitor, printer)

 Resource types

 Un-attached resource can be easily moves (data file)

 Fastened resource can be moved but costly (local DB)

 Fixed resource cannot be moved (local hard disk)

 Have nine combinations…

1.44 TS Distributed Systems

Migration and Local Resources (con’d)

Actions to be taken with respect to the references to local
resources when migrating code to another machine.

1.45 TS Distributed Systems

Migration in Heterogeneous Systems

 Main Problem

 The target machine may not be suitable to execute the

migrated code

 The definition of process/thread/processor context is

highly dependent on local hardware, operating system

and runtime system

 Only solution

 Make use of an abstract machine that is implemented

on different platforms

 Interpreted languages, effectively having their own VM (Java)

 Virtual machine migration

1.46 TS Distributed Systems

Migration in heterogeneous Systems cont’d

 Three ways to handle migration (which can

be combined)

 Pushing memory pages to the new machine and

resending the ones that are later modified during

the migration process.

 Stopping the current virtual machine; migrate

memory, and start the new virtual machine.

 Letting the new virtual machine pull in new pages

as needed, that is, let processes start on the new

virtual machine immediately and copy memory

pages on demand.

