
1.1 TS Distributed Systems

Chapter 3: PROCESSES THREADS

Thanks to the authors of the textbook [TS] for providing the base slides. I made several changes/additions.
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.

So I would like to thank him, too.
Turgay Korkmaz

korkmaz@cs.utsa.edu

Processes and Threads in Distributed Systems

1.2 TS Distributed Systems

Chapter 3: PROCESSES THREADS

 THREADS
 Introduction to Threads

 Threads in Distributed Systems

 VIRTUALIZATION
 The Role of Virtualization in Distributed Systems

 Architectures of Virtual Machines

 CLIENTS and SERVERS
 Client-Side Software for Distribution Transparency

 Server Clusters and their Management

 CODE MIGRATION
 Approaches to Code Migration

 Migration and Local Resources

 Migration in Heterogeneous Systems

1.3 TS Distributed Systems

Objectives

 To understand threads and related issues in DS

 To understand the role of virtualization in DS

 To learn general design issues for clients and

servers in DS

 To understand code migration and its

implications

1.4 TS Distributed Systems

Introduction

 We already studied processes in OS part,

where the key issues were:
process management, scheduling, synchronization…

 We also studied threads (sgg-ch4)
User-level, kernel-level implementations, thread pool..

 Let us look at other equally important issues

in the context of DS

 Threads in DS

 Client-server design

 Code Migration

1.5 TS Distributed Systems

Thread Review

 Contrast Processes and Threads

 Different address space vs. ….

 CPU transparently switches processes vs. ….

 Concurrency is costly (context switch) vs. …

 Explain the advantages of threads

 In case of a blocking call, multithreaded application can

execute another thread

 Exploit parallelism when executed on multiprocessor

 Processes can only cooperate using IPC, requiring

expensive context switch, while threads…

 Make software development easier (e.g., editor example)

1.6 TS Distributed Systems

Thread Review
Contrast user-level and kernel-level threads

 +cheap, easy to

create/destroy threads
(memory allocation/release)

 +context switch is

done in a few

instruction (no need to

change MMU, TLB, etc)

 - blocking call will

block the entire

process (so no benefit in

editor :)

 + Circumvent problems

in user-level threads

 - requires system call

for every thread op

 -switching thread

context is as expensive

as switching processes

 Use hybrid form

Lightweight process

(LWP)

1.7 TS Distributed Systems

 Thread Review
Light-Weight Process (LWP)

 Lightweight process (LWP): intermediate structure

 Virtual processor: can execute user-level threads

 Each LWP attaches to a kernel thread

 Multiple user-level threads  a single LWP

 Normally from the same process

 A process may be assigned multiple LWPs

 OS schedules kernel threads (hence, LWPs) on the

CPU

.

1.8 TS Distributed Systems

LWP: Advantages and Disadvantages

 + User level threads are

easy to

create/destroy/sync

 + A blocking call will not

suspend the process if

we have enough LWP

 + Application does not

need to know about

LWP

 +LWP can be executed

on different CPUs,

hiding multiprocessing

 Occasionally, we still

need to create/destroy

LWP (as expensive as

kernel threads)

 Makes up calls

(scheduler activation)

 + simplifies LWP

management

 - Violates the

layered structure

1.9 TS Distributed Systems

THREADS IN DISTRIBUTED

SYSTEMS

1.10 TS Distributed Systems

Threads in Distributed Systems
Example: Web client and server

 Client (browser) starts communication in a thread.

While it is waiting or getting the content, the other

threads can do something else (e.g., display incoming data,

allow users to click links, get different objects etc.)

 Allow blocking systems calls without blocking the entire

process

 Server creates a new thread to service a request.

 Simplifies code (retains the idea of sequential process

using blocking call)

 Makes it easy to exploit parallelism

while()

{

 keyboard input

 …

}

while()

{

 socket1 input

 …

}

while()

{

 keyboard input vs.

 socket1 input

}

1.11 TS Distributed Systems

Threads in Distributed Systems
Another example: File server

How can we implement this server?

1.12 TS Distributed Systems

Threaded Implementations

 Use multiple threads to improve performance

Server

N threads

Input-output

Client

Thread 2 makes

T1

Thread 1

requests to server

reads
requests

Requests

Receipt &
queuing

How should the server handle
the incoming requests?

1.13 TS Distributed Systems

Threaded Servers

a . T h r e a d - p e r - r e q u e s tb . T h r e a d - p e r - c o n n e c t io nc . T h r e a d - p e r - o b je c t

r e m o t e

w o r k e r s

I / O r e m o t er e m o t eI / O

p e r - c o n n e c t io n t h r e a d sp e r - o b je c t t h r e a d s

o b je c t so b je c t s
o b je c t s

1.14 TS Distributed Systems

Performance of Threaded Programs

 Assumptions

 A single CPU & single disk system

 CPU and disk can work concurrently

 Suppose that the processing of each request

 Takes X seconds for computation; and

 Takes Y seconds for reading data from I/O disk

 For single-thread program/process

 What is the maximum throughput (i.e., the number of

requests can be processed per second)?

.

1.15 TS Distributed Systems

Performance of Threaded Programs (cont’d)

 Suppose multi-thread implementation

 Single CPU & single disk system

 How many threads should be used?

Excessive number of threads  higher overhead

Optimal number of threads to be used

 What is the maximum throughput (i.e., the number of

requests can be processed per second)?

 Where is the bottleneck?

 The slowest component determines the performance

 How to improve without extra hardware?

 If I/O is slow  use main memory as data cache

.

1.16 TS Distributed Systems

Performance of Threaded Programs (cont)

 What about m-CPU and n-disk system

 How many threads should be used?

 What is the maximum throughput (i.e., the number

of requests can be processed per second)?

 How to achieve a given throughput?

 Balanced number of CPUs and I/O disks: m vs. n

.

1.17 TS Distributed Systems

VIRTUALIZATION

Parallelism among multiple threads on a single CPU is an illusion!

Generalization of this illusion to other resources is…

1.18 TS Distributed Systems

The Role of Virtualization in DS

 Extend or replace an existing interface so as

to mimic the behavior of another system

Reasons for Virtualization

1. Hardware changes faster than software

2. Ease of portability and code migration

3. Isolation of failing or attacked components

1.19 TS Distributed Systems

Architecture of VMs

 Virtualization can take place at very different

levels, strongly depending on the interfaces

offered by computer systems

 The essence of virtualization is to mimic the

behavior of these interfaces

1.20 TS Distributed Systems

Architecture of VMs (cont’d)

VM Monitor (VMM): A separate
software layer mimics the
instruction set of hardware.
So a complete operating system
and its applications can be
supported (Example: VMware,
VirtualBox).

Process VM: A program is
compiled to intermediate
(portable) code, which is then
executed by a runtime system
(Example: Java VM).

1.21 TS Distributed Systems

VM Monitors on operating systems

Practice

 We’re seeing VMMs run on top of existing

operating systems.

 Perform binary translation: while executing an

application or operating system, translate

instructions to that of the underlying machine.

 Distinguish sensitive instructions: traps to the

original kernel (think of system calls, or privileged instructions).

 Sensitive instructions are replaced with calls to

the VMM.

Very important for DS:
 reliability, security, isolation, portability

1.22 TS Distributed Systems

CLIENTS

1.23 TS Distributed Systems

Clients: User Interfaces and Communication Protocols

 A major part of client-side software is to develop a

(graphical) user interfaces (software engineering)

 The other major part is communication protocols

that make client to interact with the remote server

 Application-specific protocols: -/+?

 General (application-independent) solutions: -/+?

1.24 TS Distributed Systems

Example: The XWindow System

 May be OK on a LAN.

 How about WAN?

 Re- engineer the protocol to avoid delay and need

for excessive bandwidth for bitmaps

Cashing, (de)compression, consider app specific data

1.25 TS Distributed Systems

Clients: Distributed Transparency

 access transparency: client-side stubs for RPCs

provides the same interface at server

 location/migration transparency: server let client-

side software to know when it changes location, so

client can hide it from user and keep track of actual

location

 replication transparency:

 client stub sends multiple request to replicated

servers and collect incoming responses

 failure transparency: client can try to re-transmit a

request to mask server and communication failures

1.26 TS Distributed Systems

SERVERS

1.27 TS Distributed Systems

General Design issues

 A server is a process that

 waits for incoming service requests from clients,

 takes care of the requests, and

 sends results back to clients

 Iterative vs. Concurrent servers

 Where/how clients connect servers

 Each server listen to a specific transport address (e.g.,

IP address and port number)

 Well-known services have a well known port number

 What if the service is not offered on a well-known port

1.28 TS Distributed Systems

General Design issues (cont’d)

 Special daemons

keep track of the

port number of

each service
 If no client, waste of

resources

 Superservers

listen to several

ports, i.e., provide

several independent

services (UNIX inetd)

 + do not waste resources

 - slow response time

1.29 TS Distributed Systems

General Design issues (cont’d)

How to interrupt a service? (e.g., downloading a webpage)

 User abruptly kills the client application

 Use separate port for urgent data

 Server has a separate thread/process for urgent messages

 Urgent message comes in  associated request is put on hold

 Require OS supports priority-based scheduling

 Use out-of-band communication facilities of the

transport layer:

 Example: TCP allows for urgent messages in same connection

 Urgent messages can be caught using OS signaling techniques

1.30 TS Distributed Systems

General Design issues (cont’d)
Should the server be stateless or stateful?

 Stateless servers never keep track of clients basic HTTP

 Clients and servers are completely independent

 State inconsistencies due to client or server crashes are reduced

 Possible loss of performance, e.g., a server cannot anticipate

client behavior (think of prefetching file blocks)

 Stateful servers keeps track of clients (e.g., file servers)

 In case of crash, recovery is not an easy task

 The performance of stateful servers can be extremely high,

provided clients are allowed to keep local copies.

 Record that a file has been opened, so that pre-fetching can be done

 Knows which data a client has cached, and allows clients to keep local

copies of shared data

 Soft state, temporary (session) states, cookies

 TCP, cookies in http?

1.31 TS Distributed Systems

Server Clusters

 The first tier hides the internal

organization (e.g., TCP handoff)

 It passes requests to an

appropriate server (important for load balancing)

 Could be the bottleneck

 Challenge: how to replace this single point of

failure by a fully distributed solution…

1.32 TS Distributed Systems

Distributed Servers

 Add multiple access points

having the same host name

and DNS returns their

address for the same name

 Clients can try different

addresses if one fails

 - Still have static access

points

 Stability and flexibility

requires distributed servers

 Mobile IP could be used

1.33 TS Distributed Systems

Managing Server Clusters

 Common approaches

 Extend traditional management functions of a

single machine so admin can log in and manage it

 Advanced forms

 Centralized interface that hide the fact that admin

needs to log into single machines

 Ad hoc

 More works need to be done

 Self-* solutions may help

1.34 TS Distributed Systems

Example: PlanetLab

 The basic organization of a PlanetLab node.

OPT

1.35 TS Distributed Systems

PlanetLab (1)

 PlanetLab management issues:

• Nodes belong to different organizations.

 Each organization should be allowed to specify who is

allowed to run applications on their nodes,

 And restrict resource usage appropriately.

• Monitoring tools available assume a very specific

combination of hardware and software.

 All tailored to be used within a single organization.

• Programs from different slices but running on the

same node should not interfere with each other.

OPT

1.36 TS Distributed Systems

PlanetLab (2)

 Figure 3-16. The management relationships

between various PlanetLab entities.

OPT

1.37 TS Distributed Systems

PlanetLab (3)

 Relationships between PlanetLab entities:

• A node owner puts its node under the regime of a

management authority, possibly restricting usage

where appropriate.

• A management authority provides the necessary

software to add a node to PlanetLab.

• A service provider registers itself with a

management authority, trusting it to provide well-

behaving nodes.

OPT

1.38 TS Distributed Systems

PlanetLab (4)

 Relationships between PlanetLab entities:

• A service provider contacts a slice authority to
create a slice on a collection of nodes.

• The slice authority needs to authenticate the
service provider.

• A node owner provides a slice creation service for
a slice authority to create slices. It essentially
delegates resource management to the slice
authority.

• A management authority delegates the creation of
slices to a slice authority.

OPT

1.39 TS Distributed Systems

CODE MIGRATION

So far we discussed passing data…

How about passing programs even when they are being executed…

1.40 TS Distributed Systems

 Performance

 Move processes from heavily-loaded to lightly-loaded

 Minimize communication (e.g., JavaScript to check forms)

 Exploit parallelism (e.g., mobile agent to search info)

 Flexibility

 fetch the necessary software,

 and then invoke the server.

+ no need to pre-install sw

+ client-server protocols can

 be changed easily

- Security (ch 9)

Reasons for Migrating Code

1.41 TS Distributed Systems

Models for Code Migration

 A process consists of three segments

 Code (set of instructions, program)

 Resource (external resources: files, printers, other processes)

 Execution (private data, stack, program counter, registers)

 Weak vs. Strong mobility

 Transfer only the code vs. transfer execution as well

 Simple, easy vs. general, hard

 Sender-initiated vs. Receiver-initiated

Code is at A and

 A initiates migration vs. B initiates migration

 Requires registration

 and authentication vs. simpler

1.42 TS Distributed Systems

Models for Code Migration (cont’d)

1.43 TS Distributed Systems

Migration and Local Resources

 Process to resource binding

 The strongest form is by identifier

Requires a specific instance of a resource (URL, ftp server)

 A weaker form is by value

Requires the value of a resource (cache entries, standard lib)

 The Weakest form is by type

Requires a resource of specific type (monitor, printer)

 Resource types

 Un-attached resource can be easily moves (data file)

 Fastened resource can be moved but costly (local DB)

 Fixed resource cannot be moved (local hard disk)

 Have nine combinations…

1.44 TS Distributed Systems

Migration and Local Resources (con’d)

Actions to be taken with respect to the references to local
resources when migrating code to another machine.

1.45 TS Distributed Systems

Migration in Heterogeneous Systems

 Main Problem

 The target machine may not be suitable to execute the

migrated code

 The definition of process/thread/processor context is

highly dependent on local hardware, operating system

and runtime system

 Only solution

 Make use of an abstract machine that is implemented

on different platforms

 Interpreted languages, effectively having their own VM (Java)

 Virtual machine migration

1.46 TS Distributed Systems

Migration in heterogeneous Systems cont’d

 Three ways to handle migration (which can

be combined)

 Pushing memory pages to the new machine and

resending the ones that are later modified during

the migration process.

 Stopping the current virtual machine; migrate

memory, and start the new virtual machine.

 Letting the new virtual machine pull in new pages

as needed, that is, let processes start on the new

virtual machine immediately and copy memory

pages on demand.

