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Chapter 4:  Communications 

 FUNDAMENTALS  
 Layered Protocols   (chapter 0) 

 Middleware and Types of communications 

 REMOTE PROCEDURE CALL  
 Basic RPC Operation  

 Parameter Passing  

 RPC operation  

 RPC Examples 

 Asynchronous RPC  

 RMI   (some from chapter 10, most from web) 

 CORBA    (some from chapter 10, most from web) 

 MESSAGE-ORIENTED COMMUNICATION  
 Transient and Persistent Communication  

 STREAM-ORIENTED COMMUNICATION  
 Support for Continuous Media and Quality of Service  

 Stream Synchronization  

 MULTICAST COMMUNICATION  
 Application-Level Multicasting  

 Gossip-Based Data Dissemination  
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Objectives 

 To understand how processes communicate (the 

heart of distributed systems)  

 To understand computer networks  and their layers 

 To understand client-server paradigm and low-level 

message passing using sockets 

  To learn higher-level communication mechanisms 

 RPC, RMI, CORBA 

 To understand various forms of communications 

and their issues 

 Stream-oriented communication, multicast, etc. 
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Distributed Systems and Layer Structure 

Under lying net wor k

Applicat ion

Network  interface

Tr ansport

Inter network

Inter network packet s

Network-specif ic packets

Message
Layer s

Inter network
pr otocols

Under lying
network
pr otocols

TCP & UDP 

IP 

Ethernet 

 
 
 
Low-level  
Layers 
 
 
 

Higher-level app 
protocols 

communication 
facilities for 
most distributed 
systems 

Middleware layer  
common services and protocols to many different applications 
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MIDDLEWARE  

 

An additional communication service in client-server computing  

An intermediate (distributed) service in application-level communication 
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Middleware Layer 

 Most network applications have application-specific 

protocols (FTP, HTTP, DNS) using low-level 

communication services (TCP, UDP) 

 Middleware Layer is logically at the application layer 

but contains a rich set of general-purpose protocols 

and higher-level communication services (RPC) that 

can be used by different applications 

 (Un)marshaling of data, necessary for integrated systems 

 Naming protocols to easy sharing of resources (ch5) 

 Distributed locking and commit protocols (ch6, ch8) 

 Scaling mechanisms, such as replication (ch7) 

 Security protocols for secure communication (ch9) 
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Types of communications  (1) 
that middleware may offer  

 Persistent vs. Transient 
 A message is stored at a communication server as long as it 

takes to deliver it (e.g., e-mail). 

 A message is stored as long as sender and receiver are working 

at the same time (TCP, UDP, IP routing)  
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Types of communication (2) 

Asynchronous vs. Synchronous 

 Sender continues immediately after it has submitted the message 

(Unblocked and Need a local buffer at the sender) 

 Sender blocks until the sender receives an OK to continue       

(This OK may come from three places for  synchronization) 

 

 

 

 

 

 

 

 

 

 

Discrete  vs. Streaming  
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Combinations 

Asynchronous 

 

Synchronous at 
Submission, delivery, after service 

Persistent 

Message-oriented middleware 

(MOM) 
• Processes send each other messages 

(queued) 

• Sender does not need to wait for 

immediate reply 

• Middleware often ensures fault tolerance 

Transient  

Client/Server, RPC, TCP 
• Client and server have to be active at time of 

communication 

• Client issues request and blocks until it 

receives reply 

• Server essentially waits only for incoming 

requests, and subsequently processes them 

Drawbacks of synchronous communication 

• Client cannot do any other work while waiting for reply 

• Failures have to be handled immediately: the client is waiting 

• The model may simply not be appropriate (mail, news) 
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Persistent with Async and Sync 

a) Persistent asynchronous communication  (e.g., email) 

b) Persistent synchronous communication 
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Transient with Async and Sync 

c) Transient asynchronous communication (e.g., UDP) 

d) Receipt-based transient synchronous communication (e.g., TCP) 

2-22.2 
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Transient and Sync 

e) Delivery-based transient synchronous communication at message 
delivery (e.g., asynchronous RCP) 

f) Response-based transient synchronous communication (RPC) 
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REMOTE PROCEDURE CALLS 

(RPC) 

Remote Procedure Call (RPC) is a high-level model for client-sever 
communication. 

 

It provides the programmers with a familiar mechanism (e.g., 
function calls) for building distributed systems. 
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Remote Procedure Calls 

 Send and receive are at the heart of DS, but they fail to 

achieve transparency  

 A new paradigm is needed to hide communications from 

application programmers 

 Application developers are familiar with simple “procedure call” model 

 Well-engineered procedures operate in isolation (black box) 

 In 1984, Birrell and Nelson proposed a completely different 

way of handling communication by allowing programs  to call 

procedures located on other machines (RPC) 

 There is no fundamental reason not to execute procedures on separate 

machines 

 RPC is integrated into programming languages  

 Makes distributed computing look like centralized computing  by allowing 

remote services to be called as procedures 

 Issues: How to pass parameters, Bindings, Semantics in face of errors, etc… 
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Remote Procedure Call (RPC) 

• myAdd(); 
• mySub(); 
• myMax(); 
• myMin(); 

 
Would like to 

use the 
above 

functions as 
well as the 
ones in the 

server 
 

• magicAdd( ) 
• magicSub( ) 
• magicMax( ) 
• magicMin( ) 

Server Client 

HOW? 
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Client and Server Stubs 

 Make remote procedure call look like local call 

 So that the client can call myAdd() and magicAdd() 

in the same way 
result1 = myAdd(para_x, para_y); 

result2 = magicAdd(para_x, para_y); 

The server stub  for magicAdd() unpacks the 
parameters from the message and calls the local  
procedure in a usual way. When completes, the server 
stub will pack the result and return it to the client 

client stub for magicAdd() packs the 
parameters into a message and call OS 
(through send  primitive). It will then 
block itself (through receive primitive) 

client stub for magicAdd() 
unpacks the message and 
returns result to the client  
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Stubs 

 Client makes procedure call (just like a local 

procedure call) to the client stub 

 Server is written as a standard procedure 

 Stubs take care of packaging arguments and 

sending messages 

 Packaging parameters is called marshalling 

 Stub compiler generates stub automatically 

from specs in an Interface Definition 

Language (IDL) 

 Simplifies programmer task 
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RPC Steps 

A remote procedure call occurs in the following steps: 

1. The client procedure calls the client stub in the normal way. 

2. The client stub builds a message and calls the local operating system. 

3. The client’s OS sends the message to the remote OS. 

4. The remote OS gives the message to the server stub.           . 

5. The server stub unpacks the parameters and calls the server. 

6. The server does the work and returns the result to the stub.  . 

7. The server stub packs it in a message and calls its local OS.. 

8. The server’s OS sends the message to the client’s OS.         . 

9. The client’s OS gives the message to the client stub. 

10.The stub unpacks the result and returns to the client. 

 

Sounds simple but there are several issues… 
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RPC Mechanism 

client  
stub 
proc. 

Communication 
module 

Local  
return 

Local  
call 

Client computer Server computer 

server  
stub 
proc. 

Receive 
reply 

Send 
request 

Unmarshal 
results 

Marshal 
arguments 

Receive 
request 

Send 
reply 

Select procedure 

Unmarshal 
arguments 

Marshal 
results 

Execute procedure 
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RPC PARAMETER PASSING  

Simulate “Local procedure parameter passing” through: 

Stubs – proxies 

Flattening – marshalling 
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Procedure Call: Local 

 Consider a call in C:   

  result = read(fd, buf, nbytes); 

 What happens?   

 Caller pushes parameters onto the stack and then… 

(a) stack before call (b) stack during call 

Stack pointer 
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Parameters Passing in Local Calls 

 Call-by-value  

 the parameter value copied to the stack. Modifications do 

not affect the calling side 
 

 Call-by-reference  

 the address of the parameter is pushed onto the stack (e.g., 

pointers in C; obj ref in Java). Any modification affects the 

variable at the calling side. 
 

 Call-by-copy/restore 

 Copy the variable first to the stack (as in call-by-value), and 

then copy back after the call,  overwriting the caller’s original 

value. 
 In many cases, the same behavior as “call-by-reference” 

 When a given variable appears multiple times in the parameter list, 

its behavior may be different than that of “call-by-reference” 
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Passing Value Parameter in RPC 
call-by-value  

middleware 

RPC 

 pack value parameters into a message and send it to the server,  

 

 would it be that easy? 
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Problem: different data representations 

 A process on an Intel machine send a message 
of an integer and four-character string (“5, JILL”) 
to another process on a Sun SPARC machine 

 (a) original message on Intel (x86, Little Endian)  

 (b) receipt message on SPARC (Big Endian) “5000, JILL” 

 (c) simple reverse: message after converted “5, LLIJ” 

The little numbers in boxes indicate the address of each byte 
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Approaches for Exchanging Information 

 Clients send information in 

servers’ data representation 

 

 

  

 Client and server use a 
common external data 
representation  

• Language defined 
representation (e.g., Java, 
CORBA CDR) 

• External self-descriptive data 
representation (e.g., XML, 
Web Services) 

 

How can clients make servers on different machines understand them? 
 

How people from different countries communicate with each other?  
  

 

 Speaker uses listener’s 

language 

• English, Chinese, 

 India(?)…, //hundreds  

 

 Both use a common 

language 

• English 
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Parameter marshaling 

 More than just wrapping parameters into a 

message 

 Client and server machines may have different 

data representations (think of byte ordering) 

 Client and server have to agree on a standard 

representation (e.g., external data representation (XDR)) 

 How are basic data values represented (integers, floats, characters) 

 How are complex data values represented (arrays, unions) 

 Client and server need to properly interpret 

messages, and transform them into machine-

dependent representations. 
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Solutions 

 Forbid reference parameters! 

 Client stub can copy the entire data structure 
 E.g., an entire array may be sent if the size is known 

 Server stub saves changes and sends it back  

 (call-by-reference is replaced by call-by-copy/restore) 

 If we know it was just in or out, we can avoid one copy 

 How to handle open-ended data structures 

(e.g., link list, graphs)? 

 Prohibit  

 A remote reference (chase pointers on network) 
 Remote reference offers unified access to remote data 

 Remote references can be passed as parameter in RPCs (Java RMI) 

 

 

Passing Reference Parameters in RPC 
Difficulty Problem! 

Full  
access 

transparency  
cannot  

be  
realized. 
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Parameter Passing Semantics in RPC 

 RPC assumes copy in/copy out semantics 

  while procedure is executed, nothing can be assumed 

about parameter values 

 RPC assumes all data that is to be operated on 

is passed by parameters.  

 Global variables are not allowed in RPCs 

 Conclusion: 

 full access transparency cannot be realized. 
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Parameter Specification and Stub Generation 

 Both client and server must follow the 

same protocol when passing complex 

data structures 

 Agree on format and representation  

 Stubs take care of (un)packaging   

arguments and sending messages 

 Programmers just define interfaces using 

Interface Definition Language (IDL) 

 To simplify programmer’s task, Stub 

compiler generates stub automatically 

from specs in IDL 

 

We will see 
an example 
later! 
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RPC in Practice 

Client 

Machine 

 Server 

Process 

Server 

Stub 

Server OS 

Client 

Process 

Client 

Stub 

Client OS 

Server 

Machine 

middleware 

How to locate an RPC server that can execute  
a given procedure in a network? 
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Binding a Client to a Server 

 Client must locate the server’s machine and 

locate server on that machine (how?) 

 Registration of a server makes it possible for a 

client to locate the server and bind to it 
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Binding 

 Server 

 Export server interface during initialization 

 Send name, version no, unique identifier, handle 

(address) to binder 

 Client 

 First RPC: send message to binder to import server 

interface 

 Binder: check to see if server has exported interface 

Return handle and unique identifier to client 

 Performance issues 

 Exporting and importing incurs overheads 

 Binder can be a bottleneck (Use multiple binders) 

 Binder can do load balancing 
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RPC OPERATION IN CASE OF 

FAILURES 

What may go wrong?  

What to do when there is a failure? 

(ch 8) 
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What may go wrong in  

Request-Reply protocol (RR)? 

request lost 
reply lost 

Server down 

  X 

Client unable to locate server 

  X 

Client down 
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Failure Semantics 

 Client unable to locate server:  

 return error 

 Lost request messages:  

 simple timeout mechanisms, resend? 

 Lost replies:  

 timeout mechanisms, resend? 

 

 What are the problems with resending? 
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Resend? 

 Client: time out  retry request 

 If timeout and no reply received, it resends request 

 If client does not receive reply after N attempts it 

assumes that server has failed and gives up 

 Server: duplicated requests 

 Re-execute & resend results;  

Can the requested operation be re-executed on server? 

Add sequence numbers to detect duplicate requests 

 Store requests & results 

How long should you store the results? 
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Should Servers Re-Do Operations? 

 Idempotent operations:  

 can be performed repeatedly with the same effect. 

 

 For idempotent operations: no state needs to be 

maintained on the server 

 Are the following operations idempotent? 

 HTTP GET … 

 UNIX file operations: read, write etc.  

yes 

NO 
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Server failure 
did failure occur before or after operation? 

 Exactly once: ideal case, same as local, but difficult 

to achieve 

 At least once: will guarantee that RPC has been 

carried out at least once, but possibly more 

 Acceptable only if the server’s operations are 
idempotent. That is  f(x) = f(f(x)). 

 At most once: Will guarantee that RPC has been 

carried out at most once, but possibly none at all 

 Implemented by the server's filtering of duplicate requests  

 No guarantees: When a server crashes, the client 

gets no help and no promises about what happened 
 The partial execution may lead to erroneous results.  

 In this case, we want the effect that the RP has not been executed at all. 
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Client failure 
what happens to the server computation? 

 Referred to as an orphan 

 Extermination: log at client stub and explicitly kill 

orphans 

 Overhead of maintaining disk logs 

 Reincarnation: Divide time into epochs between 

failures and delete computations from old epochs 

 Gentle reincarnation: upon a new epoch broadcast, 

try to locate owner first (delete only if no owner) 

 Expiration: give each RPC a fixed quantum T; 

explicitly request extensions 

 Periodic checks with client during long computations 
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Invocation Semantics 

Fault tolerance measures 
Invocation  

semantics 

Retransmit request  

message 

Duplicate  

filtering 

Re-execute procedure  

or retransmit reply 

No 

Yes 

Yes 

Not applicable 

No 

Yes 

Not applicable 

Re-execute procedure 

Retransmit reply At-most-once 

At-least-once 

Maybe 
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3.11 Consider the RPC mechanism. Describe the undesirable 
consequences that could arise from not enforcing either the “at most 
once” or “exactly once” semantic. Describe possible uses for a 
mechanism that has neither of these guarantees. 
 
Answer: If an RPC mechanism cannot support either the “at most 
once” or “at least once” semantics, then the RPC server cannot 
guarantee that a remote procedure will not be invoked multiple 
occurrences. Consider if a remote procedure were withdrawing money 
from a bank account on a system that did not support these semantics. 
It is possible that a single invocation of the remote procedure might 
lead to multiple withdrawals on the server. For a system to support 
either of these semantics generally requires the server maintain some 
form of client state such as the timestamp described in the text. If a 
system were unable to support either of these semantics, then such a 
system could only safely provide remote procedures that do not alter 
data or provide time-sensitive results. Using our bank account as an 
example, we certainly require “at most once” or “at least once” 
semantics for performing a withdrawal (or deposit!). However, an 
inquiry into an account balance or other account information such as 
name, address, etc. does not require these semantics. 
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EXAMPLES: SUN RPC 
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Sun RPC Interface 

 Type/data definitions (like C). 

 Component is described as a PROGRAM 

 Procedures have a result type, a parameter list and a number, 

 Procedure can be called remotely 

 Used by client or server directly: 

 Locating servers: static vs. dynamic binding 

 Choosing a transport protocol. 

 Authentication and security. 

 Invoking RPCs dynamically. 

 Used by stubs for: 

 Generating unique message IDs. 

 Sending messages. 

 Maintaining message history 
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Case Study: SUNRPC 

 One of the most widely used RPC systems 

 Developed for use with NFS 

 Built on top of UDP or TCP 

 TCP: stream is divided into records 

 UDP: max packet size < 8912 bytes 

 UDP: timeout plus limited number of retransmissions 

 TCP: return error if connection is terminated by server 

 Multiple arguments marshaled into a single structure 

 At-least-once semantics if reply received, at-least-zero 
semantics if no reply. With UDP tries at-most-once 

 Use SUN’s eXternal Data Representation (XDR)  

 Big endian order for 32 bit integers, handle arbitrarily large data 
structures 
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Implementation Issues 

 Choice of protocol [affects communication costs] 

 Use existing protocol (UDP) or design from scratch 

 Packet size restrictions 

 Reliability in case of multiple packet messages 

 Flow control 

 Copying costs are dominant overheads 

 Need at least 2 copies per message 

From client to NIC and from server NIC to server 

 As many as 7 copies 

Stack in stub – message  buffer in stub – kernel  – NIC – medium  
– NIC  – kernel  – stub – server   

 Scatter-gather operations can reduce overheads 



1.46 TS Distributed Systems 

A  full example: computing pi  
http://www.cs.gsu.edu/~cscyip/csc4320/rpcD/ 

               Example 1 
/* pi.x: Remote pi calculation protocol */ 
program PIPROG {     
   version CALCU_PIVERS {         
     double CALCU_PI() = 1;     
   } = 1; 
} = 0x39876543; 

/** pi_client.c */ 
#include <stdio.h> 
#include <rpc/rpc.h>   /* always needed */ 
#include "pi.h" 
 
main(int argc, char *argv[]) 
{ 
   CLIENT *clnt; 
   double  *result_1; 
   char *host; 
   char *calcu_pi_1_arg; 
 
   /* must have two arguments */ 
   if (argc < 2) { 
      printf("usage:  %s server_host\n", argv[0]); exit(1); 
   } 
   host = argv[1]; /* server host name */ 
   clnt = clnt_create(host, PIPROG,CALCU_PIVERS, "tcp"); 
   if (clnt == (CLIENT *) NULL) { 
      clnt_pcreateerror(host); 
      exit(1); 
   } 
   /* call remote procedure */ 
   result_1 = calcu_pi_1((void *)&calcu_pi_1_arg, clnt); 
   if (result_1 == (double *) NULL) { 
      clnt_perror(clnt, "call failed"); 
   } 
   /* print the pi value */ 
   printf("PI is %f\n" , *result_1); 
   clnt_destroy(clnt); 
   exit(0); 
} 
 
 
 

/** pi_server.c **/ 
#include <rpc/rpc.h> /* always needed */ 
#include "pi.h" 
 
double *calcu_pi_1_svc(void *argp,  
                                   struct svc_req *rqstp) 
{ 
 static double  pi; 
 
 double sum = 0; 
 int i; 
 int sign; 
 
 for (i=1; i<10000000; i++ ){ 
    sign = (i+1) % 2; 
    if ( sign == 0 ) 
       sign = 1; 
    else 
       sign = -1; 
 
     sum += 1.0 / (2*(double)i -1) *  
  (double)sign; 
 } 
 
 pi = 4 * sum; 
 
 return (&pi); 
} 

rpcgen  pi.x 
cc -g    -o pi_client  pi_clnt.c pi_client.c -lnsl 
cc -g    -o pi_server pi_svc.c pi_server.c -lnsl 

 pi_server  & 
 pi_client localhost  
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Binder: Port Mapper 

 Server start-up: create  port 

 Server stub calls  

svc_register to register        

prog #, version # with local port 

mapper 

 Port mapper stores prog #, 

version #, and port 

 Client start-up: call 

clnt_create to locate server port 

 Upon return, client can call 

procedures at the server 

 

/sbin/rpcbind 
 

The rpcbind utility is a 

server that converts RPC 
program numbers into 
universal addresses.   
 

It must be running on 
the host to be able to 
make RPC calls on a 
server on that machine. 
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Example 2  

/* person.x */ 

const NL=64; 

enum sex_type { 

 FEMALE = 1, MALE = 2}; 

struct Person { 

  string first_name<NL>; 

  string last_name<NL>; 

  sex_type sex; 

  string city<NL>;  

}; 

program PERSONPROG { 

 version PERSONVERS { 

  void PRINT(Person)=0; 

  int STORE(Person)=1; 

  Person LOAD(int)=2; 

 } = 1; 

} = 1234567; 

 

rpcgen  person.x 
cc -g    -o person_client  person_clnt.c person_client.c person_xdr.c -lnsl  
cc -g    -o person_server person_svc.c person_server.c person_xdr.c -lnsl  
 
person_server & 
person_client localhost 

rpcgen 

person.x 

client.c server.c 

C Compiler, Linker C Compiler, Linker 

person.h 

person_clnt.c person_svc.c 

person_xdr.c 

Client Server 
includes 

generates 

reads 

librpc.a 
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Example 2 (cont’d) 
/* person_server.c */ 

#include <rpc/rpc.h> /* always needed */ 
#include "person.h" 
 
Person pers = {"ABC name", "ABC lastname",  
                       MALE, "ABC city"}; 
int a=5; 
void *print_1_svc(Person *argp,  
 struct svc_req *rqstp) 
{ 
  static char *result; 
  printf("PRINT:%s %s\n%s\n\n", 
         argp->first_name, 
         argp->last_name, 
         argp->city); 
  return((void *) &result); 
} 
int *store_1_svc(Person *argp,  
 struct svc_req *rqstp) 
{ 
  printf("STORE: %s %s\n%s\n\n", 
         argp->first_name, 
         argp->last_name, 
         argp->city); 
  return &a; 
} 
Person *load_1_svc(int *num,  
 struct svc_req *rqstp) 
{ 
  printf("LOAD: Server got %d \n", *num); 
 return &pers; 
} 

/* person_client.c */ 

#include <stdio.h> 
#include <rpc/rpc.h>   /* always needed */ 
#include "person.h" 
 
main(int argc, char *argv[]) 
{ 
   CLIENT *clnt; 
   char *host; 
   Person pers = {"Person Name", "Lastname",  
  MALE, "San Antonio"}; 
   Person *p2; 
   int *i, a=8; 
   if (argc < 2) {/* must have two arguments */ 
      printf("usage:  %s server_host\n", argv[0]); exit(1); 
   } 
   host = argv[1]; /* server host name */ 
   clnt = clnt_create(host, PERSONPROG, 
                     PERSONVERS, "udp"); 
    if (clnt == (CLIENT *) NULL) {exit(1);} 
    if (print_1(&pers, clnt)==NULL)  
 clnt_perror(clnt, "call failed"); 
    if ((p2=load_1(&a, clnt))==NULL)  
 clnt_perror(clnt, "call failed"); 
   printf("%s\n", p2->last_name); 
   if (print_1(p2, clnt)==NULL)  
 clnt_perror(clnt, "call failed"); 
   if ((i=store_1(&pers, clnt))==NULL)  
 clnt_perror(clnt, "call failed"); 
 
  clnt_destroy(clnt); 
} 
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EXTRAS 

OPTIONAL  
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Lightweight RPCs 

 Many RPCs occur between client and server 

on same machine 

 Need to optimize RPCs for this special case => 

use a lightweight RPC mechanism (LRPC) 

 Server S exports interface to remote 

procedures 

 Client C on same machine imports interface 

 OS kernel creates data structures including 

an argument stack shared between S and C 
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Lightweight RPCs 

 RPC execution 

 Push arguments onto stack 

 Trap to kernel 

 Kernel changes mem map of client to server 

address space 

 Client thread executes procedure (OS upcall) 

 Thread traps to kernel upon completion 

 Kernel changes the address space back and 

returns control to client 

 Called “doors” in Solaris 
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Doors 

 Which RPC to use?  - run-time bit allows stub to choose 

between LRPC and RPC 
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Other RPC Models 

 Asynchronous RPC 

 Request-reply behavior often not needed 

 Server can reply as soon as request is received and execute 

procedure later 

 Deferred-synchronous RPC 

 Use two asynchronous RPCs  

 Client needs a reply but can’t wait for it; server sends reply 

via another asynchronous RPC 

 One-way RPC 

 Client does not even wait for an ACK from the server 

 Limitation: reliability not guaranteed (Client does not know if 

procedure was executed by the server). 
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Traditional RPC vs. Asynchronous RPC 

Traditional  
synchronous RPC  

asynchronous RPC  
server stub immediately 
sends a reply to client.  

 Try to get rid of the strict request-reply behavior, 

and let the client continue without waiting for an 

answer from the server. 
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Deferred Synchronous RPC 

 Client can also do a (non)blocking poll at the 

server to see whether results are available. 

 Through two asynchronous RPCs 
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One-Way RPC 

 Client does not know if the request is 

accepted or not (ch 8 fault tolerance) 
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RPC Limitations 

 Parameters passed by values only and 
pointer values are not allowed. 

 

 Speed: remote procedure calling (and return) 
time (i.e., overheads) can be significantly (1 - 
3 orders of magnitude) slower than that for 
local procedure.  

 

 This may affect real-time design and the 
programmer should be aware of its impact. 
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RPC Limitations 

 

 Failure: RPC is more vulnerable to failure 
(since it involves communication system, 
another machine and another process).  

 

 The programmer should be aware of the call 
semantics, i.e. programs that make use of RPC 
must have the capability of handling errors that 
cannot occur in local procedure calls. 
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Design Issues 

 Exception handling 
 

 Necessary because of possibility of network and 
nodes failures; 

 RPC uses return value to indicate errors; 
 

 Transparency 
 

 Syntactic  achievable, exactly the same syntax 
as a local procedure call; 

 Semantic  impossible because of RPC limitation: 
failure (similar but not exactly the same); 


