
1.1 TS Distributed Systems

Chapter 4: COMMUNICATION

Part 1-2

Thanks to the authors of the textbook [TS] for providing the base slides. I made several changes/additions.
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.

So I would like to thank him, too.
Turgay Korkmaz

korkmaz@cs.utsa.edu

Communications in Distributed Systems
Middleware and RPC

1.2 TS Distributed Systems

Chapter 4: Communications

 FUNDAMENTALS
 Layered Protocols (chapter 0)

 Middleware and Types of communications

 REMOTE PROCEDURE CALL
 Basic RPC Operation

 Parameter Passing

 RPC operation

 RPC Examples

 Asynchronous RPC

 RMI (some from chapter 10, most from web)

 CORBA (some from chapter 10, most from web)

 MESSAGE-ORIENTED COMMUNICATION
 Transient and Persistent Communication

 STREAM-ORIENTED COMMUNICATION
 Support for Continuous Media and Quality of Service

 Stream Synchronization

 MULTICAST COMMUNICATION
 Application-Level Multicasting

 Gossip-Based Data Dissemination

1.3 TS Distributed Systems

Objectives

 To understand how processes communicate (the

heart of distributed systems)

 To understand computer networks and their layers

 To understand client-server paradigm and low-level

message passing using sockets

 To learn higher-level communication mechanisms

 RPC, RMI, CORBA

 To understand various forms of communications

and their issues

 Stream-oriented communication, multicast, etc.

1.4 TS Distributed Systems

Distributed Systems and Layer Structure

Under lying net wor k

Applicat ion

Network interface

Tr ansport

Inter network

Inter network packet s

Network-specif ic packets

Message
Layer s

Inter network
pr otocols

Under lying
network
pr otocols

TCP & UDP

IP

Ethernet

Low-level
Layers

Higher-level app
protocols

communication
facilities for
most distributed
systems

Middleware layer
common services and protocols to many different applications

1.5 TS Distributed Systems

MIDDLEWARE

An additional communication service in client-server computing

An intermediate (distributed) service in application-level communication

1.6 TS Distributed Systems

Middleware Layer

 Most network applications have application-specific

protocols (FTP, HTTP, DNS) using low-level

communication services (TCP, UDP)

 Middleware Layer is logically at the application layer

but contains a rich set of general-purpose protocols

and higher-level communication services (RPC) that

can be used by different applications

 (Un)marshaling of data, necessary for integrated systems

 Naming protocols to easy sharing of resources (ch5)

 Distributed locking and commit protocols (ch6, ch8)

 Scaling mechanisms, such as replication (ch7)

 Security protocols for secure communication (ch9)

1.7 TS Distributed Systems

Types of communications (1)
that middleware may offer

 Persistent vs. Transient
 A message is stored at a communication server as long as it

takes to deliver it (e.g., e-mail).

 A message is stored as long as sender and receiver are working

at the same time (TCP, UDP, IP routing)

1.8 TS Distributed Systems

Types of communication (2)

Asynchronous vs. Synchronous

 Sender continues immediately after it has submitted the message

(Unblocked and Need a local buffer at the sender)

 Sender blocks until the sender receives an OK to continue

(This OK may come from three places for synchronization)

Discrete vs. Streaming

1.9 TS Distributed Systems

Combinations

Asynchronous

Synchronous at
Submission, delivery, after service

Persistent

Message-oriented middleware

(MOM)
• Processes send each other messages

(queued)

• Sender does not need to wait for

immediate reply

• Middleware often ensures fault tolerance

Transient

Client/Server, RPC, TCP
• Client and server have to be active at time of

communication

• Client issues request and blocks until it

receives reply

• Server essentially waits only for incoming

requests, and subsequently processes them

Drawbacks of synchronous communication

• Client cannot do any other work while waiting for reply

• Failures have to be handled immediately: the client is waiting

• The model may simply not be appropriate (mail, news)

1.10 TS Distributed Systems

Persistent with Async and Sync

a) Persistent asynchronous communication (e.g., email)

b) Persistent synchronous communication

1.11 TS Distributed Systems

Transient with Async and Sync

c) Transient asynchronous communication (e.g., UDP)

d) Receipt-based transient synchronous communication (e.g., TCP)

2-22.2

1.12 TS Distributed Systems

Transient and Sync

e) Delivery-based transient synchronous communication at message
delivery (e.g., asynchronous RCP)

f) Response-based transient synchronous communication (RPC)

1.13 TS Distributed Systems

REMOTE PROCEDURE CALLS

(RPC)

Remote Procedure Call (RPC) is a high-level model for client-sever
communication.

It provides the programmers with a familiar mechanism (e.g.,
function calls) for building distributed systems.

1.14 TS Distributed Systems

Remote Procedure Calls

 Send and receive are at the heart of DS, but they fail to

achieve transparency

 A new paradigm is needed to hide communications from

application programmers

 Application developers are familiar with simple “procedure call” model

 Well-engineered procedures operate in isolation (black box)

 In 1984, Birrell and Nelson proposed a completely different

way of handling communication by allowing programs to call

procedures located on other machines (RPC)

 There is no fundamental reason not to execute procedures on separate

machines

 RPC is integrated into programming languages

 Makes distributed computing look like centralized computing by allowing

remote services to be called as procedures

 Issues: How to pass parameters, Bindings, Semantics in face of errors, etc…

1.15 TS Distributed Systems

Remote Procedure Call (RPC)

• myAdd();
• mySub();
• myMax();
• myMin();

Would like to

use the
above

functions as
well as the
ones in the

server

• magicAdd()
• magicSub()
• magicMax()
• magicMin()

Server Client

HOW?

1.16 TS Distributed Systems

Client and Server Stubs

 Make remote procedure call look like local call

 So that the client can call myAdd() and magicAdd()

in the same way
result1 = myAdd(para_x, para_y);

result2 = magicAdd(para_x, para_y);

The server stub for magicAdd() unpacks the
parameters from the message and calls the local
procedure in a usual way. When completes, the server
stub will pack the result and return it to the client

client stub for magicAdd() packs the
parameters into a message and call OS
(through send primitive). It will then
block itself (through receive primitive)

client stub for magicAdd()
unpacks the message and
returns result to the client

1.17 TS Distributed Systems

Stubs

 Client makes procedure call (just like a local

procedure call) to the client stub

 Server is written as a standard procedure

 Stubs take care of packaging arguments and

sending messages

 Packaging parameters is called marshalling

 Stub compiler generates stub automatically

from specs in an Interface Definition

Language (IDL)

 Simplifies programmer task

1.18 TS Distributed Systems

RPC Steps

A remote procedure call occurs in the following steps:

1. The client procedure calls the client stub in the normal way.

2. The client stub builds a message and calls the local operating system.

3. The client’s OS sends the message to the remote OS.

4. The remote OS gives the message to the server stub. .

5. The server stub unpacks the parameters and calls the server.

6. The server does the work and returns the result to the stub. .

7. The server stub packs it in a message and calls its local OS..

8. The server’s OS sends the message to the client’s OS. .

9. The client’s OS gives the message to the client stub.

10.The stub unpacks the result and returns to the client.

Sounds simple but there are several issues…

1.19 TS Distributed Systems

RPC Mechanism

client
stub
proc.

Communication
module

Local
return

Local
call

Client computer Server computer

server
stub
proc.

Receive
reply

Send
request

Unmarshal
results

Marshal
arguments

Receive
request

Send
reply

Select procedure

Unmarshal
arguments

Marshal
results

Execute procedure

1.20 TS Distributed Systems

RPC PARAMETER PASSING

Simulate “Local procedure parameter passing” through:

Stubs – proxies

Flattening – marshalling

1.21 TS Distributed Systems

Procedure Call: Local

 Consider a call in C:

 result = read(fd, buf, nbytes);

 What happens?

 Caller pushes parameters onto the stack and then…

(a) stack before call (b) stack during call

Stack pointer

1.22 TS Distributed Systems

Parameters Passing in Local Calls

 Call-by-value

 the parameter value copied to the stack. Modifications do

not affect the calling side

 Call-by-reference

 the address of the parameter is pushed onto the stack (e.g.,

pointers in C; obj ref in Java). Any modification affects the

variable at the calling side.

 Call-by-copy/restore

 Copy the variable first to the stack (as in call-by-value), and

then copy back after the call, overwriting the caller’s original

value.
 In many cases, the same behavior as “call-by-reference”

 When a given variable appears multiple times in the parameter list,

its behavior may be different than that of “call-by-reference”

1.23 TS Distributed Systems

Passing Value Parameter in RPC
call-by-value

middleware

RPC

 pack value parameters into a message and send it to the server,

 would it be that easy?

1.24 TS Distributed Systems

Problem: different data representations

 A process on an Intel machine send a message
of an integer and four-character string (“5, JILL”)
to another process on a Sun SPARC machine

 (a) original message on Intel (x86, Little Endian)

 (b) receipt message on SPARC (Big Endian) “5000, JILL”

 (c) simple reverse: message after converted “5, LLIJ”

The little numbers in boxes indicate the address of each byte

1.25 TS Distributed Systems

Approaches for Exchanging Information

 Clients send information in

servers’ data representation

 Client and server use a
common external data
representation

• Language defined
representation (e.g., Java,
CORBA CDR)

• External self-descriptive data
representation (e.g., XML,
Web Services)

How can clients make servers on different machines understand them?

How people from different countries communicate with each other?

 Speaker uses listener’s

language

• English, Chinese,

 India(?)…, //hundreds

 Both use a common

language

• English

1.26 TS Distributed Systems

Parameter marshaling

 More than just wrapping parameters into a

message

 Client and server machines may have different

data representations (think of byte ordering)

 Client and server have to agree on a standard

representation (e.g., external data representation (XDR))

 How are basic data values represented (integers, floats, characters)

 How are complex data values represented (arrays, unions)

 Client and server need to properly interpret

messages, and transform them into machine-

dependent representations.

1.27 TS Distributed Systems

Solutions

 Forbid reference parameters!

 Client stub can copy the entire data structure
 E.g., an entire array may be sent if the size is known

 Server stub saves changes and sends it back

 (call-by-reference is replaced by call-by-copy/restore)

 If we know it was just in or out, we can avoid one copy

 How to handle open-ended data structures

(e.g., link list, graphs)?

 Prohibit

 A remote reference (chase pointers on network)
 Remote reference offers unified access to remote data

 Remote references can be passed as parameter in RPCs (Java RMI)

Passing Reference Parameters in RPC
Difficulty Problem!

Full
access

transparency
cannot

be
realized.

1.28 TS Distributed Systems

Parameter Passing Semantics in RPC

 RPC assumes copy in/copy out semantics

 while procedure is executed, nothing can be assumed

about parameter values

 RPC assumes all data that is to be operated on

is passed by parameters.

 Global variables are not allowed in RPCs

 Conclusion:

 full access transparency cannot be realized.

1.29 TS Distributed Systems

Parameter Specification and Stub Generation

 Both client and server must follow the

same protocol when passing complex

data structures

 Agree on format and representation

 Stubs take care of (un)packaging

arguments and sending messages

 Programmers just define interfaces using

Interface Definition Language (IDL)

 To simplify programmer’s task, Stub

compiler generates stub automatically

from specs in IDL

We will see
an example
later!

1.30 TS Distributed Systems

RPC in Practice

Client

Machine

 Server

Process

Server

Stub

Server OS

Client

Process

Client

Stub

Client OS

Server

Machine

middleware

How to locate an RPC server that can execute
a given procedure in a network?

1.31 TS Distributed Systems

Binding a Client to a Server

 Client must locate the server’s machine and

locate server on that machine (how?)

 Registration of a server makes it possible for a

client to locate the server and bind to it

1.32 TS Distributed Systems

Binding

 Server

 Export server interface during initialization

 Send name, version no, unique identifier, handle

(address) to binder

 Client

 First RPC: send message to binder to import server

interface

 Binder: check to see if server has exported interface

Return handle and unique identifier to client

 Performance issues

 Exporting and importing incurs overheads

 Binder can be a bottleneck (Use multiple binders)

 Binder can do load balancing

1.33 TS Distributed Systems

RPC OPERATION IN CASE OF

FAILURES

What may go wrong?

What to do when there is a failure?

(ch 8)

1.34 TS Distributed Systems

What may go wrong in

Request-Reply protocol (RR)?

request lost
reply lost

Server down

 X

Client unable to locate server

 X

Client down

1.35 TS Distributed Systems

Failure Semantics

 Client unable to locate server:

 return error

 Lost request messages:

 simple timeout mechanisms, resend?

 Lost replies:

 timeout mechanisms, resend?

 What are the problems with resending?

1.36 TS Distributed Systems

Resend?

 Client: time out retry request

 If timeout and no reply received, it resends request

 If client does not receive reply after N attempts it

assumes that server has failed and gives up

 Server: duplicated requests

 Re-execute & resend results;

Can the requested operation be re-executed on server?

Add sequence numbers to detect duplicate requests

 Store requests & results

How long should you store the results?

1.37 TS Distributed Systems

Should Servers Re-Do Operations?

 Idempotent operations:

 can be performed repeatedly with the same effect.

 For idempotent operations: no state needs to be

maintained on the server

 Are the following operations idempotent?

 HTTP GET …

 UNIX file operations: read, write etc.

yes

NO

1.38 TS Distributed Systems

Server failure
did failure occur before or after operation?

 Exactly once: ideal case, same as local, but difficult

to achieve

 At least once: will guarantee that RPC has been

carried out at least once, but possibly more

 Acceptable only if the server’s operations are
idempotent. That is f(x) = f(f(x)).

 At most once: Will guarantee that RPC has been

carried out at most once, but possibly none at all

 Implemented by the server's filtering of duplicate requests

 No guarantees: When a server crashes, the client

gets no help and no promises about what happened
 The partial execution may lead to erroneous results.

 In this case, we want the effect that the RP has not been executed at all.

1.39 TS Distributed Systems

Client failure
what happens to the server computation?

 Referred to as an orphan

 Extermination: log at client stub and explicitly kill

orphans

 Overhead of maintaining disk logs

 Reincarnation: Divide time into epochs between

failures and delete computations from old epochs

 Gentle reincarnation: upon a new epoch broadcast,

try to locate owner first (delete only if no owner)

 Expiration: give each RPC a fixed quantum T;

explicitly request extensions

 Periodic checks with client during long computations

1.40 TS Distributed Systems

Invocation Semantics

Fault tolerance measures
Invocation

semantics

Retransmit request

message

Duplicate

filtering

Re-execute procedure

or retransmit reply

No

Yes

Yes

Not applicable

No

Yes

Not applicable

Re-execute procedure

Retransmit reply At-most-once

At-least-once

Maybe

1.41 TS Distributed Systems

3.11 Consider the RPC mechanism. Describe the undesirable
consequences that could arise from not enforcing either the “at most
once” or “exactly once” semantic. Describe possible uses for a
mechanism that has neither of these guarantees.

Answer: If an RPC mechanism cannot support either the “at most
once” or “at least once” semantics, then the RPC server cannot
guarantee that a remote procedure will not be invoked multiple
occurrences. Consider if a remote procedure were withdrawing money
from a bank account on a system that did not support these semantics.
It is possible that a single invocation of the remote procedure might
lead to multiple withdrawals on the server. For a system to support
either of these semantics generally requires the server maintain some
form of client state such as the timestamp described in the text. If a
system were unable to support either of these semantics, then such a
system could only safely provide remote procedures that do not alter
data or provide time-sensitive results. Using our bank account as an
example, we certainly require “at most once” or “at least once”
semantics for performing a withdrawal (or deposit!). However, an
inquiry into an account balance or other account information such as
name, address, etc. does not require these semantics.

1.42 TS Distributed Systems

EXAMPLES: SUN RPC

1.43 TS Distributed Systems

Sun RPC Interface

 Type/data definitions (like C).

 Component is described as a PROGRAM

 Procedures have a result type, a parameter list and a number,

 Procedure can be called remotely

 Used by client or server directly:

 Locating servers: static vs. dynamic binding

 Choosing a transport protocol.

 Authentication and security.

 Invoking RPCs dynamically.

 Used by stubs for:

 Generating unique message IDs.

 Sending messages.

 Maintaining message history

1.44 TS Distributed Systems

Case Study: SUNRPC

 One of the most widely used RPC systems

 Developed for use with NFS

 Built on top of UDP or TCP

 TCP: stream is divided into records

 UDP: max packet size < 8912 bytes

 UDP: timeout plus limited number of retransmissions

 TCP: return error if connection is terminated by server

 Multiple arguments marshaled into a single structure

 At-least-once semantics if reply received, at-least-zero
semantics if no reply. With UDP tries at-most-once

 Use SUN’s eXternal Data Representation (XDR)

 Big endian order for 32 bit integers, handle arbitrarily large data
structures

1.45 TS Distributed Systems

Implementation Issues

 Choice of protocol [affects communication costs]

 Use existing protocol (UDP) or design from scratch

 Packet size restrictions

 Reliability in case of multiple packet messages

 Flow control

 Copying costs are dominant overheads

 Need at least 2 copies per message

From client to NIC and from server NIC to server

 As many as 7 copies

Stack in stub – message buffer in stub – kernel – NIC – medium
– NIC – kernel – stub – server

 Scatter-gather operations can reduce overheads

1.46 TS Distributed Systems

A full example: computing pi
http://www.cs.gsu.edu/~cscyip/csc4320/rpcD/

 Example 1
/* pi.x: Remote pi calculation protocol */
program PIPROG {
 version CALCU_PIVERS {
 double CALCU_PI() = 1;
 } = 1;
} = 0x39876543;

/** pi_client.c */
#include <stdio.h>
#include <rpc/rpc.h> /* always needed */
#include "pi.h"

main(int argc, char *argv[])
{
 CLIENT *clnt;
 double *result_1;
 char *host;
 char *calcu_pi_1_arg;

 /* must have two arguments */
 if (argc < 2) {
 printf("usage: %s server_host\n", argv[0]); exit(1);
 }
 host = argv[1]; /* server host name */
 clnt = clnt_create(host, PIPROG,CALCU_PIVERS, "tcp");
 if (clnt == (CLIENT *) NULL) {
 clnt_pcreateerror(host);
 exit(1);
 }
 /* call remote procedure */
 result_1 = calcu_pi_1((void *)&calcu_pi_1_arg, clnt);
 if (result_1 == (double *) NULL) {
 clnt_perror(clnt, "call failed");
 }
 /* print the pi value */
 printf("PI is %f\n" , *result_1);
 clnt_destroy(clnt);
 exit(0);
}

/** pi_server.c **/
#include <rpc/rpc.h> /* always needed */
#include "pi.h"

double *calcu_pi_1_svc(void *argp,
 struct svc_req *rqstp)
{
 static double pi;

 double sum = 0;
 int i;
 int sign;

 for (i=1; i<10000000; i++){
 sign = (i+1) % 2;
 if (sign == 0)
 sign = 1;
 else
 sign = -1;

 sum += 1.0 / (2*(double)i -1) *
 (double)sign;
 }

 pi = 4 * sum;

 return (&pi);
}

rpcgen pi.x
cc -g -o pi_client pi_clnt.c pi_client.c -lnsl
cc -g -o pi_server pi_svc.c pi_server.c -lnsl

 pi_server &
 pi_client localhost

1.47 TS Distributed Systems

Binder: Port Mapper

 Server start-up: create port

 Server stub calls

svc_register to register

prog #, version # with local port

mapper

 Port mapper stores prog #,

version #, and port

 Client start-up: call

clnt_create to locate server port

 Upon return, client can call

procedures at the server

/sbin/rpcbind

The rpcbind utility is a

server that converts RPC
program numbers into
universal addresses.

It must be running on
the host to be able to
make RPC calls on a
server on that machine.

1.48 TS Distributed Systems

Example 2

/* person.x */

const NL=64;

enum sex_type {

 FEMALE = 1, MALE = 2};

struct Person {

 string first_name<NL>;

 string last_name<NL>;

 sex_type sex;

 string city<NL>;

};

program PERSONPROG {

 version PERSONVERS {

 void PRINT(Person)=0;

 int STORE(Person)=1;

 Person LOAD(int)=2;

 } = 1;

} = 1234567;

rpcgen person.x
cc -g -o person_client person_clnt.c person_client.c person_xdr.c -lnsl
cc -g -o person_server person_svc.c person_server.c person_xdr.c -lnsl

person_server &
person_client localhost

rpcgen

person.x

client.c server.c

C Compiler, Linker C Compiler, Linker

person.h

person_clnt.c person_svc.c

person_xdr.c

Client Server
includes

generates

reads

librpc.a

1.49 TS Distributed Systems

Example 2 (cont’d)
/* person_server.c */

#include <rpc/rpc.h> /* always needed */
#include "person.h"

Person pers = {"ABC name", "ABC lastname",
 MALE, "ABC city"};
int a=5;
void *print_1_svc(Person *argp,
 struct svc_req *rqstp)
{
 static char *result;
 printf("PRINT:%s %s\n%s\n\n",
 argp->first_name,
 argp->last_name,
 argp->city);
 return((void *) &result);
}
int *store_1_svc(Person *argp,
 struct svc_req *rqstp)
{
 printf("STORE: %s %s\n%s\n\n",
 argp->first_name,
 argp->last_name,
 argp->city);
 return &a;
}
Person *load_1_svc(int *num,
 struct svc_req *rqstp)
{
 printf("LOAD: Server got %d \n", *num);
 return &pers;
}

/* person_client.c */

#include <stdio.h>
#include <rpc/rpc.h> /* always needed */
#include "person.h"

main(int argc, char *argv[])
{
 CLIENT *clnt;
 char *host;
 Person pers = {"Person Name", "Lastname",
 MALE, "San Antonio"};
 Person *p2;
 int *i, a=8;
 if (argc < 2) {/* must have two arguments */
 printf("usage: %s server_host\n", argv[0]); exit(1);
 }
 host = argv[1]; /* server host name */
 clnt = clnt_create(host, PERSONPROG,
 PERSONVERS, "udp");
 if (clnt == (CLIENT *) NULL) {exit(1);}
 if (print_1(&pers, clnt)==NULL)
 clnt_perror(clnt, "call failed");
 if ((p2=load_1(&a, clnt))==NULL)
 clnt_perror(clnt, "call failed");
 printf("%s\n", p2->last_name);
 if (print_1(p2, clnt)==NULL)
 clnt_perror(clnt, "call failed");
 if ((i=store_1(&pers, clnt))==NULL)
 clnt_perror(clnt, "call failed");

 clnt_destroy(clnt);
}

1.50 TS Distributed Systems

EXTRAS

OPTIONAL

1.51 TS Distributed Systems

Lightweight RPCs

 Many RPCs occur between client and server

on same machine

 Need to optimize RPCs for this special case =>

use a lightweight RPC mechanism (LRPC)

 Server S exports interface to remote

procedures

 Client C on same machine imports interface

 OS kernel creates data structures including

an argument stack shared between S and C

1.52 TS Distributed Systems

Lightweight RPCs

 RPC execution

 Push arguments onto stack

 Trap to kernel

 Kernel changes mem map of client to server

address space

 Client thread executes procedure (OS upcall)

 Thread traps to kernel upon completion

 Kernel changes the address space back and

returns control to client

 Called “doors” in Solaris

1.53 TS Distributed Systems

Doors

 Which RPC to use? - run-time bit allows stub to choose

between LRPC and RPC

1.54 TS Distributed Systems

Other RPC Models

 Asynchronous RPC

 Request-reply behavior often not needed

 Server can reply as soon as request is received and execute

procedure later

 Deferred-synchronous RPC

 Use two asynchronous RPCs

 Client needs a reply but can’t wait for it; server sends reply

via another asynchronous RPC

 One-way RPC

 Client does not even wait for an ACK from the server

 Limitation: reliability not guaranteed (Client does not know if

procedure was executed by the server).

1.55 TS Distributed Systems

Traditional RPC vs. Asynchronous RPC

Traditional
synchronous RPC

asynchronous RPC
server stub immediately
sends a reply to client.

 Try to get rid of the strict request-reply behavior,

and let the client continue without waiting for an

answer from the server.

1.56 TS Distributed Systems

Deferred Synchronous RPC

 Client can also do a (non)blocking poll at the

server to see whether results are available.

 Through two asynchronous RPCs

1.57 TS Distributed Systems

One-Way RPC

 Client does not know if the request is

accepted or not (ch 8 fault tolerance)

1.58 TS Distributed Systems

RPC Limitations

 Parameters passed by values only and
pointer values are not allowed.

 Speed: remote procedure calling (and return)
time (i.e., overheads) can be significantly (1 -
3 orders of magnitude) slower than that for
local procedure.

 This may affect real-time design and the
programmer should be aware of its impact.

1.59 TS Distributed Systems

RPC Limitations

 Failure: RPC is more vulnerable to failure
(since it involves communication system,
another machine and another process).

 The programmer should be aware of the call
semantics, i.e. programs that make use of RPC
must have the capability of handling errors that
cannot occur in local procedure calls.

1.60 TS Distributed Systems

Design Issues

 Exception handling

 Necessary because of possibility of network and
nodes failures;

 RPC uses return value to indicate errors;

 Transparency

 Syntactic achievable, exactly the same syntax
as a local procedure call;

 Semantic impossible because of RPC limitation:
failure (similar but not exactly the same);

