
1.1 TS Distributed Systems 

Chapters 4 and 10: COMMUNICATION 

Part 2b 

Thanks to the authors of the textbook [TS] and [MLL]for providing the base slides. I made several changes/additions.  
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.  

So I would like to thank him, too.  
Turgay Korkmaz 

korkmaz@cs.utsa.edu 

Communications in Distributed Systems  
Distributed Objects and RMI 

 
 

Distributed Computing,  
M. L. Liu 

 



1.2 TS Distributed Systems 

Chapters 4 and 10:  Communications 

 FUNDAMENTALS  
 Layered Protocols  

 Types of communications 

 REMOTE PROCEDURE CALL  
 Basic RPC Operation  

 Parameter Passing  

 RPC operation  

 RPC Examples 

 Asynchronous RPC  

 RMI   (some from chapter 10, but most from web and [MLL]) 

 CORBA    (some from chapter 10, but most from web) 

 MESSAGE-ORIENTED COMMUNICATION  
 Transient and Persistent Communication  

 STREAM-ORIENTED COMMUNICATION  
 Support for Continuous Media and Quality of Service  

 Stream Synchronization  

 MULTICAST COMMUNICATION  
 Application-Level Multicasting  

 Gossip-Based Data Dissemination  



1.3 TS Distributed Systems 

Objectives 

 To understand how processes communicate (the 

heart of distributed systems)  

 To understand computer networks  and their layers 

 To understand client-server paradigm and low-level 

message passing using sockets 

  To learn higher-level communication mechanisms 

RPC, RMI, CORBA 

 To understand various forms of communications 

and their issues 

 Msg-, Stream-oriented communication, multicast, etc. 

 

 



1.4 TS Distributed Systems 

Background 
Object-oriented programming (OOP) 

 Object-oriented programming (OOP) encapsulates 

data and operations into objects 

 Operations are implemented as methods that are 

grouped into interfaces (the signature of a set of methods) 

 Actions are performed in OOP by having objects 

invoke methods of other objects, the invoker is called 

a “client” of the object 

 Invocation can cause: 

 the state of the receiver to be changed (modifier methods) 

 additional invocations of methods on other objects 



1.5 TS Distributed Systems 

Background (cont’d) 
Object-oriented programming (OOP) 

 Exceptions are thrown when an error occurs.  

 If object doesn’t “catch” the exception, the exception is 

delivered to the caller 

 similar to signals, but at the programming language level 

 Additional concepts in OOP (wiki): 
 Object reference 

 Abstraction 

 Classes of objects 

 Instances of classes 

 Inheritance Passes "Knowledge" Down 

 Polymorphism Takes any Shape 

 Dynamic dispatch 

 Message passing 

 



1.6 TS Distributed Systems 
6 

Procedural Programming vs. OOP 

 Components (global variables + procedures) 

objects (data attributes + methods) 

 Visible component state (global variables)  

 object data attributes. 

 Usable component services (procedures)  

 object operations/methods. 

 Component interactions (procedure call) 

 operation execution requests. 

 Component service failures  

 exceptions 



1.7 TS Distributed Systems 

Distributed Objects vs. Message Passing 

Client:  
 
 

Sum = math.add(n1, n2); 

Server:  
 
int state; 
 
object math 
int add(int n1, int n2) 
{ 
… …  
} 

? 

Host A Host B 

Create a socket  
Connect it to server 
Put n1, n2  in a msg 
Send msg to server 
Read/wait reply msg 
Extract result from the msg 

Create a socket  
Bind it to a port 
Accept a connection 
Read/wait for a msg 
Extract n1, n2  from the msg 
Compute result  
Put it in a reply msg 
Send reply msg to client 

? 



1.8 TS Distributed Systems 

Distributed Objects 

Client process:  
 

ObjR.m1(…); 
ObjR.m2(…); 

 
ObjD.m3(…); 
ObjD.m4(…); 

ObjR:  
m1(…){ } 
 m2(…){ } 

Machine a 

ObjD:  
m3(…){}  

Machine b 

ObjD: 
m4(…){}  

Machine c 

Client machine 

Remote objects 



1.9 TS Distributed Systems 

Distributed Object Systems 

  Java RMI,  

 CORBA (Common 

Object Request Broker 

Architecture)  

 .NET and its 

predecessor, the 

Distributed Component 

Object Model (DCOM)   

 Simple Object Access 

Protocol (SOAP) – web 

service  

 

object client object server

client

proxy
server

proxy

runtime

support

network

support

network

support

physical data path

logical data path

  object

registry

runtime

support



1.10 TS Distributed Systems 

RMI 

Recall that RPC allows to call a procedure on a different host! 

RMI applies the same idea to objects and allows to invoke a 

method of an object that resides on a different host 

In contrast to RPC, RMI allows parameters to be object references… 



1.11 TS Distributed Systems 

Recall RPC (Review) 

middleware 

RPC 

 Middleware generates stubs on both sides 



1.12 TS Distributed Systems 

RMI Overview 

 How do clients know where the remote objects are? 

 Binding… 

Encapsulate 
 

data and  
 

operations 

Object offers only 
its interface (group 
of methods) to 
clients, 

Object server is responsible 
for a collection of objects 

With RMI support, 
clients can be at a 
different host 

Skeleton (stub) 
handles 
(un)marshaling 
and object 
invocation 

Proxy (stub) 
implements the 
same interface 

RMI 

middleware 

To make a remote object accessible to other virtual machines, a program typically registers it with the 
RMI registry. The program supplies to the registry the string name of the remote object as well 
as the remote object itself. When a program wants to access a remote object, it supplies the 
object's string name to the registry that is on the same machine as the remote object. The 
registry returns to the caller a reference (called stub) to the remote object. When the program 
receives the stub for the remote object, it can invoke methods on the object (through the stub). 



1.13 TS Distributed Systems 

Distributed, Remote Object Model 

 Process contains one or more objects (local/remote) 

 Local objects (e.g., C, E): accept only local invocations 

 Remote object (e.g., B, F): accept both local/remote invocations 

 Remote invocation – different processes (same or different hosts)  

 Object references are required for invocation  

 C must have E’s reference (local) or  

 A must have B’s reference (remote) 

 

 

invocation invocation 

remote 

invocation 
remote 

local 

local 

local 

invocation 

invocation 

A 
B 

C 

D 

E 

F 

processes 

What are the local and remote object references? 



1.14 TS Distributed Systems 

Remote Object Reference (ROR) 

 Local object reference could be a memory location 

 ROR must uniquely identify remote objects in 

distributed systems (so what additional information is needed then?)  

 

 

 

 Needed to invoke a method of a remote object 

 Remote object references may be passed as input 

arguments or returned as output arguments. 

Internet  
address 

port  
number time 

object  
number 

interface of  

remote object 

32 bits 32 bits 32 bits 32 bits 



1.15 TS Distributed Systems 

An Example: Remote Object 

interface 

remote 

m1 

m2 

m3 

m4 
m5 
m6 

Data 

implementation 

remote object 

{ of methods 

 An object may implement both remote and local 

interfaces (see next slide) 

 Other processes use ROR and invoke only methods in 

remote interface 

 Same process uses local object reference and invoke only 

methods in local interface 



1.16 TS Distributed Systems 

Interfaces 

 Interface for local objects 

 Specify methods and/or data that can be accessed 

 Do not specify an implementation 

 Interface for remote objects  

 Specifies methods for remote invocation 

 Input and output parameters are also specified and 

parameters may be objects or ROR 

 CORBA – uses IDL to specify remote interfaces 

 JAVA – uses ordinary interfaces that are extended by 

the keyword remote. 



1.17 TS Distributed Systems 

Parameter Passing in RMI   
Less restrictive than RPCs 

 Primitive types 

 pass by value 

 Ordinary objects  

 passed by copy (e.g. 

using Java serialization; the 

object must implement the 

java.io.Serializable 

Interface).  

 Remote objects  
 extends UnicastRemoteObject 

implements ObjInterface 

 pass the remote object 

reference (ROR) 

 Supports system-wide 

object references 
Why not pass a copy  
of the remote object? 

(int, double etc.)  



1.18 TS Distributed Systems 

ARCHITECTURE TO SUPPORT 

REMOTE OBJECTS 

object A object B 
skeleton 

Request 
proxy for B 

Reply 

Communication Remote  Remote reference  

module 
Communication 

 module  module reference module 

for B’s class 

& dispatcher 

remote 
client   server 



1.19 TS Distributed Systems 

Remote Reference Module (RRM) 

 Server side: 

 Create remote object  

 reference (ROR) 

 Maintain remote object reference table 

One entry per remote object 

 Map between remote reference and local reference 

 Client side: 

 Create proxy object when first get ROR 

 Maintain remote object reference table 

 Entry for local proxy (client side) 

 Map between remote reference and local reference 

object A object B 
skeleton 

Request 
proxy for B 

Reply 

Communication Remote  Remote 

reference  

module 

Communication 

 module  module reference module 

for B’s class 

& dispatcher 

remote 
client   server 



1.20 TS Distributed Systems 

Communication Module 

 Carry out request-reply protocol 

 Provide certain invocation semantics 

 Retry request 

 Duplication message filtering 

 Reply message history cache 

 Interact with remote reference module 

 Get remote object’s local reference 

 Pass message and local reference to appropriate 

dispatcher on server side 

object A object B 
skeleton 

Request 
proxy for B 

Reply 

Communication Remote  Remote 

reference  

module 

Communication 

 module  module reference module 

for B’s class 

& dispatcher 

remote 
client   server 



1.21 TS Distributed Systems 

Proxy and Skeleton 

object A object B 
skeleton 

Request 
proxy for B 

Reply 

Communication Remote  Remote reference Communication 

 module  module reference module  module 

for B’s class 

& dispatcher 

remote 
client   server 

Proxy (client stub)- When a client binds to a distributed object, load 

the interface (“proxy”) into client address space on the fly. It makes 

RMI transparent to client. Class implements remote interface. 

Marshals requests and unmarshals results. Forwards request. 

Skeleton - implements methods in remote interface. 

Unmarshals requests and marshals results. Invokes 

method in remote object. 



1.22 TS Distributed Systems 

Dispatcher 

object A object B 
skeleton 

Request 
proxy for B 

Reply 

Communication Remote  Remote reference Communication 

 module  module reference module  module 

for B’s class 

& dispatcher 

remote 
client   server 

Dispatcher - gets request from communication module and 

invokes method in skeleton (using methodID in message). 



1.23 TS Distributed Systems 

Middleware for Remote Objects 

 Middleware is a layer between application and 
communication/remote reference modules 

 Automatically create proxy, skeleton and 
dispatcher from remote interface definition 

 Client side: one proxy for each remote object 

 Call the methods in remote objects 

 Server side: one dispatcher / skeleton per class 

 Dispatcher accepts message and select appropriate 
method in the skeleton: methodID 

 Skeleton: Marshall / unmarshall messages and 
invokes corresponding method in the remote object 



1.24 TS Distributed Systems 

Server/Client Programs and Binder 

 Server program 

 Dispatcher, skeleton  middleware generated 

 Servant class: implement methods for remote objects 

 Client program 

 Proxy  middleware generated  

 Use binder to locate remote objects  obtain reference to 

local proxy 

 Binder: kind of name service 

 Mapping between text name and remote object reference 

 System wide register/look up service 



1.26 TS Distributed Systems 

Steps in RMI 

object A object B 
skeleton 

Request 
proxy for B 

Reply 

Communication Remote  Remote reference Communication 

 module  module reference module  module 

for B’s class 

& dispatcher 

remote 
client   server 

Naming Service 

1 

2 

3: ROR 

4 

5: ROR 

6 

7 

8 

9 10 

11 

12 13 

14 
15 

16 17 18 

0 



1.27 TS Distributed Systems 

How to Use Remote Objects: Server Side 

 Step 0: start binder 

 

 Step 1: start communication and remote 

reference module  

 Step 2: server create remote object, add it to 

remote object table, and obtain remote object 

reference from remote reference module 

 Step 3: publish the remote object to name 

service  bind the remote object reference 

with a name; wait for invocation requests 



1.28 TS Distributed Systems 

 Step 4: start communication and remote reference 
module 

 Step 5: contact name service for desired remote 
object reference 

 Step 6: remote reference module create proxy 

 Step 7: call methods in proxy mashall 
parameters 

 Step 8: locate remote object through remote 
reference module 

 Step 9: Send method invocation request (contain 
remote object reference) through communication 
module 

How to Use Remote Objects: Client Side 



1.29 TS Distributed Systems 

 Step 10: get invocation requests (contains remote object 

reference) through communication module 

 Step 11: consult with remote reference module and get 

local reference for the remote object 

 Step 12: hand the request to the dispatcher/skeleton of the 

remote object’s class  which method 

 Step 13: call method in skeleton unmarshall parameters 

in request and invoke real-method in remote object 

 Step 14: perform the operation in remote object and return 

results to skeleton 

 Step 15: marshall results in skeleton and send out 

message (remote object reference) through 

communication module 

How to Use Remote Objects: Server Side 



1.30 TS Distributed Systems 

 Step 16: get result message (contain remote 

object reference) in communication module 

 Step 17: obtain proxy reference from remote 

object reference and hand the result 

message to the proxy 

 Step 18: unmarshall the results in proxy and 

return results to the caller 

Complete a Remote Method Invocation!!!  

How to Use Remote Objects: Client Side 

Then, why do people say RMI is simpler than sockets? 



1.31 TS Distributed Systems 

Comparison of RMI and Sockets 

 In RMI, there is no need to design a protocol, 

which is an error-prone task. (recall slide 7 and the homework) 

 In RMI, the developer thinks he is calling a local 

method from a local class file. The arguments are 

shipped to the remote target and interpreted, and 

the results are sent back to the callers. 

 But, Sockets have less overhead than RMI. For 

applications which require high performance, this 

may be a consideration. 

 So which one you will select for your application? 



1.32 TS Distributed Systems 

CASE STUDIES:  

APPLICATION DEVELOPMENT 

Java RMI 

CORBA (Common Object Request Broker Architecture)  

Distributed Component Object Model (DCOM) 

Simple Object Access Protocol (SOAP) – web service  



1.33 TS Distributed Systems 

Steps involved in developing Java RMI applications 

 Define a remote interface 

 HelloInterface.java 

 For the server  

 Implement the interface 
HelloImp.java 

 Develop the server 
HelloServer.java 

 For the Client 

 Develop a client 
HelloClient.java 

 Run the RMI registery, the 

server, and the client 

 

//HelloInterface.java 

import java.rmi.*; 

 

public interface HelloInterface 

extends Remote { 

 

    public String add(String s)  

 throws RemoteException; 

 

    public String say( )  

 throws RemoteException; 

 

} 

Java RMI  



1.34 TS Distributed Systems 

HelloImp.java  
Servant Class Implement Remote Interface 

import java.rmi.*; //Hello.java 

import java.rmi.server.*; 
 

public class HelloImp extends UnicastRemoteObject  

    implements HelloInterface { 

    private String message; 
 

    public Hello (String msg) throws RemoteException { 

 message = msg;  

    } 
 

    public String add(String s) throws RemoteException { 

 message = new String (message + s);  

 return message;   

    } 
 

    public String say( ) throws RemoteException { 

 return message;  

    } 

} 

Java RMI  



1.35 TS Distributed Systems 

 
 HelloServer.java  

Server: Create Servant Object and Bind 

//HelloServer.java 

import java.rmi.*; 

public class HelloServer{ 
 

  public static void main(String args[]){ 
 

    try { 

  Naming.rebind("Hello",  

   new Hello("Hello, world!") ); 
 

  System.out.println ("Server is ready"); 

    } catch (Exception e) { 

  System.out.println ("Server failed:"+e); 

    } 

  } 

} 

Java RMI  

If your program defines Serializable classes that need to be downloaded 

to another machine, then insert the statement System.setSecurityManager 

(new RMISecurityManager()); as the first statement in the main 



1.36 TS Distributed Systems 

HelloClient.java 

//HelloClient.java 

import java.rmi.*;  

import java.rmi.server.*; 

public class HelloClient{ 

  public static void main (String[] argv) { 

    try { 

 HelloInterface hello = (HelloInterface)  

     Naming.lookup("//localhost/Hello");  

  System.out.println(hello.say( )); 

 System.out.println(hello.add("Here is added  

      information!!!")); 

    } catch (Exception e) { 

 System.out.println ("HelloClient exception:“+e); 

    }   

 } 

} 

Java RMI  



1.37 TS Distributed Systems 

Java RMI: Compile and Run the Server 
(current host X)  

 Compile the interface and remote class 

javac HelloInterface.java HelloImp.java 

 Compile server 

javac HelloServer.java 

 Start RMI registry  # (default at port 1099) 

 rmiregistry  [port] &    

 Start Hello server 

 java HelloServer & 

 Generate skeletons & stubs (old Java compiler) 

 rmic Hello --> Hello_Skel.class & Hello_Stub.class 

 

Java RMI  



1.38 TS Distributed Systems 

Java RMI: Compile and Run the Client 
(Suppose host X is localhost) 

 Compile the interface class 
javac HelloInterface.java 

 Compile client 
javac HelloClient.java 

 Start Hello client 
java HelloClient [X] 

> java HelloClient 

Hello, world! 

Hello, world!Here is added information!!!  

> java HelloClient 

Hello, world!Here is added information!!! 

Hello, world!Here is added information!!!Here is added information!!!  

> java HelloClient 

Hello, world!Here is added information!!!Here is added information!!! 

Hello, world!Here is added information!!!Here is added information!!!Here is added 
information!!! 

 

> ps  
> kill -9 1611   #rmiregistry pid 
> java HelloClient 
HelloClient exception: 
java.rmi.ConnectException: Connection 
refused to host: localhost; nested exception 
is:  
        java.net.ConnectException: 
Connection refused 

Java RMI  



1.39 TS Distributed Systems 

Basic Java RMI Summary 

 Design the remote interfaces  AbcInterface.java 

 Server side 

 AbcImp.java  

 Implement remote methods in the remote interfaces 

Define the constructor for the remote object and implement local 

interface 

 AbCServer.java 

Create server object and register it with “remote object” registry (so, 
rmiregistry must be executed before the server) 

 Client side  

 AbcClient.java 

Looks up server in remote object registry and gets ROR 

Uses normal method call syntax for remote methods 

Java RMI  



1.40 TS Distributed Systems 

The binder: RMI Registry 

 For the server 
 void rebind (String name, Remote obj) 

Register object by name 

Override previous registration 

 void bind (String name, Remote obj) 

Register an object by name 

 If existent throw exception 

 void unbind ( String name, remote obj) 

 For the Client 
 Remote lookup (String name) 

Used by client 

Remote object reference is returned 

 String[ ] list() 

Show all names bound in this registry 

Java RMI  

//host:port/name 



1.41 TS Distributed Systems 

OTHER ISSUES AND 

ADVANCED JAVA RMI  

Factory classes and methods 

Client Callback 

Java RMI and synchronization 

Distributed Garbage collection 

Transient vs. Permanent objects 

Stub Downloading 

RMI security Manger 



1.42 TS Distributed Systems 

REMOTE OBJECT FACTORY 

The constructor method of a remote object is NOT included in the 

interface. So,  it cannot be called by the client 

Where the remote objects come from? 

First remote object: initiated by the server at startup and registered 

Factory method (remote method)  create remote objects, and 

return remote object reference (ROR) based on client’s requests 



1.43 TS Distributed Systems 

Factory Classes 

 When a remote object reference (ROR) to a 

remote object is obtained through the RMI 

registry and then used to request additional 

RORs, the registered remote object is referred to 

as a factory class. 

 Using RORs obtained through method calls on 

factory objects, client applications can 

dynamically request the creation of new remote 

objects, without the objects being registered 

individually with the server registry. 

 
From web 

How to create remote objects, and  
who is responsible for what? 



1.44 TS Distributed Systems 

Factory Class Example 

 Consider a remote banking system using the Account object.  

 The server provides services to remote clients running on 

PCs, embedded in ATMs etc.  

 On the server, we run an RMI registry, create an Account 

object for every account we have on record, and register each 

one with the RMI registry using the account name.  

Registry local = LocateRegistry.getRegistry(); 

local.bind(“Abrams, John”, new AccountImpl(“John Abrams”)); 

local.bind(“Adams, John”, new AccountImpl(“John Adams”)); 

  : 

 This is unwieldy. Starting the server can take long, as thousands of 

accounts need to be registered, many of them unnecessarily, since many 

accounts may not see any activity before the next down time. Also, 

accounts that are created or closed during the server’s lifetime need to be 

added or removed from the RMI registry, as well as from the bank’s 

database of accounts.  

 
From web 



1.45 TS Distributed Systems 

Factory Class Example (cont’d) 

 So we define a factory class for Account objects, as in: 
import java.rmi.Remote;  

import java.rmi.RemoteException;  

public interface AccountManager extends Remote { 

 public Account getAccount(String name) throws RemoteException; 

 public Boolean newAccount(Account s) throws RemoteException; 

} 

 The AccountManager lets a client ask for an account by name, using the getAccount() remote method. 

The method returns a reference to an Account object that corresponds to the account. Once the client has 

an Account reference, transactions against the account can be done through method calls on the Account 

object. The AccountManager also has a newAccount() method that allows clients to add new accounts to 

the underlying database. 

  The server implementation of the getAccount() method simply needs to look up the named account in the 

database, create an AccountImpl object to represent the account, and return the object to the client as a 

remote reference. Since Account objects are Remote objects, the RMI remote reference layer 

automatically creates a remote reference for the Account object, and the client that called the 

getAccount() method receives a stub for the Account object (thus the Account object is created on the 

server but is not registered with the registry and nor does  the client need to call Naming.lookup() to look 

this object up. This avoids keeping the RMI registry in sync with the database and an unnecessary 

shadow of the database. Only the AccountManager object is registered with the registry and the client 

would only need to call Naming.lookup() to get a remote reference to the AccountManager object.) The 

AccountManager object can access the bank’s database directly to find accounts and create 

corresponding Account remote objects. 

 

From web 



1.46 TS Distributed Systems 

RMI CALLBACK  
REMOTE OBJECTS ON CLIENTS 

Enable the server (or other peers) 

  to invoke the methods on the client.  

 

From web 



1.47 TS Distributed Systems 

RMI Callback   

 In the client-server model,  
 the server is passive:  

 the IPC is initiated by the client;  

 the server waits for requests and provides responses 

 Some applications require the server to initiate 

communication upon certain events such as 
 Auctioning: user submits bid, server inform if higher bit by others. 

 chat-room: user type message, server forwards messages from 

other users. message/bulletin board etc. 

 With the RMI callback feature, client creates 

remote objects (callback objects) that implements 

an interface for server to call. 

 So we can now develop interactive distributed 

applications.  
From web 



1.48 TS Distributed Systems 

RMI Callback vs. Polling  

 In the absence of callback feature, how would a 

client be notified if it needs to know that a 

certain event has occurred at the server or not? 

Server

Client

...

Polling

Server

Client

Callback

A client issues a request to the

server repeatedly until the

desired response is obtained.

A client registers itself with the

server, and wait until the server

calls back.

a remote method call

From web 



1.49 TS Distributed Systems 

Callback Client-Server Interactions 

Client host
Server host

RMI registry

SomeServer.class

SomeInterface_stub.class

SomeInterface_skel.class

Client.class

1

2

1. Client looks up the interface object in the RMIregistry on the server host.

2. The RMIRegistry returns a remote reference to the interface object.

3. Via the server stub, the client process invokes a remote method to register itself for callback,

    passing a remote reference to itself to the server.  The server saves the reference in its callback list.

4. Via the server stub, the client process interacts with the skeleton of the interface object

     to access the methods in the interface object.

5. When the anticipated event takes place, the server makes a callback to each registered

    client via the callback interface stub on the server side and the callback interface skeleton on the

    client side.

X

CallbackInterface_skel.class

CallbackInterface_stub.class

5

3,4

From web 



1.50 TS Distributed Systems 

Good and Bad about Callback 

 Advantages 

 More efficient than polling 

 More timely than polling 

 Provides a way of server inquiring about client status 

 Disadvantages 

 May leave server with inconsistent state if client 

crashes or exits without notifying the server 

 Requires the server to make a series of synchronous 

RMI’s 

From web 



1.51 TS Distributed Systems 

RMI Callback example 

// Remote Interface for Server 

public interface HelloInterface 

extends Remote { 

  // remote method 

  public String sayHello() throws 

java.rmi.RemoteException; 

  // method to be invoked by a client to 

add itself to the callback list 

  public void addCallback( 

    HelloCallbackInterface 

CallbackObject) 

    throws java.rmi.RemoteException; 

} 

 

http://www2.cs.uic.edu/~i441/RMICallback/ 
http://searchdaily.net/tag/callback-pattern-rmi-example/  
http://docs.oracle.com/cd/E13211_01/wle/rmi/callbak.htm  
http://www.uwplatt.edu/csse/tools/java/samples/tictactoe/  
Just google …. 

From web 

// Remote Interface for Callback Client 

public interface HelloCallbackInterface 

extends java.rmi.Remote 

{ 

   // method to be called by the server on 

callback 

   public void callMe ( 

        String message 

     ) throws java.rmi.RemoteException; 

} 

 

http://searchdaily.net/tag/callback-pattern-rmi-example/
http://searchdaily.net/tag/callback-pattern-rmi-example/
http://searchdaily.net/tag/callback-pattern-rmi-example/
http://searchdaily.net/tag/callback-pattern-rmi-example/
http://searchdaily.net/tag/callback-pattern-rmi-example/
http://searchdaily.net/tag/callback-pattern-rmi-example/
http://searchdaily.net/tag/callback-pattern-rmi-example/
http://searchdaily.net/tag/callback-pattern-rmi-example/
http://searchdaily.net/tag/callback-pattern-rmi-example/
http://docs.oracle.com/cd/E13211_01/wle/rmi/callbak.htm
http://www.uwplatt.edu/csse/tools/java/samples/tictactoe/


1.52 TS Distributed Systems From web 

RMI Callback example (server) 

public class HelloServer extends 
UnicastRemoteObject implements 

    HelloInterface { 

    static int RMIPort; 

    // vector for store list of callback objects 

    private static Vector callbackObjects; 

 

    public HelloServer() throws RemoteException { 

      super(); 

      // instantiate a Vector object for storing  

    // callback objects 

      callbackObjects = new Vector(); 

    } 

    // method for client to call to add itself to its 
callback 

    public void addCallback(  
HelloCallbackInterface CallbackObject) { 

       // store the callback object into the vector 

        System.out.println("Server got an 
'addCallback' call."); 

       callbackObjects.addElement (CallbackObject); 

    }  

public static void main(String args[]) { 

      … 

    registry = LocateRegistry.createRegistry(RMIPort); 

      … 

    callback( ); 

      … 

  } // end main 

  private static void callback( ) { 

       … 

    for (int i = 0; i < callbackObjects.size(); i++)  { 

      System.out.println("Now performing the "+ i 
+"th callback\n");     

      // convert the vector object to a callback object 

      HelloCallbackInterface client =  

          (HelloCallbackInterface) callbackObjects.elementAt(i); 

        … 

      client.callMe ( "Server calling back to client " + i); 

        … 

 

  

 



1.53 TS Distributed Systems 

public class HelloCallbackImp extends UnicastRemoteObject  implements    HelloCallbackInterface { 

   public HelloCallbackImp() throws RemoteException { super(); } 

  // call back method - this displays the message sent by the server 

     public void callMe (String message) { 

        System.out.println( "Call back received: " + message ); 

    } 

} // end HelloCallbackImp class 

 

public class  HelloCallbackClient { public static void main(String args[]) { 

    public static void main(String args[]) {  // … 

    

         HelloInterface h = (HelloInterface)Naming.lookup(“…..”); 

   …. 

          HelloCallback clientCallback   = new HelloCallbackImp();   

           h.addCallback(clientCallback );  

          while (true){    

            ; }  // end while 

    }  // end main 

} // end HelloClient class 

} 

RMI Callback example (client) 

From web 



1.54 TS Distributed Systems 

Serializable Obj 
 send a copy of the whole obj to other end in RMI 

 Serialization  

 a mechanism of writing the state of an object into a byte stream. 

 The reverse operation of serialization is called deserialization.  

 The String class and all the wrapper classes implements 

java.io.Serializable interface by default. 

 In RMI, serialization is used to marshal/unmarshal method arguments 

that are objects, but that are not remote objects. 

 Any object argument to a method on a remote object in RMI must 

implement the Serializable interface.  

public class User implements java.io.Serializable{   
    private double x, y; // location  
    private String name;   
    …   
  // getters and setters   
}   



1.55 TS Distributed Systems 

EXTRAS….. 



1.56 TS Distributed Systems 

JAVA RMI AND 

SYNCHRONIZATION 



1.57 TS Distributed Systems 

Java RMI and Synchronization 

 Java supports Monitors: synchronized objects 

 Serializes accesses to objects 

 How does this work for remote objects? 

Two Options: block at the client or the server 

 Block at server 

 Can synchronize across multiple proxies 

 Problem: what if the client crashes while blocked? 

 Block at proxy   

 Need to synchronize clients at different machines 

 Explicit distributed locking necessary  

 Java uses proxies for blocking 

 No protection for simultaneous access from different clients 

 Applications need to implement distributed locking  

Java RMI  



1.58 TS Distributed Systems 

DISTRIBUTED GARBAGE 

COLLECTION 

RMI extends the internal garbage-collection mechanisms of the 

standard JVM to provide distributed garbage collection of remotely 

exported objects. 

 

This is an automatic process that the application developer does 

not have to worry about. 

 

From web 



1.59 TS Distributed Systems 

Distributed Garbage Collection 

 Algorithm outline: 

 Server: list of processes that hold remote object 

reference 

 Client: when first request remote object reference, 

remote reference module calls addRef on  server 

and then creates the proxy 

 Client: no longer need a proxy (detected by local 

GC), the remote reference module calls removeRef 

on the server 

 Server: when the list is empty and there are no local 

references the remote object is removed 

From web 



1.60 TS Distributed Systems 

Distributed Garbage Collection (cont.) 

  Pair-wise request-reply between remote 

reference modules 

  Only called when proxies are created/deleted 

  Fault-tolerance has to be addressed 

 Idempotent addRef and removeRef 

 removeRef is correct whether addRef worked or not 

 Leases (max. time to live) in case removeRef gets 

lost (or client crashed)  

From web 



1.61 TS Distributed Systems 

Transient vs. Permanent Remote Objects 

 Transient Remote Objects 

 exist within the process that creates the object 

 

 Persistent Objects can survive when process 

dies and be later activated by new process 

 Long run objects: sleep for efficient resource usage 

and activated whenever necessary  

 Persistent object store provides a simple storage 

management (like a database system) 



1.62 TS Distributed Systems 

States for Persistent Objects 

 Active: Ready for method invocation 

 Passive: not active, and cannot accept invocation 

 A passive object consists of two parts 

  Implementation of its methods 

  Internal state in marshalled form 

 Activator 

 “Passivate”: name of server and location of passive object 

 Activate: start server and active object within it 

 When to store information about object in persistent 

storage? 

 At the time of passivated 

 At end of important operations (e.g. end of transaction) 



1.63 TS Distributed Systems 

Object Location 

 Remote object reference contains IP address and 

port # of server process to guarantee uniqueness 

 Advantage: can be used as address 

 Disadvantage: object cannot be migrated to other server 

 

 Location service 

 Database to map remote object reference to their current 

location 

 Location services can be replicated on each machine; 

information on machines is kept more or less consistent 

by some update propagation mechanism 


