
1.1 TS Distributed Systems

Chapters 4 and 10: COMMUNICATION

Part 2c

Thanks to the authors of the textbook [MLL] for providing the base slides. I made several changes/additions.
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.

So I would like to thank him, too.
Turgay Korkmaz

korkmaz@cs.utsa.edu

Communications in Distributed Systems
Distributed Objects, RMI, CORBA

Distributed Computing,
M. L. Liu

1.2 TS Distributed Systems

Chapters 4 and 10: Communications

 FUNDAMENTALS
 Layered Protocols

 Types of communications

 REMOTE PROCEDURE CALL
 Basic RPC Operation

 Parameter Passing

 RPC operation

 RPC Examples

 Asynchronous RPC

 RMI (some from chapter 10, but most from web)

 CORBA (some from chapter 10, but most from web and [MLL])

 MESSAGE-ORIENTED COMMUNICATION
 Transient and Persistent Communication

 STREAM-ORIENTED COMMUNICATION
 Support for Continuous Media and Quality of Service

 Stream Synchronization

 MULTICAST COMMUNICATION
 Application-Level Multicasting

 Gossip-Based Data Dissemination

1.3 TS Distributed Systems

Objectives

 To understand how processes communicate (the

heart of distributed systems)

 To understand computer networks and their layers

 To understand client-server paradigm and low-level

message passing using sockets

 To learn higher-level communication mechanisms

RPC, RMI, CORBA

 To understand various forms of communications

and their issues

 Msg-, Stream-oriented communication, multicast, etc.

1.4 TS Distributed Systems

CORBA
Platform and language independent RMI

 The Common Object Request Broker Architecture

(CORBA) is a standard architecture for a

distributed objects system.

 CORBA is designed to allow distributed objects to

interoperate in a heterogeneous environment,

where objects can be implemented in different

programming language and/or deployed on

different platforms

 Java RMI is platform independent too but it is

language dependent

Distributed Computing, M. L. Liu

1.5 TS Distributed Systems

CORBA vs. Java RMI

 CORBA differs from the architecture of Java

RMI in one significant aspect:

 RMI is a proprietary facility developed by Sun

MicroSystems, Inc., and supports objects written

in the Java programming language only.

 CORBA is a suite of specifications developed by

the Object Management Group (OMG),

http://www.omg.org/

Using a facility supporting CORBA, objects can be

written in any language

Distributed Computing, M. L. Liu

http://www.omg.org/

1.6 TS Distributed Systems

CORBA

 CORBA is not itself a distributed objects facility;

instead, it is a set of protocols.

 A distributed object facility which adhere to these

protocols is said to be CORBA-compliant, and the

distributed objects that the facility support can

interoperate with objects supported by other

CORBA-compliant facilities.

 CORBA is a very rich set of protocols. But we will

focus on the key concepts of CORBA related to the

distributed objects paradigm.

 We will also study a facility based on CORBA: the

Java IDL.

Distributed Computing, M. L. Liu

1.7 TS Distributed Systems

The Basic Architecture

object clientnaming service

naming

lookup

stub

ORB

network

operating

system

object

implementation

skeleton

ORB

network

operating

system

logical data flow

physical data flow

Distributed Computing, M. L. Liu

1.8 TS Distributed Systems

CORBA Object Interface

 Since CORBA is language independent, the
interface is defined using a universal language with
a distinct syntax, known as the CORBA Interface
Definition Language (IDL).

 The syntax of CORBA IDL is similar to Java, C++
 Object defined in a CORBA IDL file can be implemented in a large

number of diverse programming languages, e.g., C/C++, Java,
COBOL, Smalltalk, Ada, Lisp, Python, and IDLScript.

 For each language, OMG has a standardized
mapping from CORBA IDL to the language,
 So a compiler can be used to process a CORBA interface to

generate the proxy files needed to interface with an object
implementation or an object client written in any of the CORBA-
compatible languages.

Distributed Computing, M. L. Liu

1.9 TS Distributed Systems

CORBA IDL

 A distributed object is defined using a software file
similar to the remote interface file in Java RMI.

 Used to define module, interface,

 types, attributes and method

 signatures

 Module  name space, Java package

 Interface  define a set of methods for CORBA objects

that implement the interface

 Methods  parameters and results

 Types  primitive or constructed using typedefs

 Attributes  private to CORBA objects

 Inheritance  multi-inheritance

 Distributed Computing, M. L. Liu

//Hello.idl

module HelloApp {

 interface Hello {

 string add(in string s);

 string say();

 };

};

1.10 TS Distributed Systems

CORBA IDL (cont’d)

 Parameters and results about methods

 Parameters are specified by keywords: in, out, or

inout

 Primitive type or constructed type  pass by value

 CORBA object of interface type  remote object

reference

 User-defined exceptions in interfaces and thrown

by methods in the interface

 At-most-once invocation semantics by default

Distributed Computing, M. L. Liu

1.11 TS Distributed Systems

Cross-language CORBA application

object client written in Java

stub in Java generated by compiling

the CO RBA object interface

ORB written in Java

object implementation written

in C++

skeleton in C++ generated by

compiling the CO RBA object

interface

ORB written in C++

Distributed Computing, M. L. Liu

1.12 TS Distributed Systems

Inter-ORB Protocols

 To allow ORBs to be interoperable, the OMG

specified a protocol known as the General

Inter-ORB Protocol (GIOP), a specification

which “provides a general framework for

protocols to be built on top of specific transport

layers.”

 A special case of the protocol is the Inter-ORB

Protocol (IIOP), which is the GIOP applied to

the TCP/IP transport layer.

Distributed Computing, M. L. Liu

1.13 TS Distributed Systems

Inter-ORB Protocols

The IIOP specification includes the following elements:

1. Transport management requirements: specifies the
connection and disconnection requirements, and the
roles for the object client and object server in making and
unmaking connections.

2. Definition of common data representation: a coding
scheme for marshalling and unmarshalling data of each
IDL data type.

3. Message formats: different types of message format
are defined. The messages allow clients to send requests
to object servers and receive replies. A client uses a
Request message to invoke a method declared in a
CORBA interface for an object and receives a reply
message from the server.

 Distributed Computing, M. L. Liu

1.14 TS Distributed Systems

Object Bus

 An ORB which adheres to the specifications of the IIOP

may interoperate with any other IIOP-compliant ORBs

over the Internet. This gives rise to the term “object bus”,

where the Internet is seen as a bus that interconnects

CORBA objects

The Internet

CORBA

object

CORBA

object

CORBA

object

ORB ORB ORB...

Distributed Computing, M. L. Liu

1.15 TS Distributed Systems

ORB products

 There are a large number of proprietary as well as
experimental ORBs available:

 (See CORBA Product Profiles,
http://www.puder.org/corba/matrix/)

 Orbix IONA

 Borland Visibroker

 PrismTech’s OpenFusion

 Web Logic Enterprise from BEA

 Ada Broker from ENST

 Free ORBs

Distributed Computing, M. L. Liu

http://www.puder.org/corba/matrix/
http://www.beasys.com/products/weblogic/
http://adabroker.eu.org/

1.16 TS Distributed Systems

Object Servers and Object Clients

 As in Java RMI, a CORBA distributed object

is exported by an object server, similar to

the object server in RMI.

 An object client retrieves a reference to a

distributed object from a naming or directory

service, to be described, and invokes the

methods of the distributed object.

Distributed Computing, M. L. Liu

1.17 TS Distributed Systems

CORBA Object References

 As in Java RMI, a CORBA distributed object
is located using an object reference.

 Since CORBA is language-independent, a
CORBA object reference is an abstract entity
mapped to a language-specific object
reference by an ORB, in a representation
chosen by the developer of the ORB.

 For interoperability, OMG specifies a protocol
for the abstract CORBA object reference
object, known as the Interoperable Object
Reference (IOR) protocol.

Distributed Computing, M. L. Liu

1.18 TS Distributed Systems

Interoperable Object Reference (IOR)

 For interoperability, OMG specifies a protocol

for the abstract CORBA object reference object,

known as the Interoperable Object Reference

(IOR) protocol.

 An ORB compatible with the IOR protocol will

allow an object reference to be

 registered with and

 retrieved from any IOR-compliant directory service.

Distributed Computing, M. L. Liu

1.19 TS Distributed Systems

Interoperable Object Reference (IOR)

 An IOR is a string that contains encoding for

the following information:

 The type of the object.

 The host where the object can be found.

 The port number of the server for that object.

 An object key, a string of bytes identifying the object.

 The object key is used by an object server to locate

the object.

Distributed Computing, M. L. Liu

1.20 TS Distributed Systems

Interoperable Object Reference (IOR)

 The following is an example of the string
representation of an IOR [5]:
IOR:000000000000000d49444c3a677269643a312e3000000

00000000001000000000000004c0001000000000015756c74

72612e6475626c696e2e696f6e612e6965000009630000002

83a5c756c7472612e6475626c696e2e696f6e612e69653a67

7269643a303a3a49523a67726964003a

 The representation consists of the character
prefix “IOR:” followed by a series of
hexadecimal numeric characters, each
character representing 4 bits of binary data in
the IOR.

Distributed Computing, M. L. Liu

1.21 TS Distributed Systems

CORBA Naming Service

 CORBA specifies a generic directory service.

The Naming Service serves as a directory for

CORBA objects, and, as such, is platform

independent and programming language

independent.

 The Naming Service permits ORB-based clients

to obtain references to objects they wish to use. It

allows names to be associated with object

references. Clients may query a naming service

using a predetermined name to obtain the

associated object reference.

Distributed Computing, M. L. Liu

1.22 TS Distributed Systems

CORBA Naming Service

 To export a distributed object, a CORBA object
server contacts a Naming Service to bind a
symbolic name to the object. The Naming Service
maintains a database of names and the objects
associated with them.

 To obtain a reference to the object, an object client
requests the Naming Service to look up the object
associated with the name. (This is known as
resolving the object name.)

 The API for the Naming Service is specified in
interfaces defined in IDL, and includes methods
that allow servers to bind names to objects and
clients to resolve those names.

 Distributed Computing, M. L. Liu

1.23 TS Distributed Systems

CORBA Naming Service

 To be as general as possible, the CORBA object naming

scheme is necessarily complex. Since the name space is

universal, a standard naming hierarchy is defined in a

manner similar to the naming hierarchy in a file directory

naming context1

naming context1 naming context2

naming context1 naming context1

object

name1

object

namen

...

...

...

...

Distributed Computing, M. L. Liu

1.24 TS Distributed Systems

A Naming Context

 A naming context correspond to a folder or
directory in a file hierarchy, while object names
corresponds to a file.

 The full name of an object, including all the
associated naming contexts, is known as a
compound name.

 The first component of a compound name gives the
name of a naming context, in which the second
component is accessed. This process continues until the
last component of the compound name has been
reached.

 Naming contexts and name bindings are created
using methods provided in the Naming Service
interface.

Distributed Computing, M. L. Liu

1.25 TS Distributed Systems

A CORBA object name

The syntax for an object name is as follows:

 <naming context > …<naming context><object name>

where the sequence of naming contexts leads

to the object name.

Distributed Computing, M. L. Liu

1.26 TS Distributed Systems

Example of a naming hierarchy

 As shown, an object representing the men’s

clothing department is named

store.clothing.men, where store and clothing

are naming contexts, and men is an object

name.

store

clothing Appliances

women men

...
television

...

Distributed Computing, M. L. Liu

1.27 TS Distributed Systems

Interoperable Naming Service

 The Interoperable Naming Service (INS) is a

URL-based naming system based on the

CORBA Naming Service, it allows applications

to share a common initial naming context and

provides a URL to access a CORBA object.

Distributed Computing, M. L. Liu

1.28 TS Distributed Systems

CORBA Object Services

 CORBA specifies services commonly needed in
distributed applications, some of which are:

 Naming Service:

 Concurrency Service:

 Event Service: for event synchronization;

 Logging Service: for event logging;

 Scheduling Service: for event scheduling;

 Security Service: for security management;

 Trading Service: for locating a service by the type (instead of by name);

 Time Service: a service for time-related events;

 Notification Service: for events notification;

 Object Transaction Service: for transactional processing.

 Each service is defined in a standard IDL that can be implemented by a
developer of the service object, and whose methods can be invoked by a
CORBA client.

Distributed Computing, M. L. Liu

1.29 TS Distributed Systems

Object Adapters

 In the basic architecture of CORBA, the implementation of a

distributed object interfaces with the skeleton to interact

with the stub on the object client side. As the architecture

evolved, a software component in addition to the skeleton

was needed on the server side: an object adapter.

distributed object

implementation

object adapter

 ORB

Distributed Computing, M. L. Liu

1.30 TS Distributed Systems

 Object Adapter
http://www.cs.wustl.edu/~schmidt/PDF/POA.pdf

 An object adapter simplifies the responsibilities of
an ORB by assisting an ORB in delivering a client
request to an object implementation.

 When an ORB receives a client’s request, it locates
the object adapter associated with the object and
forwards the request to the adapter.

 The adapter interacts with the object
implementation’s skeleton, which performs data
marshalling and invoke the appropriate method in
the object.

Object Adapter

Distributed Computing, M. L. Liu

http://www.cs.wustl.edu/~schmidt/PDF/POA.pdf

1.31 TS Distributed Systems

The Portable Object Adapter

 There are different types of CORBA object

adapters.

 The Portable Object Adapter, or POA, is a

particular type of object adapter that is

defined by the CORBA specification. An

object adapter that is a POA allows an object

implementation to function with different

ORBs, hence the word portable.

Distributed Computing, M. L. Liu

1.32 TS Distributed Systems

JAVA IDL

Java’s CORBA Facility

1.33 TS Distributed Systems

Java IDL – Java’s CORBA Facility

 IDL is part of the Java 2 Platform, Standard
Edition (J2SE).

 The Java IDL facility includes a CORBA Object
Request Broker (ORB), an IDL-to-Java compiler,
and a subset of CORBA standard services.

 In addition to the Java IDL, Java provides a
number of CORBA-compliant facilities, including
RMI over IIOP, which allows a CORBA
application to be written using the RMI syntax and
semantics.

Distributed Computing, M. L. Liu

1.34 TS Distributed Systems

Key Java IDL Packages

 package org.omg.CORBA – contains interfaces

and classes which provides the mapping of the

OMG CORBA APIs to the Java programming

language

 package org.omg.CosNaming - contains interfaces

and classes which provides the naming service for

Java IDL

 org.omg.CORBA.ORB - contains interfaces and

classes which provides APIs for the Object

Request Broker.

Distributed Computing, M. L. Liu

http://java.sun.com/j2se/1.4/docs/api/org/omg/CORBA/package-summary.html
http://java.sun.com/j2se/1.4/docs/api/org/omg/CosNaming/package-summary.html
http://java.sun.com/j2se/1.4/docs/api/org/omg/CORBA/ORB.html

1.35 TS Distributed Systems

Java IDL Tools

 Java IDL provides a set of tools needed for
developing a CORBA application:

 idlj - the IDL-to-Java compiler (called idl2java in Java 1.2
and before)

 orbd - a server process which provides Naming Service
and other services

 servertool – provides a command-line interface for
application programmers to register/unregister an object,
and startup/shutdown a server.

 tnameserv – an older Transient Java IDL Naming Service
whose use is now discouraged.

Distributed Computing, M. L. Liu

http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/toJavaPortableUG.html
http://java.sun.com/j2se/1.4/docs/guide/idl/orbd.html
http://java.sun.com/j2se/1.4/docs/guide/idl/servertool.html
http://java.sun.com/j2se/1.4/docs/guide/idl/tnameserv.html

1.36 TS Distributed Systems

CASE STUDIES:

APPLICATION DEVELOPMENT

Java RMI

CORBA (Common Object Request Broker Architecture): Java IDL

Distributed Component Object Model (DCOM)

Simple Object Access Protocol (SOAP) – web service

Distributed Computing, M. L. Liu

1.37 TS Distributed Systems

Steps involved in developing CORBA applications

 Define an interface in IDL

 Map the IDL interface to

any PL (e.g., use idlj for Java)

 For the server

 Implement the interface
HelloImpl.java

 Develop the server
HelloServer.java

 For the Client

 Develop a client
HelloClient.java

//Hello.idl

module HelloApp {

 interface Hello {

 string add(in string s);

 string say();

 };

};

> idlj -fall Hello.idl

HelloApp

 HelloOperations.java

 Hello.java

 HelloHelper.java

 HelloHolder.java

 HelloPOA.java

 _HelloStub.java

 Run the naming service, the server, and the client
Distributed Computing, M. L. Liu

1.38 TS Distributed Systems

Files Generated by idlj

HelloOperations.java

 Interface for method definition, shared by skeleton/stub

Hello.java  interface in Java

 The signature interface file combines the characteristics

of the Java operations interface (HelloOperations.java)

with the characteristics of the CORBA classes that it

extends.

HelloHelper.java

 Provides auxiliary functionality needed to support a CORBA object

in the context of the Java language.

 In particular, a method, narrow() allows a CORBA object reference

to be cast to its corresponding type in Java, so that a CORBA object

may be operated on using syntax for Java object.

Distributed Computing, M. L. Liu

1.39 TS Distributed Systems

Files Generated by idlj

HelloHolder.java

 Holds (contains) a reference to an object that implements the Hello interface.

 The class is used to handle an out or an inout parameter in IDL in Java syntax (In

IDL, a parameter may be declared to be out if it is an output argument, and inout if

the parameter contains an input value as well as carries an output value.)

_HelloStub.java  client stub

 the client-side proxy interfaces with the client object.

 It extends org.omg.CORBA.portable.ObjectImpl and

implements the Hello.java interface.

HelloPOA.java  server skeleton

 Servant class HelloImpl.java extends corresponding this

 HelloPOA extends org.omg.PortableServer.Servant

implements HelloApp.HelloOperations,

org.omg.CORBA.portable.InvokeHandler

 Distributed Computing, M. L. Liu

1.40 TS Distributed Systems

HelloImpl.java
import HelloApp.*;

import org.omg.CosNaming.*;

import org.omg.CosNaming.NamingContextPackage.*;

import org.omg.CORBA.*;

import org.omg.PortableServer.*;

import org.omg.PortableServer.POA;

import java.util.Properties;

class HelloImpl extends HelloPOA {

 private ORB orb;

 private String message;

 public void setORB(ORB orb_val) {

 orb = orb_val;

 }

 public HelloImpl(String msg) {

 message = msg;

 }

 public String add(String s) {

 message = new String(message + s);

 return message;

 }

 public String say() {

 return message;

 }

}

//Hello.idl

module HelloApp {

 interface Hello {

 string sayHello();

 oneway void shutdown();

 };

};

> idlj -fall Hello.idl

HelloApp

 Hello.java

 HelloHolder.java

 HelloPOA.java

 HelloHelper.java

 HelloOperations.java

 _HelloStub.java

Distributed Computing, M. L. Liu

1.41 TS Distributed Systems

HelloServer.java

public class HelloServer {

 public static void main(String args[]) {

 try{

 ORB orb = ORB.init(args, null); // create and initialize the ORB

 POA rootpoa = POAHelper.narrow(orb.resolve_initial_references("RootPOA"));

 rootpoa.the_POAManager().activate(); // get reference to rootpoa & activate the POAManager

 HelloImpl helloImpl = new HelloImpl("Hello, world!"); // create/register servant with the ORB

 helloImpl.setORB(orb);

 org.omg.CORBA.Object ref = rootpoa.servant_to_reference(helloImpl);

 Hello href = HelloHelper.narrow(ref); // get object reference from the servant

 // get the root naming context

 org.omg.CORBA.Object objRef =orb.resolve_initial_references("NameService");

 // Use NamingContextExt which is part of the Interoperable, Naming Service (INS) specification.

 NamingContextExt ncRef = NamingContextExtHelper.narrow(objRef); // bind the Object Reference in Naming

 String name = "Hello";

 NameComponent path[] = ncRef.to_name(name);

 ncRef.rebind(path, href);

 System.out.println("HelloServer ready and waiting ...");

 orb.run(); // wait for invocations from clients

 }

 catch (Exception e) {

 System.err.println("ERROR: " + e);

 e.printStackTrace(System.out);

 }

 System.out.println("HelloServer Exiting ...");

 }

}

Distributed Computing, M. L. Liu

1.42 TS Distributed Systems

HelloClient.java
import HelloApp.*;

import org.omg.CosNaming.*;

import org.omg.CosNaming.NamingContextPackage.*;

import org.omg.CORBA.*;

public class HelloClient

{

 static Hello hello;

 public static void main(String args[])

 {

 try{

 ORB orb = ORB.init(args, null); // create and initialize the ORB

 org.omg.CORBA.Object objRef = // get the root naming context

 orb.resolve_initial_references("NameService");

 // Use NamingContextExt instead of NamingContext. This is

 // part of the Interoperable naming Service.

 NamingContextExt ncRef = NamingContextExtHelper.narrow(objRef);

 // resolve the Object Reference in Naming

 String name = "Hello";

 hello = HelloHelper.narrow(ncRef.resolve_str(name));

 System.out.println(hello.say());

 System.out.println(hello.add("Here is added information!!!"));

 }catch (Exception e) {

 System.err.println("ERROR : " + e) ;

 e.printStackTrace(System.out);

 }

 }

}

Distributed Computing, M. L. Liu

The client code is responsible for creating and initializing the ORB, looking
up the object using the Interoperable Naming Service, invoking the narrow
method of the Helper object to cast the object reference to a reference to
a Hello object implementation, and invoking remote methods using the
reference. The object’s say method is invoked to receive a string, and the
object’s shutdown method is invoked to deactivate the service.

1.43 TS Distributed Systems

CORBA: Compile and Run the Server

Map into Java by running the IDL-to-java:

idlj -fall Hello.idl

Compile the server:
javac HelloServer.java HelloImpl.java HelloApp/*.java

Start the Java Object Request Broker Daemon

(orbd) on a machine X

orbd -ORBInitialPort 20000 –ORBInitialHost X &

Start HelloServer on another machine Y

java HelloServer -ORBInitialPort 20000 -ORBInitalHost X

Distributed Computing, M. L. Liu

1.44 TS Distributed Systems

CORBA: Compile and Run the Client

Map into Java by running the IDL-to-java:

idlj -fall Hello.idl

Compile the client :

javac HelloClient.java HelloApp/*.java

Start HelloClient on still another machine Z

java HelloClient -ORBInitialPort 20000 -ORBInitalHost X

Hello, world!

Hello, world!Here is added information!!!

> java HelloClient …

Hello, world!Here is added information!!!

Hello, world!Here is added information!!!Here is added information!!!

> java HelloClient …

Hello, world!Here is added information!!!Here is added information!!!

Hello, world!Here is added information!!!Here is added information!!!Here is added information!!!

> ps
> kill -9 1611 #orbd-pid
> java HelloClient …
Feb 21, 2013 2:33:45 PM
com.sun.corba.se.impl.transport.SocketOrChannelConne
ctionImpl <init>
WARNING: "IOP00410201: (COMM_FAILURE)
Connection failure: socketType: IIOP_CLEAR_TEXT;
hostname: 127.0.0.1; port: 20000“
…

Distributed Computing, M. L. Liu

1.45 TS Distributed Systems

Summary-1
 Common Object Request Broker Architecture (CORBA)

 The key topics introduced with CORBA are:

 The basic CORBA architecture and its emphasis on
object interoperability and platform independence

 Object Request Broker (ORB) and its functionalities

 The Inter-ORB Protocol (IIOP) and its significance

 CORBA object reference and the Interoperable Object
Reference (IOR) protocol

 CORBA Naming Service and the Interoperable
Naming Service (INS)

 Standard CORBA object services and how they are
provided.

 Object adapters, portable object Adapters (POA) and
their significance.

Distributed Computing, M. L. Liu

1.46 TS Distributed Systems

Summary-2
a specific CORBA facility based on Java IDL

 The key topics introduced with Java IDL are:

 It is part of the JavaTM 2 Platform, Standard Edition (J2SE)

 Java packages are provided which contain interfaces and
classes for CORBA support

 Tools provided for developing a CORBA application
include idlj (the IDL compiler) and orbd (the ORB and
name server)

 An example application Hello

 Steps for compiling and running an application.

 Client callback is achievable.

 CORBA tookits and Java RMI are comparable and
alternative technologies that provide distributed objects. An
application may be implemented using either technology.
However, there are tradeoffs between the two.

Distributed Computing, M. L. Liu

