
1.1 TS Distributed Systems

Chapter 4: COMMUNICATION

Parts 3-4-5

Thanks to the authors of the textbook [TS] for providing the base slides. I made several changes/additions.
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.

So I would like to thank him, too.
Turgay Korkmaz

korkmaz@cs.utsa.edu

Communications in Distributed Systems
Message-oriented communication, Stream-oriented communication, Application-level multicast

1.2 TS Distributed Systems

Chapter 3: Communications

 FUNDAMENTALS
 Layered Protocols

 Grand tour of computer networking, the Internet

 Socket Programming

 REMOTE PROCEDURE CALL
 Basic RPC Operation

 Parameter Passing

 Asynchronous RPC

 RMI

 CORBA

 MESSAGE-ORIENTED COMMUNICATION
 Transient and Persistent Communication

 STREAM-ORIENTED COMMUNICATION
 Support for Continuous Media and Quality of Service

 Stream Synchronization

 MULTICAST COMMUNICATION
 Application-Level Multicasting

 Gossip-Based Data Dissemination

1.3 TS Distributed Systems

Objectives

 To understand how processes communicate (the

heart of distributed systems)

 To understand low-level message passing

 sockets

 To learn higher-level communication mechanisms

RPC, RMI, CORBA

 To understand various forms of communications

and their issues

 Msg-, Stream-oriented communication, multicast, etc.

1.4 TS Distributed Systems

MESSAGE-ORIENTED

COMMUNICATION

RPC (RMI) might not be appropriate in some cases, e.g., when

sender and receiver are not running at the same time

1.5 TS Distributed Systems

Message-oriented Transient Communication
We already covered this when talking about Sockets

 Many distributed systems built on top of simple transient

message-oriented model (TCP, UDP)

Primitive Meaning

Socket Create a new communication endpoint

Bind Attach a local address to a socket

Listen Announce willingness to accept connections

Accept Block caller until a connection request arrives

Connect Actively attempt to establish a connection

Send Send some data over the connection

Receive Receive some data over the connection

Close Release the connection

1.6 TS Distributed Systems

Message-oriented Transient Communication
Message-Passing Interface (MPI)

 Sockets designed for network communication (e.g., TCP/IP)

 + Support simple send/receive primitives

 - Abstraction not suitable for other protocols in clusters of workstations
or massively parallel systems

 Need an interface with more advanced primitives

 Large number proprietary libraries and protocols are provided

 But they are incompatible and makes it hard to port an application

 Need for a standard interface

 Message-passing interface (MPI) – platform independent

 Designed for parallel applications (uses transient communication)

 Directly uses the underlying communication facilities

 Communications take place within a group

 Each endpoint is a (groupID, processID) pair

1.7 TS Distributed Systems

MPI Primitives

Primitive Meaning

MPI_bsend Append outgoing message to a local send buffer (async)

MPI_send Send a message and wait until copied to local or remote buffer (sync)

MPI_ssend Send a message and wait until receipt starts

MPI_sendrecv Send a message and wait for reply

MPI_isend Pass reference to outgoing message, and continue (do not block, async)

MPI_issend Pass reference to outgoing message, and wait until receipt starts

MPI_recv Receive a message; block if there are none

MPI_irecv Check if there is an incoming message, but do not block

Different forms allow MPI implementers to optimize performance

1.8 TS Distributed Systems

Message-oriented Persistent Communication
Message-Queuing System (or MOM—Message-Oriented Middleware)

 Message queuing systems

 Support asynchronous persistent communication

through support of middleware-level queues.

 Communicate by inserting messages in queues

providing intermediate storage for message

 Sender and receiver could be inactive (e.g., e-mail)

 Sender is only guaranteed that message will be

eventually inserted in recipient’s queue

 No guarantees on when or if the message will be read

 “Loosely coupled communication” with four combinations

1.9 TS Distributed Systems

Message-Queuing Systems

Messages should have a system wide unique ID for destination…
Also we need
 a common messaging protocol and
 simple primitives to be able to send/receive messages…

1.10 TS Distributed Systems

Message-Queuing System Architecture

Primitive Meaning

Put Append a message to a specified queue

Get Block until the specified queue is nonempty, and remove the first message

Poll Check a specified queue for messages, and remove the first. Never block.

Notify Install a handler to be called when a message is put into the specified queue.

Message-queuing system should map queues to network locations…

1.11 TS Distributed Systems

Message-Queuing System with Routers

1.12 TS Distributed Systems

Message Broker

Problem: Message queuing systems assume a common messaging

protocol. But if a new application requires a separate format then all

potential receivers need to be updated!

Solution: Learn to live with different formats! Accordingly, have a message

broker that transforms incoming messages to target format

1.13 TS Distributed Systems

A note on MQS or MOM

 E-mail is a special MQS, which provides direct

communication support for end users

 General MQS provides persistent communication

between any processes and support various other

applications such as workflow, groupware, batch processing

 Requires more advanced features than e-mail

 Guarantee message delivery,

 Message priorities

 Logging facility,

 Efficient multicasting, routing

 Load balancing

 Fault tolerance

Message Broker
Very often acts as an
application gateway
May provide subject-
based routing
capabilities ⇒ Enterprise

Application Integration

1.14 TS Distributed Systems

Example: IBM’s WebSphere MQ

 Application-specific messages are put into, and removed from queues

 Queues reside under the regime of a queue manager

 Processes can put messages only in local queues, or through RPC

 Message transfer between different queues requires a channel

1.15 TS Distributed Systems

Example: IBM’s WebSphere MQ: Channel

 There is a message channel agent (MCA) at each

endpoint of a channel

 Message channel agents are responsible for:
 Setting up channels using lower-level network

communication facilities (e.g., TCP/IP)

 (Un)wrapping messages from/in transport-level packets

 Sending/receiving packets

 Overall behavior of a channel and MCA is

controlled by various attributes

 Channels are inherently unidirectional

 Automatically start MCAs when messages arrive

1.16 TS Distributed Systems

Example: IBM’s WebSphere MQ: Routing

 By using logical names, in combination with name

resolution to local queues, it is possible to put a

message in a remote queue

 Routes are set up manually (system administration)



1.17 TS Distributed Systems

STREAM-ORIENTED

COMMUNICATION

How to exchange time-dependent information (e.g., audio, video)?

1.18 TS Distributed Systems

 So far the communication was discrete (complete

unit of information is exchanged), timing has no

effect on correctness…

 In some cases, timing plays a crucial role…

 Examples: audio and video (“continuous media”)

Video conference sends and receives 30 frames/s

 Animations

 Sensor data

 Push mode: no explicit requests for individual data
units beyond the first “play” request

Stream Oriented Communication

1.19 TS Distributed Systems

Transmission of Continuous Media

Different timing guarantees: 3 types of transmission

 Asynchronous: no restrictions with respect to when
data is to be delivered

 (e.g., a file can be transferred as a data stream)

 Synchronous: define a maximum end-to-end delay
for individual data packets

 (e.g., sensor data need to be send less than 1 sec, no harm if
sent faster)

 Isochronous: define a maximum and minimum end-
to-end delay (jitter is bounded)

 (e.g., multimedia streams, audio, video streams)

1.20 TS Distributed Systems

Stream

 Definition: A (continuous) data stream is a
connection-oriented communication facility that
supports isochronous data transmission

 Common stream characteristics

 Streams are unidirectional unless interactive

 There is generally a single source, and one or more
sinks

 Two types of streams:
Simple: single flow of data, e.g., audio or video

Complex: multiple data flows, e.g., stereo audio or combination
audio/video

– Synchronization of sub-streams is important!

 Live streaming vs. Stored streaming
Less vs more opportunity for tuning

1.21 TS Distributed Systems

Examples

1.22 TS Distributed Systems

Quality of Service (QoS)

 Time-dependent and other nonfunctional requirements are

specified as Quality-of-Service (QoS)

 Requirements/desired guarantees from the underlying systems

 Application specifies workload and requests a certain service

quality

 Contract between the application and the system

Characteristics of the Input Service Required

•maximum data unit size (bytes)

•Token bucket rate (bytes/sec)

•Toke bucket size (bytes)

•Maximum transmission rate
(bytes/sec)

•Loss sensitivity (bytes)

•Loss interval (sec)

•Burst loss sensitivity (data units)

•Minimum delay noticed (sec)

•Maximum delay variation (sec)

•Quality of guarantee

 The required bit rate at which data should be transported.

 The maximum delay until a session has been set up (i.e.,

when an application can start sending data).

 The maximum end-to-end delay (i.e., how long it will

take until a data unit makes it to a recipient).

 The maximum delay variance, or jitter.

 The maximum round-trip delay.

1.23 TS Distributed Systems

How to Enforce QoS

New network-level mechanisms and protocols
vs.

Application-level e2e mechanisms on the existing network (Internet)

1.24 TS Distributed Systems

 constant bit
 rate video
transmission

time

variable
network
delay

client video
reception

 constant bit
 rate video
 playout at client

client
playout
delay

b
u
ff

e
re

d

v
id

e
o

Example: E2E QoS Mechanism
Client Buffering to reduce justter

 client-side buffering, playout delay

compensate for network-added delay, delay

jitter
From Computer Networking by Kurose and Ross.

1.25 TS Distributed Systems

Example: E2E QoS Mechanism
to recovery from packet loss (1)

FEC scheme
 “piggyback lower
quality stream”
 send lower resolution
audio stream as
redundant information
 e.g., nominal
stream PCM at 64 kbps
and redundant stream
GSM at 13 kbps.

 whenever there is non-consecutive loss,
receiver can conceal the loss.
 can also append (n-1)st and (n-2)nd low-bit rate
chunk

From Computer Networking by Kurose and Ross.

1.26 TS Distributed Systems

Example: E2E QoS Mechanism
to recovery from packet loss (2)

Interleaving

 chunks divided into smaller

units

 for example, four 5 msec units

per chunk

 packet contains small units

from different chunks

 if packet lost, still have most of

every chunk

 no redundancy overhead, but

increases playout delay

From Computer Networking by Kurose and Ross.

1.27 TS Distributed Systems

Stream Synchronization

 Problem: Given a complex stream, how do you keep the
different sub-streams in synch?
 Stereo sound: two channels are played together Difference should

be less than 20–30 μsec!

 A simple approach: let application be responsible
 Alternate between two channels

1.28 TS Distributed Systems

Stream Synchronization (cont.)

 Alternative Solution: high-level interfaces

 Multiplex all sub-streams into a single stream, and

demultiplex at the receiver.

 Synchronization is handled at

multiplexing/demultiplexing point (MPEG).

1.29 TS Distributed Systems

Numeric example….

1.30 TS Distributed Systems

APPLICATION-LEVEL

MULTICAST

1.31 TS Distributed Systems

Application-level Multicast

 Application-level multicasting (ALM)

 Organize nodes of a distributed system into an

overlay network and use that network to

disseminate data

 Epidemic-based data dissemination

1.32 TS Distributed Systems

ALM: Overlay Construction with Chord

 Example: Chord-based peer-to-peer system

 Initiator generates a multicast identifier mid

 Lookup succ(mid), the node responsible for mid.

 Request is routed to succ(mid)  the root

 If P wants to join, it sends a join request to the root

 When request arrives at Q:

 Q has not seen a join request before ⇒ it becomes

forwarder; P becomes child of Q. Join request continues

to be forwarded.

 Q knows about tree ⇒ P becomes child of Q. No need to

forward join request anymore.

1.33 TS Distributed Systems

ALM: Some costs

 Link stress: How often does an ALM message

cross the same physical link?
 Example: message from A to D needs to cross (Ra,Rb) twice.

 Stretch: Ratio in delay between ALM-level path

and network-level path.
 Example: messages B to C follow path of length 71 at ALM, but 47 at

network level  stretch = 71/47.

1.34 TS Distributed Systems

Epidemic Algorithms

 Basic idea: no write–write conflicts, single writer

 Update operations are initially performed at a few replicas

 A replica passes its updated state to a limited neighbors

 Update propagation is lazy, i.e., not immediate

 Eventually, each update should reach every replica

 Propagation models

 Anti-entropy: Each replica regularly chooses another

replica at random, and exchanges state differences,

leading to identical states at both afterwards

 Gossiping: A replica which has just been updated (i.e.,

has been contaminated), tells a number of other replicas

about its update (contaminating them as well).

1.35 TS Distributed Systems

Anti-Entropy Propagation Model

 Node P selects node Q from the system at random

 Schemes to propagates updates

 Push: P only sends its updates to Q

 Pull: P only retrieves updates from Q

 Push-Pull: P and Q exchange mutual updates (after

which they hold the same information).

 Observation: for push-pull it takes O(log(N))

rounds to disseminate updates to all N nodes

(round = when every node as taken the initiative to

start an exchange).

1.36 TS Distributed Systems

Gossiping Propagation Model

 A server S having an update to report, contacts

other servers. If a server is contacted to which the

update has already propagated, S stops contacting

other servers with probability 1/k.

 Gossiping alone is not enough for full propagation

1.37 TS Distributed Systems

Deleting Values

 Fundamental problem: We cannot remove an
old value from a server and expect the removal
to propagate.

 Solution: Removal has to be registered as a
special update (Death certificate)

 When to remove a death certificate?

 Run a global algorithm to detect whether the removal
is known everywhere, and then collect the death
certificates (looks like garbage collection)

 Assume death certificates propagate in finite time,
and associate a maximum lifetime for a certificate
(can be done at risk of not reaching all servers)

1.38 TS Distributed Systems

Example: Data dissemination

 Many variants of data dissemination

 Aggregation: every node i maintain a variable xi.

 When two nodes gossip, they each reset their

variable to: xa,xb  (xa+xb)/2

 Result  in the end each node will have computed

the average: sum(xi)/n

 If x1=1, and xi=0  size of network

