
1.1 TS Distributed Systems 

Chapter 4: COMMUNICATION 

Parts 3-4-5 

Thanks to the authors of the textbook [TS] for providing the base slides. I made several changes/additions.  
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.  

So I would like to thank him, too.  
Turgay Korkmaz 

korkmaz@cs.utsa.edu 

Communications in Distributed Systems 
Message-oriented communication, Stream-oriented communication, Application-level multicast 
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Chapter 3:  Communications 

 FUNDAMENTALS  
 Layered Protocols  

 Grand tour of computer networking, the Internet 

 Socket Programming   

 REMOTE PROCEDURE CALL  
 Basic RPC Operation  

 Parameter Passing  

 Asynchronous RPC  

 RMI 

 CORBA 

 MESSAGE-ORIENTED COMMUNICATION  
 Transient and Persistent Communication  

 STREAM-ORIENTED COMMUNICATION  
 Support for Continuous Media and Quality of Service  

 Stream Synchronization  

 MULTICAST COMMUNICATION  
 Application-Level Multicasting  

 Gossip-Based Data Dissemination  



1.3 TS Distributed Systems 

Objectives 

 To understand how processes communicate (the 

heart of distributed systems)  

 To understand low-level message passing 

 sockets 

  To learn higher-level communication mechanisms 

RPC, RMI, CORBA 

 To understand various forms of communications 

and their issues 

 Msg-, Stream-oriented communication, multicast, etc. 
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MESSAGE-ORIENTED 

COMMUNICATION 

RPC (RMI) might not be appropriate in some cases, e.g., when 

sender and receiver are not running at the same time 
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Message-oriented Transient Communication 
We already covered this when talking about Sockets 

 Many distributed systems built on top of simple transient         

message-oriented model (TCP, UDP)  

Primitive Meaning 

Socket Create a new communication endpoint 

Bind Attach a local address to a socket 

Listen Announce willingness to accept connections 

Accept Block caller until a connection request arrives 

Connect Actively attempt to establish a connection 

Send Send some data over the connection 

Receive Receive some data over the connection 

Close Release the connection 
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Message-oriented Transient Communication 
Message-Passing Interface (MPI) 

 Sockets designed for network communication (e.g., TCP/IP) 

 + Support simple send/receive primitives 

 -  Abstraction not suitable for other protocols in clusters of workstations 
or massively parallel systems  

 Need an interface with more advanced primitives 

 Large number proprietary libraries and protocols are provided 

 But they are incompatible and makes it hard to port an application 

 Need for a standard interface  

 Message-passing interface (MPI) – platform independent 

 Designed for parallel applications (uses transient communication) 

 Directly uses the underlying communication facilities 

 Communications take place within a group  

 Each endpoint is a (groupID, processID) pair 



1.7 TS Distributed Systems 

MPI Primitives 

Primitive Meaning 

MPI_bsend Append outgoing message to a local send buffer (async) 

MPI_send Send a message and wait until copied to local or remote buffer  (sync) 

MPI_ssend  Send a message and wait until receipt starts 

MPI_sendrecv Send a message and wait for reply 

MPI_isend Pass reference to outgoing message, and continue (do not block, async) 

MPI_issend Pass reference to outgoing message, and wait until receipt starts 

MPI_recv Receive a message; block if there are none 

MPI_irecv Check if there is an incoming message, but do not block 

Different forms allow MPI implementers to optimize performance 
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Message-oriented Persistent Communication 
Message-Queuing System (or MOM—Message-Oriented Middleware) 

 Message queuing systems   

 Support asynchronous persistent communication 

through support of middleware-level queues.  

 Communicate by inserting messages in queues 

providing intermediate storage for message   

 Sender and receiver could be inactive (e.g., e-mail) 

 Sender is only guaranteed that message will be 

eventually inserted in recipient’s queue 

 No guarantees on when or if the message will be read 

 “Loosely coupled communication” with four combinations  
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Message-Queuing Systems 

Messages should have a system wide unique ID for destination… 
Also we need  
 a common messaging protocol and  
 simple primitives to be able to send/receive messages… 
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Message-Queuing System Architecture 

Primitive Meaning 

Put Append a message to a specified queue 

Get Block until the specified queue is nonempty, and remove the first message 

Poll Check a specified queue for messages, and remove the first. Never block. 

Notify Install a handler to be called when a message is put into the specified queue. 

Message-queuing system should map queues to network locations… 
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Message-Queuing System with Routers 
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Message Broker 

Problem: Message queuing systems assume a common messaging 

protocol. But if a new application requires a separate format then all 

potential receivers need to be updated! 

Solution: Learn to live with different formats! Accordingly, have a message 

broker that transforms incoming messages to target format 
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A note on MQS or MOM 

 E-mail is a special MQS, which provides direct 

communication support for end users 

 General MQS provides persistent communication 

between any processes and support various other 

applications such as workflow, groupware, batch processing 

 Requires more advanced features than e-mail 

 Guarantee message delivery,  

 Message priorities  

 Logging facility, 

 Efficient multicasting, routing 

 Load balancing 

 Fault tolerance 

Message Broker 
Very often acts as an 
application gateway 
May provide subject-
based routing 
capabilities ⇒ Enterprise 

Application Integration 
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Example: IBM’s WebSphere MQ 

 Application-specific messages are put into, and removed from queues 

 Queues reside under the regime of a queue manager 

 Processes can put messages only in local queues, or through RPC 

 Message transfer between different queues requires a channel 
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Example: IBM’s WebSphere MQ: Channel 

 There is a message channel agent (MCA) at each 

endpoint of a channel 

 Message channel agents are responsible for: 
 Setting up channels using lower-level network 

communication facilities (e.g., TCP/IP) 

 (Un)wrapping messages from/in transport-level packets 

 Sending/receiving packets 

 Overall behavior of a channel and MCA is 

controlled by various attributes 

 Channels are inherently unidirectional 

 

 Automatically start MCAs when messages arrive 
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Example: IBM’s WebSphere MQ: Routing 

 By using logical names, in combination with name 

resolution to local queues, it is possible to put a 

message in a remote queue 

 Routes are set up manually (system administration) 

   



1.17 TS Distributed Systems 

STREAM-ORIENTED 

COMMUNICATION 

How to exchange time-dependent information (e.g., audio, video)? 
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 So far the communication was discrete (complete 

unit of information is exchanged), timing has no 

effect on correctness…  
 

 In some cases, timing plays a crucial role… 

 Examples: audio and video (“continuous media”) 

Video conference sends and receives 30 frames/s  

 Animations  

 Sensor data  

 Push mode: no explicit requests for individual data 
units beyond the first “play” request 

 

Stream Oriented Communication 
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Transmission of Continuous Media 

Different timing guarantees: 3 types of transmission 

 Asynchronous: no restrictions with respect to when 
data is to be delivered  

 (e.g., a file can be transferred as a data stream) 

 Synchronous: define a maximum end-to-end delay 
for individual data packets  

 (e.g., sensor data need to be send less than 1 sec, no harm if 
sent faster) 

 Isochronous: define a maximum and minimum end-
to-end delay (jitter is bounded) 

 (e.g., multimedia streams, audio, video streams) 
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Stream 

 Definition: A (continuous) data stream is a 
connection-oriented communication facility that 
supports isochronous data transmission 

 Common stream characteristics 

 Streams are unidirectional unless interactive 

 There is generally a single source, and one or more 
sinks 

 Two types of streams: 
Simple: single flow of data, e.g., audio or video 

Complex: multiple data flows, e.g., stereo audio or combination 
audio/video 

– Synchronization of sub-streams is important! 

 Live streaming vs. Stored streaming 
Less vs more opportunity for tuning 
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Examples 
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Quality of Service (QoS) 

 Time-dependent and other  nonfunctional requirements are 

specified as Quality-of-Service (QoS) 

 Requirements/desired guarantees from the underlying systems 

 Application specifies workload and requests a certain service 

quality 

 Contract between the application and the system 

Characteristics of the Input Service Required 

•maximum data unit size (bytes) 

•Token bucket rate (bytes/sec) 

•Toke bucket size (bytes) 

•Maximum transmission rate 
(bytes/sec) 

•Loss sensitivity (bytes) 

•Loss interval (sec) 

•Burst loss sensitivity (data units) 

•Minimum delay noticed (sec) 

•Maximum delay variation (sec) 

•Quality of guarantee 

 The required bit rate at which data should be transported. 

 The maximum delay until a session has been set up (i.e., 

when an application can start sending data). 

 The maximum end-to-end delay (i.e., how long it will 

take until a data unit makes it to a recipient). 

 The maximum delay variance, or jitter. 

 The maximum round-trip delay. 
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How to Enforce QoS 

New network-level mechanisms and protocols 
vs.  

Application-level e2e mechanisms on the existing network (Internet) 
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Example: E2E QoS Mechanism 
Client Buffering to reduce justter 

 client-side buffering, playout delay 

compensate for network-added delay, delay 

jitter 
From Computer Networking by Kurose and Ross. 
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Example: E2E QoS Mechanism  
to recovery from packet loss (1) 

FEC scheme 
 “piggyback lower  
quality stream”  
 send lower resolution 
audio stream as  
redundant information 
 e.g., nominal  
stream PCM at 64 kbps 
and redundant stream 
GSM at 13 kbps. 
 

 whenever there is non-consecutive loss,  
receiver can conceal the loss.  
 can also append (n-1)st and (n-2)nd low-bit rate 
chunk 

From Computer Networking by Kurose and Ross. 
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Example: E2E QoS Mechanism  
to recovery from packet loss (2) 

Interleaving 

 chunks divided into smaller 

units 

 for example, four 5 msec units 

per chunk 

 packet contains small units 

from different chunks 

 if packet lost, still have most of 

every chunk 

 no redundancy overhead, but 

increases playout delay 

 

From Computer Networking by Kurose and Ross. 
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Stream Synchronization 

 Problem: Given a complex stream, how do you keep the 
different sub-streams in synch? 
 Stereo sound: two channels are played together Difference should 

be less than 20–30 μsec! 

 A simple approach: let application be responsible 
 Alternate between two channels 
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Stream Synchronization (cont.) 

 Alternative Solution: high-level interfaces 

 Multiplex all sub-streams into a single stream, and 

demultiplex at the receiver.  

 Synchronization is handled at 

multiplexing/demultiplexing point (MPEG). 
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Numeric example…. 
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APPLICATION-LEVEL 

MULTICAST 
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Application-level Multicast 

 Application-level multicasting (ALM) 

 Organize nodes of a distributed system into an 

overlay network and use that network to 

disseminate data 

 Epidemic-based data dissemination 
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ALM: Overlay Construction with Chord 

 Example: Chord-based peer-to-peer system 

 Initiator generates a multicast identifier mid 

 Lookup succ(mid), the node responsible for mid. 

 Request is routed to succ(mid)  the root 

 If P wants to join, it sends a join request to the root 

 When request arrives at Q: 

 Q has not seen a join request before ⇒ it becomes 

forwarder; P becomes child of Q. Join request continues 

to be forwarded. 

 Q knows about tree ⇒ P becomes child of Q. No need to 

forward join request anymore. 
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ALM: Some costs 

 Link stress: How often does an ALM message 

cross the same physical link?  
 Example: message from A to D needs to cross (Ra,Rb) twice. 

 Stretch: Ratio in delay between ALM-level path 

and network-level path.  
 Example: messages B to C follow path of length 71 at ALM, but 47 at 

network level  stretch = 71/47. 
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Epidemic Algorithms 

 Basic idea: no write–write conflicts, single writer 

 Update operations are initially performed at a few replicas 

 A replica passes its updated state to a limited neighbors  

 Update propagation is lazy, i.e., not immediate  

 Eventually, each update should reach every replica 

 Propagation models 

 Anti-entropy: Each replica regularly chooses another 

replica at random, and exchanges state differences, 

leading to identical states at both afterwards 

 Gossiping: A replica which has just been updated (i.e., 

has been contaminated), tells a number of other replicas 

about its update (contaminating them as well). 
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Anti-Entropy Propagation Model 

 Node P selects node Q from the system at random 

 Schemes to propagates updates 

 Push: P only sends its updates to Q 

 Pull: P only retrieves updates from Q 

 Push-Pull: P and Q exchange mutual updates (after 

which they hold the same information). 

 

 Observation: for push-pull it takes O(log(N)) 

rounds to disseminate updates to all N nodes 

(round = when every node as taken the initiative to 

start an exchange). 
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Gossiping Propagation Model 

 A server S having an update to report, contacts 

other servers. If a server is contacted to which the 

update has already propagated, S stops contacting 

other servers with probability 1/k. 

 Gossiping alone is not enough for full propagation 
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Deleting Values 

 Fundamental problem: We cannot remove an 
old value from a server and expect the removal 
to propagate. 

 Solution: Removal has to be registered as a 
special update (Death certificate) 

 When to remove a death certificate? 

 Run a global algorithm to detect whether the removal 
is known everywhere, and then collect the death 
certificates (looks like garbage collection) 

 Assume death certificates propagate in finite time, 
and associate a maximum lifetime for a certificate 
(can be done at risk of not reaching all servers) 
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Example: Data dissemination 

 Many variants of data dissemination 

 

 Aggregation: every node i maintain a variable xi. 

 

 When two nodes gossip, they each reset their 

variable to: xa,xb  (xa+xb)/2 

 Result  in the end each node will have computed 

the average: sum(xi)/n 

 

 If x1=1, and xi=0  size of network 


