
1.1 TS Distributed Systems

Chapter 5: NAMING

Thanks to the authors of the textbook [TS] for providing the base slides. I made several changes/additions.
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.

So I would like to thank him, too.
Turgay Korkmaz

korkmaz@cs.utsa.edu

How to refer to an entity in Distributed Systems?

1.2 TS Distributed Systems

Chapter 5: NAMING

 NAMES, IDENTIFIERS, AND ADDRESSES

 FLAT NAMING
 Simple Solutions

 Home-Based Approaches

 Distributed Hash Tables

 Hierarchical Approaches

 STRUCTURED NAMING
 Name Spaces

 Name Resolution

 The Implementation of a Name Space

 Example: The Domain Name System

 ATTRIBUTE-BASED NAMING
 Directory Services

 Hierarchical Implementations: LDAP

 Decentralized Implementations

1.3 TS Distributed Systems

Objectives

 To understand naming and related issues in DS

 To learn naming space and implementation

 To learn flat and structured names and how

they are resolved

 To learn Attributed-based naming

1.4 TS Distributed Systems

What a Name is in DS?

 A name is a string of bits or characters that is used

to refer to an entity (an entity could be anything such as host,

printer, file, process, mailbox, user etc.)

 To operate on an entity, we need to access it, for

which we need an access point.

 Access point is a special kind of entity and its name

is called an address (address of the entity, e.g., IP, port #, phone #)

 An entity may have more than one access point/address

 An entity may change its access points/addresses

 So using an address as a reference is inflexible and

human unfriendly

 A better approach is to use a name that is location

independent, much easier, and flexible to use

1.5 TS Distributed Systems

Identifier

 A special name to uniquely identify an entity (SSN, MAC)

 A true identifier has the following three properties:

 P1: Each identifier refers to at most one entity

 P2: Each entity is referred to by at most one identifier

 P3: An identifier always refers to same entity (no reuse)

 Addresses Entities Identifiers

I1

I2

I3

E1

E2

E3

A1

A2

A3

A4

Addresses and identifiers are important and used for different purposes, but

they are often represented in machine readable format (MAC, memory address)

1.6 TS Distributed Systems

Human-friendly names

 File names, www.cs.utsa.edu, variable names etc.

are human-friendly names given to each entity

 Question: how to map/resolve these names to

addresses so that we can access the entities on

which we want to operate?

 Solution: have a naming system that maintains

name-to-address binding!

 The simplest form is to have a centralized table!

 Why or why not this will work?

 We will study three different naming systems and

how they maintain such a table in a distributed

manner!

http://www.cs.utsa.edu/

1.7 TS Distributed Systems

Naming Systems and Their Goals

 Naming Systems

 Flat names

 Structured names

 Attributed-based names

 Goals

 Scalable to arbitrary size

 Have a long lifetime

 Be highly available

 Have fault isolation

 Tolerate mistrust

1.8 TS Distributed Systems

FLAT NAMES

1.9 TS Distributed Systems

Flat Naming

 Flat name: random bits of string, no structure

 E.g., SSN, MAC address

 Resolution problem:

 Given a flat (unstructured) name, how can we

find/locate its associated access point and its

address?

 Solutions:

 Simple solutions (broadcasting)

 Home-based approaches

 Distributed Hash Tables (structured P2P)

 Hierarchical location service

1.10 TS Distributed Systems

Simple Solution: Broadcasting

 Simply broadcast the target ID to every entity

 Each entity compares the requested ID with its

own ID

 The target entity returns its current address

 Example:

 Recall ARP in LAN

 Adv/Disadvantages

 + simple

 - not scale beyond LANs

 - it requires all entities to listen to all incoming requests

1.11 TS Distributed Systems

Forwarding Pointers
How to locate mobile entities?

 When an entity moves from A to

B, leaves a pointer to A that it is

at B now…

 Dereferencing: simply follow the

chain of pointers and make this

entirely transparent to clients

 Adv/Disadvantages

 + support for mobile nodes

 - geographical scalability problems

 - long chains are not fault tolerant

 - increased network latency

 Short-cuts can be introduced

1.12 TS Distributed Systems

Home-Based Approaches
How to deal with scalability problem when locating mobile entities?

 Let a home keep track of where the entity is!

 How will the clients continue to communicate?

 Home agent gives the new location to the client so it
can directly communicate

efficient but not transparent

 Home agent forwards the messages to new location

Transparent but may not be efficient

A (home) B (foreign)

1.13 TS Distributed Systems
13

Problems with home-based approaches

 The home address has to be supported as long

as the entity lives.

 The home address is fixed, which means an

unnecessary burden when the entity

permanently moves to another location

 How can we solve the “permanent move” problem?

 Poor geographical scalability (the entity may be

next to the client)

1.15 TS Distributed Systems

Distributed Hash Tables
How to use DHT to resolve flat ID

 Recall Chord from Chapter 2, which organizes

many nodes into a logical ring
 Each node is assigned a random m-bit identifier.

 Every entity is assigned a unique m-bit key.

 Entity with key k falls under jurisdiction of node with smallest id >= k

(called its successor)

 Linearly resolve a key k to the address of succ(k)
 Each node p keeps two neighbors:

 succ(p+1) and pred(p)

 If k > p then

 forward to succ(p+1)

 if k <= pred(p) then

 forward k to pred(p)

 If pred(p) < k <= p then

 return p’s address (p holds the entity)

1.16 TS Distributed Systems

 Each node p maintains a finger table

 at most m entries (short cuts) with

exponentially increasing size

 FTp[i] = succ(p + 2 i−1)

 FTp[i] points to the first node succeeding p by at

least 2i−1

 To look up a key k, node p forwards the request to

node with index j satisfying (e.g., node 0 gets a req for k=6)

 q = FTp[j] k < FTp[j +1] (e.g., node 0 sends req 4 6)

 If p < k < FTp[1], the request is also forwarded to FTp[1]

 Need at most O(log N) steps, where N is the

number of nodes in the systems

DHT: Finger Table
How to improve efficiency? Suppose

All are

1.17 TS Distributed Systems

DHT: Example

Node 1 wants to find k=26

Node 28 wants to find k=12

1.18 TS Distributed Systems

DHT: Finger Table (cont’d)

 How to handle

 Join

 Leave

 Fail

 The complexity comes from keeping the finger

tables up to date

 By-and-large Chord tries to keep them consistent

 But a simple mechanism may lead to performance

problems

 To fix this we need to exploit network proximity when

assigning node ID

1.19 TS Distributed Systems

Exploiting network proximity

 Problem: The logical organization of nodes in the

overlay may lead to erratic message transfers in

the underlying Internet: node k and node succ(k +1)

may be very far apart.

 Topology-aware node assignment:
 When assigning an ID to a node, make sure that nodes close in the ID space

are also close in the network. Can be very difficult.

 Proximity routing:
 Maintain more than one possible successor, and forward to the closest.

 Example: in Chord FTp[i] points to first node in INT = [p+2i−1,p+2i −1]. Node p

can also store pointers to other nodes in INT .

 Proximity neighbor selection:
 When there is a choice of selecting who your neighbor will be (not in Chord),

pick the closest one.

1.20 TS Distributed Systems

Hierarchical Location Services (HLS)
to resolve flat names

 Build a large-scale search tree for which the

underlying network is divided into hierarchical

domains. Each domain is represented by a

separate directory node.

1.21 TS Distributed Systems

STRUCTURED NAMING

www.cs.utsa.edu

dir1/dir2/file.txt

http://www.cs.utsa.edu/

1.22 TS Distributed Systems

Name Space
Collection of valid names

 A directed graph with two types of nodes

 Leaf node represents a (named) entity, has no outgoing link, and

stores information about the entity (e.g., address)

 A directory node is an entity that refers to other nodes: contains a

(directory) table of (edge label, node identifier) pairs

root

1.23 TS Distributed Systems

Name Space (cont.)

 Each node in the graph is actually considered

to be another entity and we can easily store

all kinds of attributes in a node, describing

aspects of the entity the node represents:

 Type of the entity

 An identifier for that entity

 Address of the entity’s location

 Nicknames

 … …

1.24 TS Distributed Systems

Name Resolution
looking up a name

N: <label-1, label-2, …, label-n>
 Start at directory node N

 find label-1 in directory table of N

 get the identifier

 continue resolving at that node until reaching label-n

 Problem: where to start? How do we actually find

that (initial) node?

 Closure mechanism: knowing how and where to

start name resolution. It is always implicit. Why?

 Inode in unix is the first block in logical disk

 www.cs.vu.nl: start at a DNS name server

 /home/steen/mbox: start at the local NFS file server

(possible recursive search)

1.25 TS Distributed Systems

Name Resolution: Aliases and linking

 Alias is another name for the same entity.

 There are 2 ways of aliasing in naming graphs

 Hard Links: What we have described so far as a path

name: a name that is resolved by following a specific path

in a naming graph from one node to another (i.e., there are

more than one absolute paths to a certain node)

 Soft Links: We can represent an entity by a leaf node that

stores an absolute path name of another node. (like

symbolic links in UNIX file system)

 Node O contains a name of another node:

 First resolve O’s name (leading to O)

 Read the content of O, yielding name

 Name resolution continues with name

1.26 TS Distributed Systems

Name Resolution: linking and mounting

 Different name spaces can be merged in a transparent way

using mounted file system, which corresponds to letting a

directory node store the identifier of a directory node from a

different namespace.

 Mounting a foreign

name space requires

at least the following:

 1. The name of an

access protocol.

 2. The name of the

server.

 3. The name of the

mounting point in the

foreign namespace.

1.27 TS Distributed Systems

NAME SPACE

IMPLEMENTATION

Distributed vs. centralized

1.28 TS Distributed Systems

 Basic issue: Distribute the name resolution process

as well as name space management across multiple

machines, by distributing nodes of the naming graph

 Large name spaces are organized in a hierarchical

way. There are three logical layers
 Global level: Consists of the high-level directory nodes

representing different organizations or groups
Stable (directory tables don’t change often)

Have to be jointly managed by different administrations

 Administrational level: Contains mid-level directory nodes
managed within a single organization
Relatively stable

 Managerial level: Consists of low-level directory nodes
within a single administration.
Nodes may change often, requiring effective mapping of names

Managed by admins or users

Name Space Distribution

1.29 TS Distributed Systems

Name Space Distribution (cont.)

1.30 TS Distributed Systems

Name Space Distribution (cont.)

 Servers in each layer have different

requirements regarding availability

and performance

Availability Performance

Global

Must be very high

Replication may

help

Can be cached (stability)

Replication may help

Administrat

ive

Must be very high

particularly for the

clients in the same

organization

Looks up should be fast

Use high-end machines

Managerial

Less demanding

One dedicated

server might be

enough

Performance is crucial

Operations should take

place immediately

Caching would not be eff.

1.31 TS Distributed Systems

Implementation of Name Resolution

 Iterative vs. Recursive

-Caching is restricted to client
-Communication cost, Delay
+ less overhead on root

+Caching can be more effective
+Communication cost might be reduced
- Too much overhead on root

1.32 TS Distributed Systems

Cache in Recursive Naming Resolution

 Recursive name resolution of <nl, vu, cs, ftp>.

 Name servers cache intermediate results for

subsequent lookups

1.33 TS Distributed Systems

Scalability Issues

 Size scalability: We need to ensure that servers can
handle a large number of requests per time unit high-
level servers are in big trouble.

 Solution: Assume (at least at global and administrational level)
that content of nodes hardly ever changes. In that case, we can
apply extensive replication by mapping nodes to multiple
servers, and start name resolution at the nearest server.

 Geographical scalability: We need to ensure that the
name resolution process scales across large
geographical distances.

1.34 TS Distributed Systems

CASE STUDY: DOMAIN NAME

SYSTEM (DNS)

How to map

 Names (www.cs.utsa.edu) to IP addresses (129.115.28.4)

OPT

http://www.cs.utsa.edu/

1.35 TS Distributed Systems

Case Study: Domain Name System (DNS)

 One of the largest distributed naming database/service

 The DNS name space is hierarchically organized as a

rooted tree. Name structure reflects administrative

structure of the Internet

 Rapidly resolves domain names

 to IP addresses

 exploits caching heavily

 typical query time ~100 milliseconds

 Scales to millions of computers

 partitioned database

 caching

 Resilient to failure of a server

 replication

OPT

1.36 TS Distributed Systems

Domain names (last element of name)

 com - commercial organizations

 edu - universities and educational institutions

 gov - US government agencies

 mil - US military organizations

 net - major network support centers

 org - organizations not included in first five

 int - international organization

 country codes - (e.g., cn, us, uk, fr, etc.)

OPT

1.37 TS Distributed Systems

Name spaces in DNS

 Hierarchical structure - one or more components

or labels separated by periods (.)

 Only absolute names - referred relative to global

root

 Clients usually have a list of default domains that

are appended to single-component domain

names before trying global root

 Allows aliases such as www.utsa.edu

web.cs.utsa.edu

OPT

http://www.utsa.edu/

1.38 TS Distributed Systems

Zone partitioning of DNS name space

 Zone - contains attribute data for names in

domain minus the sub-domains administrated by

lower-level authorities:

 Example: UTSA has a name server for utsa.edu, but

cs.utsa.edu names are resolved by the CS Dept. server

 Names of the servers for the sub-domains

 At least two name servers that provide

authoritative data for the zone

 Zone management parameters: cache, replication

OPT

1.39 TS Distributed Systems

Authoritative name servers

 A server may be an authoritative source for zero or

more zones

 Data for a zone is entered into a local master file

 Master (primary) server reads the zone data directly

from the master file

 Secondary authoritative servers download zone

data from primary server

 Secondary servers periodically check their version

number against the master server

OPT

1.40 TS Distributed Systems

DNS server functions and configuration

 Main function is to resolve domain names for

computers, i.e. to get their IP addresses

 caches the results of previous searches until they pass

their 'time to live'

 Other functions:

 get mail host for a domain

 reverse resolution - get domain name from IP address

 Host information - type of hardware and OS

 Well-known services - a list of services offered by a host

 Other attributes can be included (optional)

OPT

1.41 TS Distributed Systems

DNS resource records

Record type Meaning Main contents

A A computer address IP number

NS An authoritative name server Domain name for server

CNAME The canonical name for an alias Domain name for alias

SOA Marks the start of data for a zone Parameters governing the zone

WKS A well-known service description List of service names and protocols

PTR Domain name pointer (reverse

lookups)

Domain name

HINFO Host information Machine architecture and operating

system

MX Mail exchange List of < preference, host > pairs

TXT Text string Arbitrary text

OPT

1.42 TS Distributed Systems

DNS resource records: Example

An excerpt from the DNS database for the zone cs.vu.nl.

OPT

1.43 TS Distributed Systems

Caching in DNS

 Any server can cache any name

 Non-authoritative servers note time-to-live

when they cache data

 Non-authoritative servers indicate that they

are such when responding to clients with

cached names

OPT

1.44 TS Distributed Systems

DNS clients (resolvers)

 Resolvers are usually implemented as library

routines (e.g., gethostbyname).

 The request is formatted into a DNS record.

 DNS servers use a well-known port.

 A request-reply protocol is used

 TCP or UDP why?

 The resolver times out and resends if it doesn’t

receive a response in a specified time.

OPT

1.45 TS Distributed Systems

DNS name resolution

 Domain name IP address ???

 Look for the name in the local cache

 Try a superior DNS server, which responds with:

 the IP address (which may not be entirely up to date)

 Or, another recommended DNS server (iterative)

OPT

1.46 TS Distributed Systems

DNS name servers

Note: Name server names are in

italics, and the corresponding

domains are in parentheses.

Arrows denote name server

entries

a.root-servers.net

(root)

ns0.ja.net
(ac.uk)

dns0.dcs.qmw.ac.uk
(dcs.qmw.ac.uk)

alpha.qmw.ac.uk
(qmw.ac.uk)

dns0-doc.ic.ac.uk
(ic.ac.uk)

ns.purdue.edu
(purdue.edu)

uk
purdue.edu

ic.ac.uk

qmw.ac.uk

...

dcs.qmw.ac.uk

*.qmw.ac.uk
*.ic.ac.uk *.dcs.qmw.ac.uk

* .purdue.edu

ns1.nic.uk
(uk)

ac.uk

...

co.uk

yahoo.com

authoritative path to lookup:

jeans-pc.dcs.qmw.ac.uk

OPT

1.47 TS Distributed Systems

DNS in typical operation

a.root-servers.net

(root)

ns0.ja.net
(ac.uk)

dns0.dcs.qmw.ac.uk
(dcs.qmw.ac.uk)

alpha.qmw.ac.uk
(qmw.ac.uk)

dns0-doc.ic.ac.uk
(ic.ac.uk)

ns.purdue.edu
(purdue.edu)

uk
purdue.edu

ic.ac.uk

qmw.ac.uk

...

dcs.qmw.ac.uk

*.qmw.ac.uk
*.ic.ac.uk *.dcs.qmw.ac.uk

* .purdue.edu

ns1.nic.uk
(uk)

ac.uk

...

co.uk

yahoo.com

client.ic.ac.uk

IP: alpha.qmw.ac.uk

2

3
IP:dns0.dcs.qmw.ac.uk

jeans-pc.dcs.qmw.ac.uk ?

IP:ns0.ja.net

1

IP:jeans-pc.dcs.qmw.ac.uk

4

OPT

1.48 TS Distributed Systems

DNS issues

 Name tables change infrequently, but when

they do, caching can result in the delivery of

stale data.

 Clients are responsible for detecting this and

recovering

 Its design makes changes to the structure of

the name space difficult. For example:

 merging previously separate domain trees under a

new root

 moving sub-trees to a different part of the

structure

OPT

1.49 TS Distributed Systems

Example: Decentralized DNS

Basic idea: Take a full DNS name, hash into a

key k, and use a DHT-based system to allow

for key lookups.

 + scalability

 - we loose the structure of the original DNS

name so we may not efficiently find all nodes

in a subdomain (but very few people were

doing this anyway).

OPT

1.50 TS Distributed Systems

ATTRIBUTE-BASED NAMING
ALSO KNOWN AS DIRECTORY SERVICES

In many cases, it is much more convenient to name, and look up

entities by means of their attributes (e.g., look for a student who got A in OS)

1.51 TS Distributed Systems

Directory Services

 Entities have a set of attributes (e.g., email: send, recv, subject, ...)

 In most cases, attributes are determined manually

 Setting values consistently is a crucial problem ...

 Often organized in a hierarchy

 Examples of directory services: X.500, Microsoft’s

Active Directory Services,

 Then, look up entities by means of their attributes

 Problem: Lookup operations can be extremely

expensive, as they require to match requested

attribute values, against actual attribute values

 In the simplest form, inspect all entities.

1.52 TS Distributed Systems

Directory Services (cont’d)

Solutions:

 Lightweight Directory Access Protocol (LDAP):

 Implement basic directory service as database, and

Combine it with traditional structured naming system.

 Derived from OSI’s X.500 directory service, which maps

a person’s name to attributes (email address, etc.)

 DHT-based decentralized implementation

1.53 TS Distributed Systems

Hierarchical implementation: LDAP (1)

 LDAP directory service consists of a set of records

 Each directory entry (record) is made up of a set of

(Attribute, Value(s)) pairs

 Collection of all directory

entries is called Directory

Information Base (DIB)

 Each record is uniquely named by using naming

attributes in the record (e.g., first five in the above record)

 Each naming attribute is called relative

distinguished name (RDN)

1.54 TS Distributed Systems

Hierarchical implementation: LDAP (2)

 We can create a directory information tree (DIT) by

listing RDNs in sequence

answer =

search("&(C = NL) (O = Vrije Universiteit)

(OU = *) (CN = Main server)")

1.55 TS Distributed Systems

Hierarchical implementation: LDAP (3)

 Clients called Directory User Agent

(DUA), similar to name resolver and

contacts the server

 LDAP server known as Directory

Service Agent (DSA) maintains DIT

and looks up entries based on attr.

 In case of a large scale directory,

DIT is partitioned and distribute

across several DSAs

 Implementation of LDAP is similar

to DNS, but LDAP provides more

advanced lookup operations

LDAP

Client

LDAP

Server

X.500

Directory

Server

Client

request

in LDAP

Request

in X.500

Response

 in X.500

Server

response

in LDAP

1.56 TS Distributed Systems
56

Hierarchical implementation: LDAP (4)

 Simple DUA interface to X.500 (see extra slides)

 LDAP runs over TCP/IP

 Uses textual encoding

 Provides secure access through authentication

 Other directory services have implemented it

 See RFC 2251 [Wahl et al. 1997]

1.57 TS Distributed Systems

LDAP Evolution

 University of Michigan added to LDAP servers the

capability of accessing own database.

 Use of LDAP databases became widespread

 Schemes were developed for registering changes and

exchanging deltas between LDAP servers

 In 1996 three engineers from U of Michigan joined

Netscape. 40 companies (w/o Microsoft) announced

support of LDAP as the standard for directory services

 Core specifications for LDAPv3 was published as IETF

RFCs 2251-2256.

OPT

1.58 TS Distributed Systems

DHT-based Decentralized Implementation

 How to map (Attribute, value(s)) pairs to nodes

so that searching can be done efficiently

 Self-study

OPT

1.59 TS Distributed Systems

EXTRAS

1.60 TS Distributed Systems

Terms in X.500 directory service

 Standardized by ITU and ISO

 Specified as an application-level in OSI

 Data is organized in tree (DIT = directory information tree) with

named nodes (DIB=directory information base)

 A DIB entry has a name and a set of attributes.

 The full name is the fully-qualified path

 A client (DUA = directory user agent) can query any server

(DSA = directory service agent)

 Server will respond, query other services, or send back

server response

1.61 TS Distributed Systems

Part of the X.500 Directory Information Tree

... France (country) U.S.A (country) Greece (country) ...

BT Plc (organization) University of Texas at San Antonio (organization)

Department of Computer Science (organizationalUnit)

Computing Service (organizationalUnit)

Engineering Department (organizationalUnit)

...

...

X.500 Service (root)

Faculty (organizationalUnit)

Ph.D Students (organizationalUnit)

ely (applicationProcess)

...

...

Carola Wenk (person) Ali Tosun (person) Kay Robbins (person) Dakai zhu (person) ...

1.62 TS Distributed Systems

An X.500 DIB Entry

info

Dakai Zhu, Faculty, Department of Computer Science,
University of Texas at San Antonio

commonName

 Dakai Zhu
 D. Zhu

surname

 Zhu

telephoneNumber

 +1 210 458 7453

uid

 dzhu

email

 dzhu@cs.utsa.edu

zhudakai@gmail.edu

roomNumber

 SB 4.01.18

userClass

 Assistant Professor

1.63 TS Distributed Systems

X.500 data Structures

 Attributes are typed (e.g. countryName,

commonName)

 DIB entries are organized like OO classes.

 DIB entries have a class-name.

 The definition of a class determines which

attributes are mandatory and which are

optional.

 Mandatory and optional attributes are

inherited.

1.64 TS Distributed Systems

X.500 Operations

 Read – locates attributes associated with

given name

 Search – finds records based on attributes

and filters

 DSA also has operations for adding, deleting

and modifying entries

1.65 TS Distributed Systems

X.500 service architecture

DSA

DSA

DSA

DSA

DSA DSA DUA

DUA

DUA

1.66 TS Distributed Systems

X.500 Directory Service

 Directory Administrative Model – how global

DIT is managed and split into domains

 Directory Server Protocol (DSP) – used to

chain user requests between directory

servers

 Directory Information Shading Protocol

(DISP) – protocol for directory replication

 DOP protocol to automate connection

agreements between servers between and

across management domains

1.67 TS Distributed Systems

 Specification was first released in 1988 with a

significant update in 1993

 Heavyweight system:

 Full OSI protocol stack that wasn’t supported by

MACs or PCs in the early 90’s when X.500 was

being deployed

 The DUAs (directory user agents) also could not

be run on PCs or MACs in the early 90’s

 University of Michigan responded with the

development of a DUA that understood a

lightweight access protocol called LDAP

X.500 History and Deployment

