
1.1 TS Distributed Systems 

Chapter 5: NAMING 

Thanks to the authors of the textbook [TS] for providing the base slides. I made several changes/additions.  
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.  

So I would like to thank him, too.  
Turgay Korkmaz 

korkmaz@cs.utsa.edu 

How to refer to an entity in Distributed Systems? 
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Objectives 

 To understand naming and related issues in DS 

 To learn naming space and implementation 

 To learn flat and structured names and how 

they are resolved 

 To learn Attributed-based naming 
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What a Name is in DS? 

 A name is a string of bits or characters that is used 

to refer to an entity (an entity could be anything  such as host, 

printer, file, process, mailbox, user etc.)  

 To operate on an entity, we need to access it, for 

which we need an access point. 

 Access point is a special kind of entity and its name 

is called an address (address of the entity, e.g., IP, port #, phone #) 

 An entity may have more than one access point/address 

 An entity may change its access points/addresses  

 So using an address as a reference is inflexible and 

human unfriendly  

 A better approach is to use a name that is location 

independent, much easier, and flexible to use 
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Identifier 

 A special name to uniquely identify an entity (SSN, MAC) 

 A true identifier has the following three properties: 

 P1: Each identifier refers to at most one entity 

 P2: Each entity is referred to by at most one identifier 

 P3: An identifier always refers to same entity (no reuse) 

  Addresses  Entities   Identifiers 

I1 
 

I2 
 

I3 

E1 
 

E2 
 

E3 

A1 
 

A2 
 

A3 
 

A4 
 

Addresses and identifiers are important and used for different purposes, but  

they are often represented in machine readable format (MAC, memory address) 
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Human-friendly names 

 File names, www.cs.utsa.edu, variable names etc. 

are human-friendly names given to each entity 

 Question: how to map/resolve these names to 

addresses so that we can access the entities on 

which we want to operate? 

 Solution: have a naming system that maintains 

name-to-address binding! 

 The simplest form is to have a centralized table! 

 Why or why not this will work? 

 We will study three different naming systems and 

how they maintain such a table in a distributed 

manner! 

http://www.cs.utsa.edu/
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Naming Systems and Their Goals 

 Naming Systems  

 Flat names 

 Structured names 

 Attributed-based names 

 Goals 

 Scalable to arbitrary size 

 Have a long lifetime 

 Be highly available 

 Have fault isolation 

 Tolerate mistrust 
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FLAT NAMES 



1.9 TS Distributed Systems 

Flat Naming 

 Flat name: random bits of string, no structure 

 E.g., SSN, MAC address 

 Resolution problem:  

 Given a flat (unstructured) name, how can we 

find/locate its associated access point and its 

address? 

 Solutions: 

 Simple solutions (broadcasting) 

 Home-based approaches 

 Distributed Hash Tables (structured P2P) 

 Hierarchical location service 
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Simple Solution: Broadcasting  

 Simply broadcast the target ID to every entity 

 Each entity compares the requested ID with its 

own ID 

 The target entity returns its current address 

 Example:  

 Recall ARP in LAN 

 Adv/Disadvantages 

 + simple 

 - not scale beyond LANs  

 - it requires all entities to listen to all incoming requests 
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Forwarding Pointers 
How to locate mobile entities? 

 When an entity moves from A to 

B, leaves a pointer to A that it is 

at B now…  

 Dereferencing: simply follow the 

chain of pointers and make this 

entirely transparent to clients 

 Adv/Disadvantages 

 + support for mobile nodes 

 - geographical scalability problems 

 - long chains are not fault tolerant 

 - increased network latency 

 Short-cuts can be introduced  
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Home-Based Approaches 
How to deal with scalability problem when locating mobile entities? 

 Let a home keep track of where the entity is! 

 

 

 

 

 

 How will the clients continue to communicate?  

 Home agent gives the new location to the client so it 
can directly communicate 

efficient but not transparent 

 Home agent forwards the messages to new location 

Transparent but may not be efficient 

 

A (home) B (foreign) 
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Problems with home-based approaches 

 The home address has to be supported as long 

as the entity lives. 

 The home address is fixed, which means an 

unnecessary burden when the entity 

permanently moves to another location 

 How can we solve the “permanent move” problem? 

 Poor geographical scalability (the entity may be 

next to the client) 
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Distributed Hash Tables 
How to use DHT to resolve flat ID 

 Recall Chord from Chapter 2, which organizes 

many nodes into a logical ring 
 Each node is assigned a random m-bit identifier. 

 Every entity is assigned a unique m-bit key. 

 Entity with key k falls under jurisdiction of node with smallest id >= k 

(called its successor) 

 Linearly resolve a key k to the address of succ(k) 
 Each node p keeps two neighbors:  

  succ(p+1) and pred(p) 

 If k > p  then  

   forward to succ(p+1) 

 if k <= pred(p) then  

   forward k to pred(p) 

 If pred(p) < k <= p then 

   return p’s address (p holds the entity) 
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 Each node p maintains a finger table 

 at most m entries (short cuts) with                  

exponentially increasing size 

  FTp[i] = succ(p + 2 i−1) 

 FTp[i] points to the first node succeeding p by at 

least 2i−1 

 To look up a key k, node p forwards the request to 

node with index j satisfying (e.g., node 0 gets a req for k=6) 

 q = FTp[j]  k < FTp[j +1]   (e.g., node 0 sends req  4  6 ) 

 If p < k < FTp[1], the request is also forwarded to FTp[1] 

 Need at most O(log N) steps, where N is the 

number of nodes in the systems 

DHT: Finger Table 
How to improve efficiency? Suppose 

All are 
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DHT: Example 

Node 1 wants to find k=26 

Node 28 wants to find k=12 
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DHT: Finger Table (cont’d) 

 How to handle 

 Join 

 Leave  

 Fail  

 The complexity comes from keeping the finger 

tables up to date 

 By-and-large Chord tries to keep them consistent 

 But a simple mechanism may lead to performance 

problems 

 To fix this we need to exploit network proximity when 

assigning node ID 
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Exploiting network proximity 

 Problem: The logical organization of nodes in the 

overlay may lead to erratic message transfers in 

the underlying Internet: node k and node succ(k +1) 

may be very far apart. 

 Topology-aware node assignment:  
 When assigning an ID to a node, make sure that nodes close in the ID space 

are also close in the network. Can be very difficult. 

 Proximity routing:  
 Maintain more than one possible successor, and forward to the closest. 

 Example: in Chord FTp[i] points to first node in INT = [p+2i−1,p+2i −1]. Node p 

can also store pointers to other nodes in INT . 

 Proximity neighbor selection:  
 When there is a choice of selecting who your neighbor will be (not in Chord), 

pick the closest one. 
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Hierarchical Location Services (HLS) 
to resolve flat names 

 Build a large-scale search tree for which the 

underlying network is divided into hierarchical 

domains. Each domain is represented by a 

separate directory node. 
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STRUCTURED NAMING 

www.cs.utsa.edu 

dir1/dir2/file.txt 

 

http://www.cs.utsa.edu/
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Name Space  
Collection of valid names 

 A directed graph with two types of nodes 

 Leaf node represents a (named) entity, has no outgoing link, and 

stores information about the entity (e.g., address) 

 A directory node is an entity that refers to other nodes: contains a 

(directory) table of (edge label, node identifier) pairs 

root 
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Name Space  (cont.) 

 Each node in the graph is actually considered 

to be another entity and we can easily store 

all kinds of attributes in a node, describing 

aspects of the entity the node represents: 

 Type of the entity 

 An identifier for that entity  

 Address of the entity’s location  

 Nicknames 

 … …  
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Name Resolution 
looking up a name 

N: <label-1, label-2, …, label-n> 
 Start at directory node N 

  find label-1 in directory table of N 

  get the identifier 

  continue resolving at that node until reaching label-n 

 Problem: where to start? How do we actually find 

that (initial) node? 

 Closure mechanism:  knowing how and where to 

start name resolution. It is always implicit. Why?  

 Inode in unix is the first block in logical disk 

 www.cs.vu.nl: start at a DNS name server 

 /home/steen/mbox: start at the local NFS file server 

(possible recursive search) 
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Name Resolution: Aliases and linking 

 Alias is another name for the same entity. 

 There are 2 ways of aliasing in naming graphs 

 Hard Links: What we have described so far as a path 

name: a name that is resolved by following a specific path 

in a naming graph from one node to another (i.e., there are 

more than one absolute paths to a certain node)  

 Soft Links: We can represent an entity by a leaf node that 

stores an absolute path name of another node. (like 

symbolic links in UNIX file system) 

 Node O contains a name of another node: 

 First resolve O’s name (leading to O) 

 Read the content of O, yielding name 

 Name resolution continues with name  
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Name Resolution: linking and mounting 

 Different name spaces can be merged in a transparent way 

using mounted file system, which corresponds to letting a 

directory node store the identifier of a directory node from a 

different namespace.  

 Mounting a foreign 

name space requires 

at least the following:  

 1. The name of an 

access protocol.  

 2. The name of the 

server.  

 3. The name of the 

mounting point in the 

foreign namespace.  
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NAME SPACE 

IMPLEMENTATION 

Distributed vs. centralized  
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 Basic issue: Distribute the name resolution process 

as well as name space management across multiple 

machines, by distributing nodes of the naming graph 

 Large name spaces are organized in a hierarchical 

way. There are three logical layers 
 Global level: Consists of the high-level directory nodes 

representing different organizations or groups 
Stable (directory tables don’t change often) 

Have to be jointly managed by different administrations 

 Administrational level: Contains mid-level directory nodes 
managed within a single organization  
Relatively stable 

 Managerial level: Consists of low-level directory nodes 
within a single administration.  
Nodes may change often, requiring effective mapping of names 

Managed by admins or users  

 

Name Space Distribution 
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Name Space Distribution (cont.) 
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Name Space Distribution (cont.) 

 Servers in each layer have different 

requirements regarding availability 

and performance 

Availability Performance 

Global 

 

Must be very high 

Replication may 

help 

Can be cached (stability) 

Replication may help 

Administrat

ive 

 

Must be very high 

particularly for the 

clients in the same 

organization 

 

Looks up should be fast 

Use high-end machines 

Managerial 

 

Less demanding 

One dedicated 

server might be 

enough 

Performance is crucial 

Operations should take 

place immediately 

Caching would not be eff.  
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Implementation of Name Resolution 

 Iterative       vs.   Recursive 

-Caching is restricted to client 
-Communication cost, Delay  
+ less overhead on root 

+Caching can be more effective 
+Communication cost might be reduced 
- Too much overhead on root  
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Cache in Recursive Naming Resolution 

 Recursive name resolution of <nl, vu, cs, ftp>.  

 Name servers cache intermediate results for 

subsequent lookups 
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Scalability Issues 

 Size scalability: We need to ensure that servers can 
handle a large number of requests per time unit  high-
level servers are in big trouble. 

 Solution: Assume (at least at global and administrational level) 
that content of nodes hardly ever changes. In that case, we can 
apply extensive replication by mapping nodes to multiple 
servers, and start name resolution at the nearest server. 

 Geographical scalability: We need to ensure that the 
name resolution process scales across large 
geographical distances. 
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CASE STUDY: DOMAIN NAME 

SYSTEM (DNS) 

How to map  

 Names (www.cs.utsa.edu)  to IP addresses (129.115.28.4) 

 

OPT 

http://www.cs.utsa.edu/
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Case Study: Domain Name System (DNS) 

 One of the largest distributed naming database/service 

 The DNS name space is hierarchically organized as a 

rooted tree. Name structure reflects administrative 

structure of the Internet 

 Rapidly resolves domain names  

 to IP addresses 

 exploits caching heavily 

 typical query time ~100 milliseconds 

 Scales to millions of computers 

 partitioned database 

 caching 

 Resilient to failure of a server 

 replication 

OPT 
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Domain names (last element of name) 

  com - commercial organizations 

  edu - universities and educational institutions 

  gov - US government agencies 

  mil - US military organizations 

  net - major network support centers 

  org - organizations not included in first five 

  int - international organization 

  country codes - (e.g., cn, us, uk, fr, etc.) 

OPT 
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Name spaces in DNS 

 Hierarchical structure - one or more components 

or labels separated by periods (.) 

 Only absolute names - referred relative to global 

root 

 Clients usually have a list of default domains that 

are appended to single-component domain 

names before trying global root 

 Allows aliases such as www.utsa.edu  

web.cs.utsa.edu  

OPT 

http://www.utsa.edu/
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Zone partitioning of DNS name space 

 Zone - contains attribute data for names in 

domain minus the sub-domains administrated by 

lower-level authorities: 

 Example: UTSA has a name server for utsa.edu, but 

cs.utsa.edu names are resolved by the CS Dept. server 

 Names of the servers for the sub-domains 

 At least two name servers that provide 

authoritative data for the zone 

 Zone management parameters: cache, replication 

OPT 
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Authoritative name servers 

 A server may be an authoritative source for zero or 

more zones 

 Data for a zone is entered into a local master file 

 Master (primary) server reads the zone data directly 

from the master file 

 Secondary authoritative servers download zone 

data from primary server 

 Secondary servers periodically check their version 

number against the master server 

OPT 
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DNS server functions and configuration 

 Main function is to resolve domain names for 

computers, i.e. to get their IP addresses 

 caches the results of previous searches until they pass 

their 'time to live' 

 Other functions: 

 get mail host for a domain  

 reverse resolution - get domain name from IP address 

 Host information - type of hardware and OS 

 Well-known services - a list of services offered by a host 

 Other attributes can be included (optional) 

OPT 
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DNS resource records 

Record type Meaning Main contents 

A A computer address IP number 

NS An authoritative name server Domain name for server 

CNAME The canonical name for an alias Domain name for alias 

SOA Marks the start of data for a zone     Parameters governing the zone 

WKS A well-known service description List of service names and protocols 

PTR Domain name pointer (reverse 

lookups) 

Domain name 

HINFO Host information Machine architecture and operating 

system 

MX Mail exchange List of < preference, host > pairs 

TXT Text string Arbitrary text 

OPT 
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DNS resource records: Example 

An excerpt from the DNS database for the zone cs.vu.nl. 

OPT 
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Caching in DNS 

 Any server  can cache any name 

 Non-authoritative servers note time-to-live 

when they cache data 

 Non-authoritative servers indicate that they 

are such when responding to clients with 

cached names 

 

OPT 
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DNS clients (resolvers) 

 Resolvers are usually implemented as library 

routines (e.g., gethostbyname). 

 The request is formatted into a DNS record. 

 DNS servers use a well-known port. 

 A request-reply protocol is used  

 TCP or UDP why? 

 The resolver times out and resends if it doesn’t 

receive a response in a specified time. 

OPT 
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DNS name resolution 

 Domain name  IP address ??? 

 

 Look for the name in the local cache 

 

 Try a superior DNS server, which responds with: 

 the IP address (which may not be entirely up to date) 

 Or, another recommended DNS server (iterative) 

OPT 
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DNS name servers 

Note: Name server names are in 

italics, and the corresponding 

domains are in parentheses. 

Arrows denote name server 

entries   

a.root-servers.net 

(root) 

ns0.ja.net 
(ac.uk) 

dns0.dcs.qmw.ac.uk 
(dcs.qmw.ac.uk) 

alpha.qmw.ac.uk 
(qmw.ac.uk) 

dns0-doc.ic.ac.uk 
(ic.ac.uk) 

ns.purdue.edu 
(purdue.edu) 

uk 
purdue.edu 

ic.ac.uk 

qmw.ac.uk 

... 

dcs.qmw.ac.uk 

*.qmw.ac.uk 
*.ic.ac.uk *.dcs.qmw.ac.uk 

* .purdue.edu 

ns1.nic.uk 
(uk) 

ac.uk 

... 

co.uk 

yahoo.com 

 .... 

authoritative path to lookup: 

jeans-pc.dcs.qmw.ac.uk 

OPT 



1.47 TS Distributed Systems 

DNS in typical operation 

 

 

a.root-servers.net 

(root) 

ns0.ja.net 
(ac.uk) 

dns0.dcs.qmw.ac.uk 
(dcs.qmw.ac.uk) 

alpha.qmw.ac.uk 
(qmw.ac.uk) 

dns0-doc.ic.ac.uk 
(ic.ac.uk) 

ns.purdue.edu 
(purdue.edu) 

uk 
purdue.edu 

ic.ac.uk 

qmw.ac.uk 

... 

dcs.qmw.ac.uk 

*.qmw.ac.uk 
*.ic.ac.uk *.dcs.qmw.ac.uk 

* .purdue.edu 

ns1.nic.uk 
(uk) 

ac.uk 

... 

co.uk 

yahoo.com 

 .... 

client.ic.ac.uk 

IP: alpha.qmw.ac.uk 

2 

3 
IP:dns0.dcs.qmw.ac.uk 

jeans-pc.dcs.qmw.ac.uk ? 

IP:ns0.ja.net 

1 

IP:jeans-pc.dcs.qmw.ac.uk  

4 

OPT 
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DNS issues 

 Name tables change infrequently, but when 

they do, caching can result in the delivery of 

stale data. 

 Clients are responsible for detecting this and 

recovering 

 Its design makes changes to the structure of 

the name space difficult. For example: 

 merging previously separate domain trees under a 

new root 

 moving sub-trees to a different part of the 

structure  

OPT 
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Example: Decentralized DNS 

Basic idea: Take a full DNS name, hash into a 

key k, and use a DHT-based system to allow 

for key lookups.  

 + scalability 

 - we loose the structure of the original DNS 

name so we may not efficiently find all nodes 

in a subdomain (but very few people were 

doing this anyway). 

OPT 
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ATTRIBUTE-BASED NAMING 
ALSO KNOWN AS DIRECTORY SERVICES   

 

In many cases, it is much more convenient to name, and look up 

entities by means of their attributes (e.g., look for a student who got A in OS) 
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Directory Services 

 Entities have a set of attributes (e.g., email: send, recv, subject, ...) 

 In most cases, attributes are determined manually 

 Setting values consistently is a crucial problem ... 

 Often organized in a hierarchy 

 Examples of directory services: X.500, Microsoft’s 

Active Directory Services, 

 Then, look up entities by means of their attributes 

 Problem: Lookup operations can be extremely 

expensive, as they require to match requested 

attribute values, against actual attribute values  

 In the simplest form, inspect all entities. 
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Directory Services (cont’d) 

Solutions:  

 Lightweight Directory Access Protocol (LDAP):  

 Implement basic directory service as database, and 

Combine it with traditional structured naming system. 

 Derived from OSI’s X.500 directory service, which maps 

a person’s name to attributes (email address, etc.) 

 DHT-based decentralized implementation  
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Hierarchical implementation: LDAP (1) 

 LDAP directory service consists of a set of records  

 Each directory entry (record) is made up of a set of 

(Attribute, Value(s)) pairs  

 

 

 

 Collection of all directory 

entries is called Directory 

Information Base (DIB) 

 Each record is uniquely named by using naming 

attributes in the record (e.g., first five in the above record) 

 Each naming attribute is called relative 

distinguished name (RDN) 
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Hierarchical implementation: LDAP (2) 

 We can create a directory information tree (DIT) by 

listing RDNs in sequence 

answer = 

search("&(C = NL) (O = Vrije Universiteit) 

(OU = *) (CN = Main server)") 
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Hierarchical implementation: LDAP (3) 

 Clients called Directory User Agent 

(DUA), similar to name resolver and 

contacts the server 

 LDAP server known as Directory 

Service Agent (DSA) maintains DIT 

and looks up entries based on attr. 

 In case of a large scale directory, 

DIT is partitioned and distribute 

across several DSAs 

 Implementation of LDAP is similar 

to DNS, but LDAP provides more 

advanced lookup operations  

 

LDAP 

Client 

LDAP 

Server 

X.500 

Directory 

Server 

Client  

request  

in  LDAP 

Request  

in  X.500 

Response 

 in  X.500 

Server  

response  

in  LDAP 
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Hierarchical implementation: LDAP (4) 

 Simple DUA interface to X.500 (see extra slides) 

 LDAP runs over TCP/IP 

 Uses textual encoding 

 Provides secure access through authentication 

 Other directory services have implemented it 

 See RFC 2251 [Wahl et al. 1997] 
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LDAP Evolution 

 University of Michigan added to LDAP servers the 

capability of accessing own database. 

 Use of LDAP databases became widespread 

 Schemes were developed for registering changes and 

exchanging deltas between LDAP servers 

 In 1996 three engineers from U of Michigan joined 

Netscape. 40 companies (w/o Microsoft) announced 

support of LDAP as the standard for directory services 

 Core specifications for LDAPv3 was published as IETF 

RFCs 2251-2256. 

OPT 
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DHT-based Decentralized Implementation 

 How to map (Attribute, value(s)) pairs to nodes 

so that searching can be done efficiently  

 Self-study 

OPT 
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EXTRAS 
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Terms in X.500 directory service 

 Standardized by ITU and ISO 

 Specified as an application-level in OSI 

 Data is organized in tree (DIT = directory information tree) with 

named nodes (DIB=directory information base) 

 A DIB entry has a name and a set of attributes. 

 The full name is the fully-qualified path 

 A client (DUA = directory user agent) can query any server 

(DSA = directory service agent) 

 Server will respond, query other services, or send back 

server response 
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Part of the X.500 Directory Information Tree 

... France (country) U.S.A (country) Greece (country) ... 

BT Plc (organization) University of Texas at San Antonio (organization) ... ... 

Department of Computer Science (organizationalUnit) 

Computing Service (organizationalUnit) 

Engineering Department (organizationalUnit) 

... 

... 

X.500 Service (root) 

Faculty (organizationalUnit) 

Ph.D Students (organizationalUnit) 

ely (applicationProcess) 

... 

... 

Carola Wenk (person) Ali Tosun  (person) Kay Robbins (person) ... ...      Dakai zhu (person) ... 
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An X.500 DIB Entry 

info 

Dakai Zhu, Faculty, Department of Computer Science,  
University of Texas at San Antonio 

commonName 

    Dakai Zhu    
    D. Zhu    

   

surname 
       

    Zhu 

telephoneNumber 

    +1 210 458 7453 

uid 

     dzhu    

email    

     dzhu@cs.utsa.edu 

zhudakai@gmail.edu 

roomNumber        

     SB 4.01.18 

userClass 

     Assistant Professor 
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X.500 data Structures 

 Attributes are typed (e.g. countryName, 

commonName) 

 DIB entries are organized like OO classes. 

 DIB entries have a class-name. 

 The definition of a class determines which 

attributes are mandatory and which are 

optional. 

 Mandatory and optional attributes are 

inherited. 
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X.500 Operations 

 Read – locates attributes associated with 

given name 

 Search – finds records based on attributes 

and filters 

 DSA also has operations for adding, deleting 

and modifying entries 
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X.500 service architecture 

DSA 

DSA 

DSA 

DSA 

DSA DSA DUA 

DUA 

DUA 
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X.500 Directory Service 

 Directory Administrative Model – how global 

DIT is managed and split into domains 

 Directory Server Protocol (DSP) – used to 

chain user requests between directory 

servers 

 Directory Information Shading Protocol 

(DISP) – protocol for directory replication 

 DOP protocol to automate connection 

agreements between servers between and 

across management domains 
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 Specification was first released in 1988 with a 

significant update in 1993 

 Heavyweight system: 

 Full OSI protocol stack that wasn’t supported by 

MACs or PCs in the early 90’s when X.500 was 

being deployed 

 The DUAs (directory user agents) also could not 

be run on PCs or MACs in the early 90’s 

 University of Michigan responded with the 

development of a DUA that understood a 

lightweight access protocol called LDAP 

X.500 History and Deployment 


