
1.1 TS Distributed Systems 

Chapter 6: SYNCHRONIZATION 

Thanks to the authors of the textbook [TS] for providing the base slides. I made several changes/additions.  
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.  

So I would like to thank him, too.  
Turgay Korkmaz 

korkmaz@cs.utsa.edu 

How to agree on the order of events when there is no global clock? 
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Chapter 6: SYNCHRONIZATION 

 CLOCK SYNCHRONIZATION  
 Physical Clocks  

 Global Positioning System  

 Clock Synchronization Algorithms  

 LOGICAL CLOCKS  
 Lamport’s Logical Clocks  

 Vector Clocks  

 MUTUAL EXCLUSION  
 A Centralized Algorithm  

 Decentralized Algorithm  

 A Distributed Algorithm  

 A Token Ring Algorithm  

 GLOBAL POSITIONING OF NODES  

 ELECTION ALGORITHMS  
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Objectives 

 To understand synchronization and related 

issues in DS 

 To learn about clocks and how to sync them 

 

 

 

 



1.4 TS Distributed Systems 

Introduction 

 Synchronization is much harder in DS than single 

systems because there is no global clock in DS 

 What are the implications of not having a global clock? 

 An event that occurred after another event may nevertheless 

be assigned an earlier time. 

 

 

 

 Many applications (finance, security, collaborative sensing) 

depend on accurate time… 

 So, clocks must be synchronized.   
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Physical Clocks 

 Clock vs. Timer  

 A quartz crystal oscillates at a well-defined frequency 

 Associate two registers counter and holding register 

 Set holding register to a value x 

1. Counter  holding register 

2. For each oscillation counter--; 

3. When counter reaches 0,  interrupt (clock tick) to update software clock 

4. Go to 1. 

 Different quartz crystals may oscillate at different rates. 

 So, this may cause two clocks to differ from each other 

(called clock skew) 

 How to sync N clocks with a global clock or with each other? 
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Global  Clock 
How time in real world is actually measured? 

 Astronomical time is 

based on the 

computation of the 

mean solar day 

 Earth’s rotation is 

variable 

 Atomic clock 

 The interval that it takes the cesium 133 atom to make 

exactly 9,192,631,770 transitions. 

 International Atomic Time (TAI) is based on 
very accurate physical clocks (drift rate 10-13) 

 3msec less than mean solar day... leap seconds 
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Universal Coordinated Time (UTC) 

 Based on the number of transitions per second of 

the cesium 133 atom (pretty accurate). 

 At present, the real time is taken as the average 

of some 50 cesium-clocks around the world. 

 Introduces a leap second from time to time to 

compensate that days are getting longer. 

 How can we provide UTC time to people? 

 NIST broadcast a pulse at the start of each second with 

accuracy of 10ms. Satellites can give an accuracy of 

about ±0.5 ms. 

 That is how your atomic clock works! 
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How to sync N clocks with a global clock? 

Let each computer have a UTC receiver. 

 10ms might be too much for some applications 

(e.g., GPS) 

 It might be costly (e.g., in case of sensor nodes) 

 Indoor equipments may not get the  UTC signals 

 

We may have some nodes with a UTC receiver, 

then can we sync others with those nodes? 

What if none have UTC receiver, can we sync them 

with each other? 
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Clock Synchronization Algorithms 
 system model 

 All algorithms have the same system model: 

 Each machine has a timer causing H interrupts/sec.  

 The interrupt handler adds 1 to software clock C  

 C keeps track of the number of ticks since some 

agreed-upon time in the past 

 Let Cp(t) be the clock at p when the UTC time is t,  

 In a perfect world, Cp(t) = t  (i.e., C’p(t)=dC/dt=1) 

 The skew of a clock is C’p(t) – 1 

 The offset relative to a specific time is Cp(t) – t 

C
p
(t

) 

t  
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Clock Synchronization Algorithms 
 system model 

 So if there exists a constant   

such that 

   1-    dC/dt  1+   

 then, timer is working within its 

specifications 

  (maximum drift rate) is given 

by the manufacturer  

 Real timers do not tick exactly H times per second. 
For example, H=60 should generate 216,000 thick per hour 

but it may range 215,998 to 216,002 per hour 

 How often two clocks should be synchronized? 
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Clock Synchronization Algorithms 

-----------------x-------------------------|--------------> 

            both  

               sync             t        how much apart? 

 If two clocks are drifting from UTC in the opposite 

directions, they would be apart as much as 2 t 

 So if we want to guarantee that no two clocks 

ever differ by more than  (i.e., 2 t < ) 

 then we should sync them t < /2 seconds  

 Various algorithms differ in precisely how to do 

this re-sync! 
 NTP (Network Time Protocol) 

 The Berkeley algorithm 

 Clock sync in wireless networks 
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NTP: basic idea 
At least one machine has a UTC receiver 

Suppose we have a server 

with UTC receiver.  

The server has an 

accurate clock 

So clients can simply  

contact it and get the         

accurate time                     

(every /2 sec)  

A gets T1, T2, T3, T4.  

How should A adjust its clock? 

 The problem is the delay which causes inaccuracy 
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NTP: basic idea 
Suppose propagation delay is the same in both ways? 

 If A’s clock is slow 

T2 -  - T1  T4 - (T3 - )  

 = ((T2-T1) + (T3-T4))/2 

Add  to A’s clock 

 

 If A’s clock is fast 

T2 +  - T1  T4 - (T3 + )  

 = ((T4-T3) + (T1-T2))/2 

Subtract   from A’s clock 

 But, time cannot run 

backward 

 Introduce the difference 

gradually (e.g., instead of 10ms 

add 9ms for each interrupt for 1 sec) 
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NTP 
 At least one machine has a UTC receiver 

Use this basic idea in a pairwise manner to 

distribute time information over the Internet.  

Objectives 

 Enable clients on Internet to be synchronized to 

UCT  

Reliable service through redundant 

servers/paths 

 Provide protection against interference with the 

time service, whether malicious or accidental 

Need: accurate measure of round trip delay, 

interrupt handling & processing messages 
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NTP (cont.) 

 Provided by a network of servers located across the 

Internet 

 Primary servers are connected to UCT sources 

 Secondary servers are synchronized to primary servers 

 Synchronization subnet - lowest level servers in users’ 

computers 

1 

2 

3 

2 

3 3 
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Berkeley Algorithm 
No machine has UTC receiver 

 Operator manually sets the time at the time 
server (daemon) 

 Time server is active and does the followings: 

 periodically poll all machines 

 compute the average and  

 tell other machines to adjust their times  

gradually slow down or advance the clock 
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Berkeley Algorithm 
No machine has UTC receiver 

 Time does not need to be the actual time… 

 As long as all machines agree, then that is OK for many applications 

 Gradually advance or slow down the clock… 
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Clock Sync in Wireless networks 

 No time server 

 Nodes may not contact 

each other 

 Resource constrained 

 Multi-hop routing is 

expensive and has variable 

delay 

 New algorithms are needed 

 Simply taking average may 

not work 

 New methods using linear 

regression is used 
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LOGICAL CLOCKS 

Knowing exact time 

 Knowing an agreed  time 

  One step further: agree on the ordering of events 
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Time in Distributed Systems 

 Example: update replicated databases ($1000) 

 

 

 

 

 
 

 Different orders: lead to inconsistency 

 We must execute these updates in the same order. 

 If we can, then there may be no need for a global 

clock in a distributed system 

Add 
$100 

Add 1% 
interest 

Result 
$1111 

Result 
$1110 
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How to order events?  

 The order of two events occurring at two different 

computers cannot be determined based on their 

“local” time unless they are sync with a global clock. 

 Let us first introduce a notion of ordering, namely 

happens-before relation () to capture the causal 

dependencies between  events 

 If A and B are events in the same process and A occurred 

before B, then A  B 

 If A is the sending of a message and B is the receipt of that 

message in a different process, then  A  B 

 If AB, and B  C, then A  C  (transitive). 

 This introduces a partial ordering of events in a 

system with concurrently operating processes. 
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How to order events? 

 Problem: We need a way of measuring time  to 

assign a time value C(a) to every event a such that  

  if a  b then C(a) < C(b) 

 Solution: attach a timestamp C(e) to each event e, 
satisfying the following properties: 

 P1: If a and b are two events in the same process, and 
a→b, then we demand that C(a) < C(b). 

 P2: For different processes, if event a corresponds to 
sending a message m, and b to the receipt of that 
message, then also C(a) < C(b). 

 Another problem: How to attach a timestamp to an 

event when there’s no global clock?  

 Maintain a consistent set of logical clocks, one per process. 
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Logical Clocks (Lamport, 1978) 

 Each process Pi maintains a logical clock Ci, which is 

a monotonically increasing software counter (if event 

a happens at Pi, then C(a)  Ci) 

 Update the logical clock/counter  as follows: 

1. For any two successive events (e.g., send/receive 

message) that take place within Pi, Ci is incremented by 1 

2. Each time a message m is sent by process Pi, the 

message receives a timestamp ts(m) = Ci; 

3. Whenever a message m is received by a process Pj, Pj 

adjusts its local counter Cj to max{Cj, ts(m)}; then Cj++ 

before passing m to the application;  
Notes 

 Property P1 is satisfied by (1); Property P2 by (2) and (3). 

 It can still occur that two events happen at the same time. Avoid this by breaking 

ties through process IDs.   Time.id 
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Logical Clock: Example 
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Logical Clock: Properties 
“Happened Before”: Partial Order 

 a  b (at p1) c d  (at p2); b   c ; also d  f  

 Not all events are related by  the “” relation 

 a and e  (different processes and no message chain) 

 they are not related by “”  

 they are said to be concurrent (written as a || e) 

p1

p2

p3

a b

c d

e f

m1

m2

P h y s ic a l

t im e
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Logical Clock: Properties 
 irreflexive partial order  

  e   e’ implies L(e) < L(e’)  

 The converse is not true, that is L(e) < L(e') does 

not imply e  e’. (e.g.  L(b) > L(e) but b || e) 

 Lamport’s “happened before” relation defines an 

irreflexive partial order among the events in the 

distributed system 
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Logical Clock: Where to Put It? 

 The positioning of Lamport’s logical clocks in 

distributed systems 
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Example: Logical clocks in  

Totally-Ordered Multicast 

 Consider the bank example we discussed before  

 

 

 

 

 For consistency, both server should execute u1, u2 

or u2, u1 at both sides… 

 This requires totally-order multicast, where all 

messages are delivered in the same order to each 

receiver 

 

 

Add 
$100 

Add 1% 
interest 
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Totally-Ordered Multicast 

 Consider a group of n distributed processes,  

 m (≤ n) processes multicasts “update” messages 

 How to guarantee that all the updates are performed in 

the same order by all the processes?  

  Assumptions 

 No messages are lost (Reliable delivery) 

 Messages from the same sender are received in the 

order they were sent (FIFO) 

 A copy of each message is also sent to the sender 



1.30 TS Distributed Systems 

Totally-Ordered Multicast (cont.) 

 Process Pi sends timestamped message msgi to all others. 

 timestamp (ts) is the logical clock  

 The message itself is put in a local queue queuei. 

 Any incoming message at Pj is queued in queuej, according 

to its timestamp, and acknowledged to every other process. 

 Pj passes a message msgi to its application if: 

 (1) msgi is at the head of queuej 

 (2) for each process Pk, there is an acknowledgement message 

msgk in queuej with a larger timestamp. ts(msgk) < ts(ackk) 

 In essence, messages are ordered according to 

their timestamps following Lamport’s algorithm 

 This is very important for replicated servers! 
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 S1 sends request R(u1, 20) at time 20 

 S2 sends request R(u2, 15) at time 15 

 S1 receives R(u1, 20) at time 21, and R(u2, 15) at 

time 22; send ack. for u2 request at time 23; 

 S2 receives R(u2, 15) at time 16, and R(u1, 20) at 

time 21; send ack. for u1 request at time 22; 

 S1’s message queue (events re-ordered w. ts) 

 R(u2,15):22, R(u1,20):21, A(s2,u1,22):24 

 S2’s message queue 

 R(u2,15):16, R(u1,20):21, A(s1,u2,23):24 

 So update order: R(u2)  R(u1) on both servers 

Totally-Ordered Multicast (cont.) 
For Example: Replicated Databases  
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32 

Problem with Lamport’s Clocks 

 Observation: Lamport’s clocks do not guarantee 

that if C(a) < C(b) THEN a causally preceded b: 

 Event a: m1 is received  

at T = 16. 

 Event b: m2 is sent out 

at T = 20. 

 We cannot conclude  

that a causally  

precedes b. 

 Solution: Vector clocks  

 may capture causality  
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Vector Clocks 

Vector clocks are constructed by letting 

each process Pi maintain a vector VCi with 

the following two properties  

P1: VCi [ i ] is the number of events that have 

occurred so far at Pi. In other words, VCi [ i ] is 

the local logical clock at process Pi .  

P2: If VCi [ j ] = k then Pi knows that k events have 

occurred at Pj. It is thus Pi’s knowledge of the 

local time at Pj .   

 To maintain P1 and P2, respectively 

 Increase VCi [ i ] when a new event happens at Pi  

 Piggyback vectors along with messages that are sent 
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Vector Clock: Update 

Specifically, perform the following steps: 

1:  Before executing an event,  Pi executes  

VCi [ i ] ← VCi [i ] + 1.  

2:  When process Pi sends m to Pj, it sets m’s 

(vector) timestamp ts(m) = VCi after Step 1 

3:  Upon the receipt of m, process Pj adjust  

VCj [k ] ← max{VCj [k ], ts(m)[k ]}, for k=1, 2, .. N. 

Then Pj executes Step 1 and delivers m to the 

application 

Pj knows how many events occurred at Pi before Pi sends m 

Pj also knows how many events occurred at other processes 

before Pi sends m (on which m may causally depend on) 
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Causally-Ordered Multicasting 

 Ensure to deliver a message only if all causally 

preceding messages have already been delivered 

 Weaker than totally-ordered multicasting (if two messages are 

not related, they can be ordered in any order or even delivered in different orders at different locations) 

 Assume clocks are only adjusted  when  

 Pi sending and receiving delivering  

 VCi[i]++        VCi[k] = max{VCi[k], ts(m)[k]} for k=1, 2, ...N 

 Upon receiving FIRST CHECK if Pj has to postpone 

delivery of m from Pi : (if the following cond is false, postpone) 

 R1: ts(m)[i ] == VCj[i ] + 1; 
  m is the next message expected from Pi 

 R2: ts(m)[k] ≤ VCj[k] for k ≠ i 

  Pj has seen all messages that have been seen by Pi when Pi sent m 



1.36 TS Distributed Systems 

Causally-Ordered Multicasting (cont.) 

 For P2, when receive m* from P1, ts(m*) = (1,1,0), but VC2 = (0,0,0); m* is 
delayed as R2 is not satisfied; 

 Whe P2 receive m from P0 ts(m)=(1,0,0), with VC2=(0,0,0)  both R1 and 
R2 is ok, and m is delivered  VC2 = (1,0,0)  m* is delivered 

Pj postpones delivery of m from Pi until: 

R1: ts(m)[i ] == VCj[i ] + 1; 
  m is the next message expected from Pi 

R2: ts(m)[k] ≤ VCj[k] for k ≠ i 
  Pj has seen all messages that have been seen by Pi when Pi sent m 

See the 
next slide 
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<0, 0, 0> 

<1, 0, 0> 

<0, 0, 0> 

<0, 0 ,0> 

Deliver 
<1, 0, 0> 

<1, 1, 0> 

Deliver 
<1, 0, 0> 

Deliver 
<1, 1, 0> 

R1: ts(m)[i ] == VCj[i ] + 1; 

R2: ts(m)[k] ≤ VCj[k] for k ≠ i 

R1: ts(m)[i ] == VCj[i ] + 1; 

R2: ts(m)[k] ≤ VCj[k] for k ≠ i 

POSTPONE 

R1: ts(m)[i ] == VCj[i ] + 1; 

R2: ts(m)[k] ≤ VCj[k] for k ≠ i 

R1: ts(m)[i ] == VCj[i ] + 1; 

R2: ts(m)[k] ≤ VCj[k] for k ≠ i 

Deliver 
<1, 1, 0> 

Causally-Ordered Multicasting (cont.) 
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A note on Ordered Message Delivery 

This support should be in middleware or application? 

 Middleware don’t see the content, so it can only 

detect potential causalities  

 Not all causalities can be detected (3rd channel is 

used) 

 Applications can better deal with these problems, 

but this is a distraction for the program developer… 
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MUTUAL EXCLUSION IN 

DISTRIBUTED SYSTEMS 

Semaphore, monitor, …  cannot be used in DS. why? 

New solutions are needed to access shared resources… 
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 To provide exclusive access to some resources in 

DS, we need new approaches 

 There are two main approaches:  

 Token-based   

Pass a token (a special msg) between processes 

There is only one token 

Whoever has the token uses recourse and passes it to next 

+ Starvation and deadlock can be avoided easily 

 - token might get lost! 

 Permission-based  

The process that wants to access the resource should get 

permission of other processes 

There are many ways to do this and we will see a few 

Mutual Exclusion in Distributed Systems 
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Basic Solutions 

Solutions 

 Centralized server (deterministic), using client-server 

 Decentralized (probabilistic), using a peer-to-peer 

system 

 Completely distributed (deterministic) 

with no topology imposed 

along a (logical) ring 
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Centralized Mutual Exclusion 

 + guarantees mutual exclusion  

 + fair, no starvation, no deadlock on one resource 

 + easy to implement 

 -  coordinator is a single point of failure 

 -  how to distinguish dead coordinator from permission 

denied (send explicit msg) 

 - performance bottleneck  
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Decentralized Mutual Exclusion 

 Vote by extending the central solution as follows: 

 Assume every resource is replicated n times, and each 

replica has its own coordinator 

 A coordinator always responds immediately to a request. 

 Access requires a majority vote from m > n/2 coordinators;  

 When a coordinator crashes, it will recover quickly, but will 

have forgotten about permissions it had granted 

  (this may cause problem as it may grant another process a permission after recovery) 

Let p be the prob that a coordinator resets and  

 P[k] be prob that k out of m coordinator rests (P[k] = (m
k) p

k (1-p)m-k 

At least 2m-n coordinator needs to reset in order to violate the 

correctness of voting mechanism P[violation] =  n 
k=2m-n P[k] 

With p=0.001, n=32, m=0.75n  incorrect permission grant: 10-40 
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Decentralized Mutual Exclusion (cont’d) 

 To implement the voting mechanisms, a DHT-

based system is used (Lin 2004) 

 Each resource has a unique name rname and ith 

replica is named rname-i 

 Every process can generate a n keys given the 

resource name and look up each node 

responsible for a replica (and controlling  access 

to that replica)  

 If process gets less than m votes, it will back off 

random amount time before next attempt  

 - As request for a resource increases, no one gets 

majority vote (utilization drops) 
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Completely Distributed Solution 
with no topology imposed 

 A probabilistic mutual exclusion algorithm may not 

be good enough for some 

 Can we design a deterministic distributed mutual 

exclusion algorithm? 

 Yes, but this would requires total ordering of all 

events (which one happened first?)  

 For this, we can use Lamport (1978) 

 Ricart & Agrawala’s alg made it more efficient 

 (we will describe this solution) 
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Ricart & Agrawala’s Alg (1) 
Distributed solution with no topology imposed 

 Process P wants to access R 

 Builds a msg (R, P, CP (current time at P))  

 Multicast it to all other processes including itself 

    [assume that comm is reliable, no msg is lost] 

 Waits n OK from others  

        what do other processes do? (see next slide)  

 Upon receiving n OK, P uses the resource R 

 When P finishes, it sends OK to all in the queue and 

remove them 
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Ricart & Agrawala’s Alg (2) 
Distributed solution with no topology imposed 

 Upon receipt of a msg (R, P, CP), every process Q 

takes one of the following actions:  

 If Q has no interest in R, send OK to P. 

 If Q already has access to R, queue this request. 

 If Q is waiting for the resource [i.e., (R, Q, CQ) is in the 

queue], then compare time stamps,  the lowest one wins: 

 If CP < CQ, then Q sends OK 

Else Q queues that request and gets OK from P 
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Ricart & Agrawala’s Alg (3) 
Distributed solution with no topology imposed 

 + Like centralized algorithm  
 mutual exclusion is guaranteed without starvation or 

deadlock (on a single resource)  

 - Number of messages per entry is 2(n-1) 

 ? No single point of failure  
 Actually, this has n points of failure !!! 

 P[ any one of n fails] >> P[one fails] 

 ? Who will keep membership list (App or middleware)  

 ??? All nodes are involved in all decision (all can be bottleneck) 

 Some improvements can be made (e.g., majority voting) 

 But overall this is slower, more complicated than original 

centralized solution…  

 Then why bother !!!! …. 
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Completely Distributed Solution 
Logical Token Ring 

 Processes in a logical ring, and let a token be 

passed between them. The one that holds the 

token is allowed to enter the critical region (if it 

wants to) 

What if the token is lost? 
What if a process is dead? (get ACK) 
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A Comparison of the Four Algorithms 

No one is 
interested 
in critical 
section 

Every one 
enters 
critical 
section 



1.51 TS Distributed Systems 

Global positioning of nodes 

Problem 

 How can a single node 

efficiently estimate the latency 

between any two other nodes in 

a distributed system? 

Solution 

 Construct a geometric overlay 

network, in which the distance 

d(P,Q) reflects the actual 

latency between P and Q. 
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ELECTION ALGORITHMS 

Select the leader… 
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Election algorithms 

 Many distributed algorithms require that some 

process acts as a coordinator.  

 In many systems, the coordinator is chosen by 

hand (e.g. file servers). This leads to centralized 

solutions  single point of failure. 

 (To avoid single point of failure) we need to select 

this special process dynamically (how?) 

Then 

 Where is the line between centralized or distributed solution? 

 Is a fully distributed solution, i.e., one without a coordinator, always 

more robust than any centralized/coordinated solution? 
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Election by bullying 

 Each process has an associated priority (weight). 

The process with the highest priority should always 

be elected as the coordinator.  

 How do we find the heaviest process? 

 Any process can just start an election by sending an 

election message to all other processes (assuming you 

don’t know the weights of the others). 

 If a process Pheavy receives an election message from a 

lighter process Plight, it sends a take-over message to 

Plight. Plight is out of the race. 

 If a process doesn’t get a take-over message back, it 

wins, and sends a victory message to all other 

processes. 
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The Bully Algorithm (1) 

(a) Process 4 holds an election.  

(b) Processes 5 and 6 respond, telling 4 to stop.  

(c) Now 5 and 6 each hold an election. 
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The Bully Algorithm (2) 

(d) Process 6 tells 5 to stop.  

(e) Process 6 wins and tells everyone. 
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A Ring Algorithm 

 Process priority is obtained by organizing 

processes into a (logical) ring. Process with the 

highest priority should be elected as coordinator. 

 Any process can start an election by sending an 

election message to its successor. If a successor is 

down, the message is passed on to the next 

successor. 

 If a message is passed on, the sender adds itself to 

the list. When it gets back to the initiator, everyone had 

a chance to make its presence known. 

 The initiator sends a coordinator message around the 

ring containing a list of all living processes. The one 

with the highest priority is elected as coordinator. 
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A Ring Algorithm Example 

 Does it matter if two processes initiate an election? 

 What happens if a process crashes during the 

election? 
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EXTRAS 



1.60 TS Distributed Systems 

Elections in Wireless Environments 

 Traditional Election algorithms assumed that 

 Msg passing is reliable  

 Topology does not change often 

 But these are not realistic in wireless environments 

 Mobile and ad hoc 

 Handle failures and partition/join   
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Elections in Wireless Environments Ex 

 

(a) Initial network.  (b)–(e) The build-tree phase.. 
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Elections in Large-Scale Systems (1) 

Requirements for superpeer selection: 

1. Normal nodes should have low-latency access to 

superpeers. 

2. Superpeers should be evenly distributed across the 

overlay network. 

3. There should be a predefined portion of superpeers 

relative to the total number of nodes in the overlay 

network. 

4. Each superpeer should not need to serve more 

than a fixed number of normal nodes. 
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Elections in Large-Scale Systems (2) 

DHTs 

 Reserve a fixed part of the ID space for superpeers.  

 Example: if S superpeers are needed for a system 

that uses m-bit identifiers, simply reserve the          

k = log2S leftmost bits for superpeers. With N 

nodes, we’ll have, on average, 2k−mN superpeers. 

Routing to superpeer 

 Send message for key p to node responsible for 

 p AND 11· · ·1100· · ·00 



1.64 TS Distributed Systems 

Elections in Large-Scale Systems (3) 

 Moving tokens in a two-dimensional space using 

repulsion forces. 
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Summary 

 Physical clock/time in distributed systems 

 

 Logical clock/time and ‘Happen Before’ Relation 

 

 Vector clocks 

 

 Distributed synchronizations 

 

 Election algorithms 


