
1.1 TS Distributed Systems

Chapter 6: SYNCHRONIZATION

Thanks to the authors of the textbook [TS] for providing the base slides. I made several changes/additions.
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.

So I would like to thank him, too.
Turgay Korkmaz

korkmaz@cs.utsa.edu

How to agree on the order of events when there is no global clock?

1.2 TS Distributed Systems

Chapter 6: SYNCHRONIZATION

 CLOCK SYNCHRONIZATION
 Physical Clocks

 Global Positioning System

 Clock Synchronization Algorithms

 LOGICAL CLOCKS
 Lamport’s Logical Clocks

 Vector Clocks

 MUTUAL EXCLUSION
 A Centralized Algorithm

 Decentralized Algorithm

 A Distributed Algorithm

 A Token Ring Algorithm

 GLOBAL POSITIONING OF NODES

 ELECTION ALGORITHMS

1.3 TS Distributed Systems

Objectives

 To understand synchronization and related

issues in DS

 To learn about clocks and how to sync them

1.4 TS Distributed Systems

Introduction

 Synchronization is much harder in DS than single

systems because there is no global clock in DS

 What are the implications of not having a global clock?

 An event that occurred after another event may nevertheless

be assigned an earlier time.

 Many applications (finance, security, collaborative sensing)

depend on accurate time…

 So, clocks must be synchronized.

1.5 TS Distributed Systems

Physical Clocks

 Clock vs. Timer

 A quartz crystal oscillates at a well-defined frequency

 Associate two registers counter and holding register

 Set holding register to a value x

1. Counter  holding register

2. For each oscillation counter--;

3. When counter reaches 0, interrupt (clock tick) to update software clock

4. Go to 1.

 Different quartz crystals may oscillate at different rates.

 So, this may cause two clocks to differ from each other

(called clock skew)

 How to sync N clocks with a global clock or with each other?

1.6 TS Distributed Systems

Global Clock
How time in real world is actually measured?

 Astronomical time is

based on the

computation of the

mean solar day

 Earth’s rotation is

variable

 Atomic clock

 The interval that it takes the cesium 133 atom to make

exactly 9,192,631,770 transitions.

 International Atomic Time (TAI) is based on
very accurate physical clocks (drift rate 10-13)

 3msec less than mean solar day... leap seconds

1.7 TS Distributed Systems

Universal Coordinated Time (UTC)

 Based on the number of transitions per second of

the cesium 133 atom (pretty accurate).

 At present, the real time is taken as the average

of some 50 cesium-clocks around the world.

 Introduces a leap second from time to time to

compensate that days are getting longer.

 How can we provide UTC time to people?

 NIST broadcast a pulse at the start of each second with

accuracy of 10ms. Satellites can give an accuracy of

about ±0.5 ms.

 That is how your atomic clock works!

1.8 TS Distributed Systems

How to sync N clocks with a global clock?

Let each computer have a UTC receiver.

 10ms might be too much for some applications

(e.g., GPS)

 It might be costly (e.g., in case of sensor nodes)

 Indoor equipments may not get the UTC signals

We may have some nodes with a UTC receiver,

then can we sync others with those nodes?

What if none have UTC receiver, can we sync them

with each other?

1.9 TS Distributed Systems

Clock Synchronization Algorithms
 system model

 All algorithms have the same system model:

 Each machine has a timer causing H interrupts/sec.

 The interrupt handler adds 1 to software clock C

 C keeps track of the number of ticks since some

agreed-upon time in the past

 Let Cp(t) be the clock at p when the UTC time is t,

 In a perfect world, Cp(t) = t (i.e., C’p(t)=dC/dt=1)

 The skew of a clock is C’p(t) – 1

 The offset relative to a specific time is Cp(t) – t

C
p
(t

)

t

1.10 TS Distributed Systems

Clock Synchronization Algorithms
 system model

 So if there exists a constant 

such that

 1-   dC/dt  1+ 

 then, timer is working within its

specifications

  (maximum drift rate) is given

by the manufacturer

 Real timers do not tick exactly H times per second.
For example, H=60 should generate 216,000 thick per hour

but it may range 215,998 to 216,002 per hour

 How often two clocks should be synchronized?

1.11 TS Distributed Systems

Clock Synchronization Algorithms

-----------------x-------------------------|-------------->

 both

 sync t how much apart?

 If two clocks are drifting from UTC in the opposite

directions, they would be apart as much as 2 t

 So if we want to guarantee that no two clocks

ever differ by more than  (i.e., 2 t < )

 then we should sync them t < /2 seconds

 Various algorithms differ in precisely how to do

this re-sync!
 NTP (Network Time Protocol)

 The Berkeley algorithm

 Clock sync in wireless networks

1.12 TS Distributed Systems

NTP: basic idea
At least one machine has a UTC receiver

Suppose we have a server

with UTC receiver.

The server has an

accurate clock

So clients can simply

contact it and get the

accurate time

(every /2 sec)

A gets T1, T2, T3, T4.

How should A adjust its clock?

 The problem is the delay which causes inaccuracy

1.13 TS Distributed Systems

NTP: basic idea
Suppose propagation delay is the same in both ways?

 If A’s clock is slow

T2 -  - T1  T4 - (T3 - )

 = ((T2-T1) + (T3-T4))/2

Add  to A’s clock

 If A’s clock is fast

T2 +  - T1  T4 - (T3 + )

 = ((T4-T3) + (T1-T2))/2

Subtract  from A’s clock

 But, time cannot run

backward

 Introduce the difference

gradually (e.g., instead of 10ms

add 9ms for each interrupt for 1 sec)

1.14 TS Distributed Systems

NTP
 At least one machine has a UTC receiver

Use this basic idea in a pairwise manner to

distribute time information over the Internet.

Objectives

 Enable clients on Internet to be synchronized to

UCT

Reliable service through redundant

servers/paths

 Provide protection against interference with the

time service, whether malicious or accidental

Need: accurate measure of round trip delay,

interrupt handling & processing messages

1.15 TS Distributed Systems
15

NTP (cont.)

 Provided by a network of servers located across the

Internet

 Primary servers are connected to UCT sources

 Secondary servers are synchronized to primary servers

 Synchronization subnet - lowest level servers in users’

computers

1

2

3

2

3 3

1.16 TS Distributed Systems

Berkeley Algorithm
No machine has UTC receiver

 Operator manually sets the time at the time
server (daemon)

 Time server is active and does the followings:

 periodically poll all machines

 compute the average and

 tell other machines to adjust their times

gradually slow down or advance the clock

1.17 TS Distributed Systems

Berkeley Algorithm
No machine has UTC receiver

 Time does not need to be the actual time…

 As long as all machines agree, then that is OK for many applications

 Gradually advance or slow down the clock…

1.18 TS Distributed Systems

Clock Sync in Wireless networks

 No time server

 Nodes may not contact

each other

 Resource constrained

 Multi-hop routing is

expensive and has variable

delay

 New algorithms are needed

 Simply taking average may

not work

 New methods using linear

regression is used

1.19 TS Distributed Systems

LOGICAL CLOCKS

Knowing exact time

 Knowing an agreed time

 One step further: agree on the ordering of events

1.20 TS Distributed Systems

Time in Distributed Systems

 Example: update replicated databases ($1000)

 Different orders: lead to inconsistency

 We must execute these updates in the same order.

 If we can, then there may be no need for a global

clock in a distributed system

Add
$100

Add 1%
interest

Result
$1111

Result
$1110

1.21 TS Distributed Systems

How to order events?

 The order of two events occurring at two different

computers cannot be determined based on their

“local” time unless they are sync with a global clock.

 Let us first introduce a notion of ordering, namely

happens-before relation () to capture the causal

dependencies between events

 If A and B are events in the same process and A occurred

before B, then A  B

 If A is the sending of a message and B is the receipt of that

message in a different process, then A  B

 If AB, and B  C, then A  C (transitive).

 This introduces a partial ordering of events in a

system with concurrently operating processes.

1.22 TS Distributed Systems

How to order events?

 Problem: We need a way of measuring time to

assign a time value C(a) to every event a such that

 if a  b then C(a) < C(b)

 Solution: attach a timestamp C(e) to each event e,
satisfying the following properties:

 P1: If a and b are two events in the same process, and
a→b, then we demand that C(a) < C(b).

 P2: For different processes, if event a corresponds to
sending a message m, and b to the receipt of that
message, then also C(a) < C(b).

 Another problem: How to attach a timestamp to an

event when there’s no global clock?

 Maintain a consistent set of logical clocks, one per process.

1.23 TS Distributed Systems

Logical Clocks (Lamport, 1978)

 Each process Pi maintains a logical clock Ci, which is

a monotonically increasing software counter (if event

a happens at Pi, then C(a)  Ci)

 Update the logical clock/counter as follows:

1. For any two successive events (e.g., send/receive

message) that take place within Pi, Ci is incremented by 1

2. Each time a message m is sent by process Pi, the

message receives a timestamp ts(m) = Ci;

3. Whenever a message m is received by a process Pj, Pj

adjusts its local counter Cj to max{Cj, ts(m)}; then Cj++

before passing m to the application;
Notes

 Property P1 is satisfied by (1); Property P2 by (2) and (3).

 It can still occur that two events happen at the same time. Avoid this by breaking

ties through process IDs. Time.id

1.24 TS Distributed Systems

Logical Clock: Example

1.25 TS Distributed Systems

Logical Clock: Properties
“Happened Before”: Partial Order

 a  b (at p1) c d (at p2); b  c ; also d  f

 Not all events are related by the “” relation

 a and e (different processes and no message chain)

 they are not related by “”

 they are said to be concurrent (written as a || e)

p1

p2

p3

a b

c d

e f

m1

m2

P h y s ic a l

t im e

1.26 TS Distributed Systems

Logical Clock: Properties
 irreflexive partial order

 e  e’ implies L(e) < L(e’)

 The converse is not true, that is L(e) < L(e') does

not imply e  e’. (e.g. L(b) > L(e) but b || e)

 Lamport’s “happened before” relation defines an

irreflexive partial order among the events in the

distributed system

1.27 TS Distributed Systems

Logical Clock: Where to Put It?

 The positioning of Lamport’s logical clocks in

distributed systems

1.28 TS Distributed Systems

Example: Logical clocks in

Totally-Ordered Multicast

 Consider the bank example we discussed before

 For consistency, both server should execute u1, u2

or u2, u1 at both sides…

 This requires totally-order multicast, where all

messages are delivered in the same order to each

receiver

Add
$100

Add 1%
interest

1.29 TS Distributed Systems

Totally-Ordered Multicast

 Consider a group of n distributed processes,

 m (≤ n) processes multicasts “update” messages

 How to guarantee that all the updates are performed in

the same order by all the processes?

 Assumptions

 No messages are lost (Reliable delivery)

 Messages from the same sender are received in the

order they were sent (FIFO)

 A copy of each message is also sent to the sender

1.30 TS Distributed Systems

Totally-Ordered Multicast (cont.)

 Process Pi sends timestamped message msgi to all others.

 timestamp (ts) is the logical clock

 The message itself is put in a local queue queuei.

 Any incoming message at Pj is queued in queuej, according

to its timestamp, and acknowledged to every other process.

 Pj passes a message msgi to its application if:

 (1) msgi is at the head of queuej

 (2) for each process Pk, there is an acknowledgement message

msgk in queuej with a larger timestamp. ts(msgk) < ts(ackk)

 In essence, messages are ordered according to

their timestamps following Lamport’s algorithm

 This is very important for replicated servers!

1.31 TS Distributed Systems

 S1 sends request R(u1, 20) at time 20

 S2 sends request R(u2, 15) at time 15

 S1 receives R(u1, 20) at time 21, and R(u2, 15) at

time 22; send ack. for u2 request at time 23;

 S2 receives R(u2, 15) at time 16, and R(u1, 20) at

time 21; send ack. for u1 request at time 22;

 S1’s message queue (events re-ordered w. ts)

 R(u2,15):22, R(u1,20):21, A(s2,u1,22):24

 S2’s message queue

 R(u2,15):16, R(u1,20):21, A(s1,u2,23):24

 So update order: R(u2)  R(u1) on both servers

Totally-Ordered Multicast (cont.)
For Example: Replicated Databases

1.32 TS Distributed Systems

32

Problem with Lamport’s Clocks

 Observation: Lamport’s clocks do not guarantee

that if C(a) < C(b) THEN a causally preceded b:

 Event a: m1 is received

at T = 16.

 Event b: m2 is sent out

at T = 20.

 We cannot conclude

that a causally

precedes b.

 Solution: Vector clocks

 may capture causality

1.33 TS Distributed Systems

Vector Clocks

Vector clocks are constructed by letting

each process Pi maintain a vector VCi with

the following two properties

P1: VCi [i] is the number of events that have

occurred so far at Pi. In other words, VCi [i] is

the local logical clock at process Pi .

P2: If VCi [j] = k then Pi knows that k events have

occurred at Pj. It is thus Pi’s knowledge of the

local time at Pj .

 To maintain P1 and P2, respectively

 Increase VCi [i] when a new event happens at Pi

 Piggyback vectors along with messages that are sent

1.34 TS Distributed Systems

Vector Clock: Update

Specifically, perform the following steps:

1: Before executing an event, Pi executes

VCi [i] ← VCi [i] + 1.

2: When process Pi sends m to Pj, it sets m’s

(vector) timestamp ts(m) = VCi after Step 1

3: Upon the receipt of m, process Pj adjust

VCj [k] ← max{VCj [k], ts(m)[k]}, for k=1, 2, .. N.

Then Pj executes Step 1 and delivers m to the

application

Pj knows how many events occurred at Pi before Pi sends m

Pj also knows how many events occurred at other processes

before Pi sends m (on which m may causally depend on)

1.35 TS Distributed Systems

Causally-Ordered Multicasting

 Ensure to deliver a message only if all causally

preceding messages have already been delivered

 Weaker than totally-ordered multicasting (if two messages are

not related, they can be ordered in any order or even delivered in different orders at different locations)

 Assume clocks are only adjusted when

 Pi sending and receiving delivering

 VCi[i]++ VCi[k] = max{VCi[k], ts(m)[k]} for k=1, 2, ...N

 Upon receiving FIRST CHECK if Pj has to postpone

delivery of m from Pi : (if the following cond is false, postpone)

 R1: ts(m)[i] == VCj[i] + 1;
  m is the next message expected from Pi

 R2: ts(m)[k] ≤ VCj[k] for k ≠ i

  Pj has seen all messages that have been seen by Pi when Pi sent m

1.36 TS Distributed Systems

Causally-Ordered Multicasting (cont.)

 For P2, when receive m* from P1, ts(m*) = (1,1,0), but VC2 = (0,0,0); m* is
delayed as R2 is not satisfied;

 Whe P2 receive m from P0 ts(m)=(1,0,0), with VC2=(0,0,0)  both R1 and
R2 is ok, and m is delivered  VC2 = (1,0,0)  m* is delivered

Pj postpones delivery of m from Pi until:

R1: ts(m)[i] == VCj[i] + 1;
  m is the next message expected from Pi

R2: ts(m)[k] ≤ VCj[k] for k ≠ i
  Pj has seen all messages that have been seen by Pi when Pi sent m

See the
next slide

1.37 TS Distributed Systems

<0, 0, 0>

<1, 0, 0>

<0, 0, 0>

<0, 0 ,0>

Deliver
<1, 0, 0>

<1, 1, 0>

Deliver
<1, 0, 0>

Deliver
<1, 1, 0>

R1: ts(m)[i] == VCj[i] + 1;

R2: ts(m)[k] ≤ VCj[k] for k ≠ i

R1: ts(m)[i] == VCj[i] + 1;

R2: ts(m)[k] ≤ VCj[k] for k ≠ i

POSTPONE

R1: ts(m)[i] == VCj[i] + 1;

R2: ts(m)[k] ≤ VCj[k] for k ≠ i

R1: ts(m)[i] == VCj[i] + 1;

R2: ts(m)[k] ≤ VCj[k] for k ≠ i

Deliver
<1, 1, 0>

Causally-Ordered Multicasting (cont.)

1.38 TS Distributed Systems

A note on Ordered Message Delivery

This support should be in middleware or application?

 Middleware don’t see the content, so it can only

detect potential causalities

 Not all causalities can be detected (3rd channel is

used)

 Applications can better deal with these problems,

but this is a distraction for the program developer…

1.39 TS Distributed Systems

MUTUAL EXCLUSION IN

DISTRIBUTED SYSTEMS

Semaphore, monitor, … cannot be used in DS. why?

New solutions are needed to access shared resources…

1.40 TS Distributed Systems

 To provide exclusive access to some resources in

DS, we need new approaches

 There are two main approaches:

 Token-based

Pass a token (a special msg) between processes

There is only one token

Whoever has the token uses recourse and passes it to next

+ Starvation and deadlock can be avoided easily

 - token might get lost!

 Permission-based

The process that wants to access the resource should get

permission of other processes

There are many ways to do this and we will see a few

Mutual Exclusion in Distributed Systems

1.41 TS Distributed Systems

Basic Solutions

Solutions

 Centralized server (deterministic), using client-server

 Decentralized (probabilistic), using a peer-to-peer

system

 Completely distributed (deterministic)

with no topology imposed

along a (logical) ring

1.42 TS Distributed Systems

Centralized Mutual Exclusion

 + guarantees mutual exclusion

 + fair, no starvation, no deadlock on one resource

 + easy to implement

 - coordinator is a single point of failure

 - how to distinguish dead coordinator from permission

denied (send explicit msg)

 - performance bottleneck

1.43 TS Distributed Systems

Decentralized Mutual Exclusion

 Vote by extending the central solution as follows:

 Assume every resource is replicated n times, and each

replica has its own coordinator

 A coordinator always responds immediately to a request.

 Access requires a majority vote from m > n/2 coordinators;

 When a coordinator crashes, it will recover quickly, but will

have forgotten about permissions it had granted

 (this may cause problem as it may grant another process a permission after recovery)

Let p be the prob that a coordinator resets and

 P[k] be prob that k out of m coordinator rests (P[k] = (m
k) p

k (1-p)m-k

At least 2m-n coordinator needs to reset in order to violate the

correctness of voting mechanism P[violation] =  n
k=2m-n P[k]

With p=0.001, n=32, m=0.75n  incorrect permission grant: 10-40

1.44 TS Distributed Systems

Decentralized Mutual Exclusion (cont’d)

 To implement the voting mechanisms, a DHT-

based system is used (Lin 2004)

 Each resource has a unique name rname and ith

replica is named rname-i

 Every process can generate a n keys given the

resource name and look up each node

responsible for a replica (and controlling access

to that replica)

 If process gets less than m votes, it will back off

random amount time before next attempt

 - As request for a resource increases, no one gets

majority vote (utilization drops)

1.45 TS Distributed Systems

Completely Distributed Solution
with no topology imposed

 A probabilistic mutual exclusion algorithm may not

be good enough for some

 Can we design a deterministic distributed mutual

exclusion algorithm?

 Yes, but this would requires total ordering of all

events (which one happened first?)

 For this, we can use Lamport (1978)

 Ricart & Agrawala’s alg made it more efficient

 (we will describe this solution)

1.46 TS Distributed Systems

Ricart & Agrawala’s Alg (1)
Distributed solution with no topology imposed

 Process P wants to access R

 Builds a msg (R, P, CP (current time at P))

 Multicast it to all other processes including itself

 [assume that comm is reliable, no msg is lost]

 Waits n OK from others

  what do other processes do? (see next slide) 

 Upon receiving n OK, P uses the resource R

 When P finishes, it sends OK to all in the queue and

remove them

1.47 TS Distributed Systems

Ricart & Agrawala’s Alg (2)
Distributed solution with no topology imposed

 Upon receipt of a msg (R, P, CP), every process Q

takes one of the following actions:

 If Q has no interest in R, send OK to P.

 If Q already has access to R, queue this request.

 If Q is waiting for the resource [i.e., (R, Q, CQ) is in the

queue], then compare time stamps, the lowest one wins:

 If CP < CQ, then Q sends OK

Else Q queues that request and gets OK from P

1.48 TS Distributed Systems

Ricart & Agrawala’s Alg (3)
Distributed solution with no topology imposed

 + Like centralized algorithm
 mutual exclusion is guaranteed without starvation or

deadlock (on a single resource)

 - Number of messages per entry is 2(n-1)

 ? No single point of failure
 Actually, this has n points of failure !!!

 P[any one of n fails] >> P[one fails]

 ? Who will keep membership list (App or middleware)

 ??? All nodes are involved in all decision (all can be bottleneck)

 Some improvements can be made (e.g., majority voting)

 But overall this is slower, more complicated than original

centralized solution…

 Then why bother !!!! ….

1.49 TS Distributed Systems

Completely Distributed Solution
Logical Token Ring

 Processes in a logical ring, and let a token be

passed between them. The one that holds the

token is allowed to enter the critical region (if it

wants to)

What if the token is lost?
What if a process is dead? (get ACK)

1.50 TS Distributed Systems

A Comparison of the Four Algorithms

No one is
interested
in critical
section

Every one
enters
critical
section

1.51 TS Distributed Systems

Global positioning of nodes

Problem

 How can a single node

efficiently estimate the latency

between any two other nodes in

a distributed system?

Solution

 Construct a geometric overlay

network, in which the distance

d(P,Q) reflects the actual

latency between P and Q.

1.52 TS Distributed Systems

ELECTION ALGORITHMS

Select the leader…

1.53 TS Distributed Systems

Election algorithms

 Many distributed algorithms require that some

process acts as a coordinator.

 In many systems, the coordinator is chosen by

hand (e.g. file servers). This leads to centralized

solutions  single point of failure.

 (To avoid single point of failure) we need to select

this special process dynamically (how?)

Then

 Where is the line between centralized or distributed solution?

 Is a fully distributed solution, i.e., one without a coordinator, always

more robust than any centralized/coordinated solution?

1.54 TS Distributed Systems

Election by bullying

 Each process has an associated priority (weight).

The process with the highest priority should always

be elected as the coordinator.

 How do we find the heaviest process?

 Any process can just start an election by sending an

election message to all other processes (assuming you

don’t know the weights of the others).

 If a process Pheavy receives an election message from a

lighter process Plight, it sends a take-over message to

Plight. Plight is out of the race.

 If a process doesn’t get a take-over message back, it

wins, and sends a victory message to all other

processes.

1.55 TS Distributed Systems

The Bully Algorithm (1)

(a) Process 4 holds an election.

(b) Processes 5 and 6 respond, telling 4 to stop.

(c) Now 5 and 6 each hold an election.

1.56 TS Distributed Systems

The Bully Algorithm (2)

(d) Process 6 tells 5 to stop.

(e) Process 6 wins and tells everyone.

1.57 TS Distributed Systems

A Ring Algorithm

 Process priority is obtained by organizing

processes into a (logical) ring. Process with the

highest priority should be elected as coordinator.

 Any process can start an election by sending an

election message to its successor. If a successor is

down, the message is passed on to the next

successor.

 If a message is passed on, the sender adds itself to

the list. When it gets back to the initiator, everyone had

a chance to make its presence known.

 The initiator sends a coordinator message around the

ring containing a list of all living processes. The one

with the highest priority is elected as coordinator.

1.58 TS Distributed Systems

A Ring Algorithm Example

 Does it matter if two processes initiate an election?

 What happens if a process crashes during the

election?

1.59 TS Distributed Systems

EXTRAS

1.60 TS Distributed Systems

Elections in Wireless Environments

 Traditional Election algorithms assumed that

 Msg passing is reliable

 Topology does not change often

 But these are not realistic in wireless environments

 Mobile and ad hoc

 Handle failures and partition/join

1.61 TS Distributed Systems

Elections in Wireless Environments Ex

(a) Initial network. (b)–(e) The build-tree phase..

1.62 TS Distributed Systems

Elections in Large-Scale Systems (1)

Requirements for superpeer selection:

1. Normal nodes should have low-latency access to

superpeers.

2. Superpeers should be evenly distributed across the

overlay network.

3. There should be a predefined portion of superpeers

relative to the total number of nodes in the overlay

network.

4. Each superpeer should not need to serve more

than a fixed number of normal nodes.

1.63 TS Distributed Systems

Elections in Large-Scale Systems (2)

DHTs

 Reserve a fixed part of the ID space for superpeers.

 Example: if S superpeers are needed for a system

that uses m-bit identifiers, simply reserve the

k = log2S leftmost bits for superpeers. With N

nodes, we’ll have, on average, 2k−mN superpeers.

Routing to superpeer

 Send message for key p to node responsible for

 p AND 11· · ·1100· · ·00

1.64 TS Distributed Systems

Elections in Large-Scale Systems (3)

 Moving tokens in a two-dimensional space using

repulsion forces.

1.65 TS Distributed Systems

Summary

 Physical clock/time in distributed systems

 Logical clock/time and ‘Happen Before’ Relation

 Vector clocks

 Distributed synchronizations

 Election algorithms

