
1.1 TS Distributed Systems 

Chapter 7: CONSISTENCY AND 

REPLICATION  

Thanks to the authors of the textbook [TS] for providing the base slides. I made several changes/additions.  
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.  

So I would like to thank him, too.  
Turgay Korkmaz 

korkmaz@cs.utsa.edu 

How to keep all the copies same? 
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Chapter 7:  CONSISTENCY AND REPLICATION  

 INTRODUCTION  
 Reasons for Replication, Replication as Scaling Technique  

 DATA-CENTRIC CONSISTENCY MODELS  
 Continuous Consistency, Consistent Ordering of Operations  

 CLIENT-CENTRIC CONSISTENCY MODELS  
 Eventual Consistency  

 Monotonic Reads, Monotonic Writes  

 Read Your Writes, Writes Follow Reads  

 REPLICA MANAGEMENT  
 Replica-Server Placement, Content Replication and Placement  

 Content Distribution 

 CONSISTENCY PROTOCOLS  
 Continuous Consistency  

 Primary-Based Protocols  

 Replicated-Write Protocols  

 Cache-Coherence Protocols  

 Implementing Client-Centric Consistency  
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Objectives 

 To understand replication and related issues in 

DS 

 To learn about how to keep multiple replicas 

consistent with each other   
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Reasons for Replication 

 Data are replicated  

 To increase the reliability of a system. 

 To improve performance 

Scaling in numbers 

Scaling in geographical area (e.g., place copies of data 

close to the processes using them. So clients can quickly 

access the content.) 

 Problems 

 How to keep replicas consistent  

Distribute replicas 

Propagate modifications 

 Cost of increased resources and bandwidth for 

maintaining consistent replications 
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Does it itself Scale? 

 What if there is an update? 

 Update all in an atomic way (sync replication) 

 To keep replicas consistent, we generally need to ensure 

that all conflicting operations are done in the same order 

everywhere 

Read–write conflict: a read operation and a write operation act 

concurrently 

Write–write conflict: two concurrent write operations 

 This itself may create scalability problem, making the 

cure worse than the disease!  

 Solution 

 Loosen the consistency constraint so that hopefully 

global synchronization can be avoided 

 Depends on application but improves performance 
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CONSISTENCY MODELS 

Data-centric 

Client-centric 
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Data-centric Consistency Models 

 A contract between a (distributed) data store and 

processes, in which the data store specifies precisely 

what the results of read and write operations are in the 

presence of concurrency. Read the last write! 

 

A data store is a 

distributed 

collection of 

storages, R-W 
 

System-wide 

consistency 
 

Without a global clock, it is hard to define precisely which write is the last 

one! So we need other definitions [degree/range of consistency] 
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Continuous Consistency 

 We can actually talk about a degree of consistency: 

 replicas may differ in their numerical value 

 replicas may differ in their relative staleness 

 there may be differences with respect to number and 

order of performed update operations 

 Examples 

 Replication of stock market prices (e.g., no more than 

$.02 or 0.5% difference between any two copies) 

 Duration of updates (e.g., weather reports stay accurate 

over some time, web pages) 

 Order of operations could be different (e.g., see next slide) 

 



1.9 TS Distributed Systems 

Continuous Consistency (cont’d) 

 Conit (Consistency unit ) specifies the data unit over 

which consistency is to be measured (e.g., a stock value) 

 An example of keeping track of consistency deviations 

Conit (contains the 
variables x and y) 

 Each replica maintains a 

vector clock  

 B sends A operation        

<5,B>: x := x +2;  

 A has made this operation 

permanent (cannot be rolled 

back) 

 A has three pending 

operations  order deviation 

= 3 

 A has missed one operation 

from B, yielding a max diff of 

5 units  (1,5) 
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CONSISTENT ORDERING OF 

OPERATIONS 

How to reach a global order of operations applied to replicated data so 

we can provide a system-wide consistent view on data store? 

Comes from concurrent programming. 

 Sequential consistency 

 Causal consistency 
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Sequential Consistency (1) 

 The result of any execution is the same as if the 

operations of all processes were executed in some 

sequential order, and the operations of each 

individual process appear in this sequence in the 

order specified by its program. 

 Behavior of two processes operating  

on the same data item. The horizontal axis is time. 

 

 

 it took sometime to propagate new value of x  
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Sequential Consistency (2) 

 Any valid interleaving of R and W is acceptable as long as 

all processes see the same interleaving of operations.  

 Everyone sees all W in the same order 

 (a) A sequentially 

consistent data store.  

 (b) A data store that is 

not sequentially 

consistent. Why? 
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Sequential Consistency (3) 

 Three concurrently-executing processes. 

valid execution sequences  
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Causal Consistency (1) 

 Weakening of sequential consistency 

 Instead of all, only causally related W should be seen in 

the same order… 

 For a data store to be considered causally 

consistent, it is necessary that the store obeys the 

following condition: 

 Writes that are potentially causally related must be seen 

by all processes in the same order.  

 Concurrent writes may be seen in a different order on  

different machines. 

 If event b is caused by an earlier event a, ab 

 P1: Wx P2: Rx then Wy, then Wx  Wy (potentially causally related) 
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Causal Consistency (2) 

 This sequence is allowed with a causally-consistent 

store, but not with a sequentially consistent store. 

(a) A violation of a causally-
consistent store 

(b) A correct sequence of events 
in a causally-consistent store. 

Implementing causal consistency requires keeping track of which processes have 
seen which writes… 
Construct a dependency graph using vector timestamps… 
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Grouping Operations (1) 

 Previous R and W granularities are due to historic 

reason (they were developed for shared-memory multiprocessor systems) 

 In a DS, instead of making each R and W 

immediately known to other processes, we just 

want the effect of the series of such operations to 

be known.  

 So use synchronization  

 Enter_CS … multiple R and W… Leave_CS 

 Level of granularity is increased 
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Grouping Operations (2) 

 Semantic for Synchronization variables 
 Accesses to synchronization variables are sequentially consistent. 

 No access to a synchronization variable is allowed to be performed 

until all previous writes have completed everywhere. 

 No data access is allowed to be performed until all previous 

accesses to synchronization variables have been performed. 

 A valid event sequence for entry consistency. 

 

 

 

 How to associate data with sync variables: 

 Explicit tell middleware which sync var is for which data 

 Implicit (like one lock per obj in OO) 
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CLIENT-CENTRIC 

CONSISTENCY MODELS 

Show how we can perhaps avoid data-centric (system-wide) 

consistency, by concentrating on what specific clients want, instead 

of what should be maintained by all servers as in data-centric 

models. 
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Eventual Consistency (1) 

 Observation: In some applications, most 

processes hardly ever perform updates while a 

few do updates 

 How fast updates should be made available to 

only reading processes (e.g., DNS) 

 Consider WWW pages… 

To improve performance clients cache web pages. Caches 

might be inconsistent with original page for some time… 

Eventually all will be brought up to date 

 Eventual consistency:  

 If no updates take place for a long time, all 

replicas will become consistent  
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Eventual Consistency (2) 

 As long as a client access the 

same replica, then there is   

no problem…  

 But when the client (mobile 

one) accesses different 

replica, then we have a 

problem… 
Example: Consider a distributed database to which you have access through 
your notebook. Assume your notebook acts as a front end to the database. 

 At location A, you access the database doing reads and updates. 

 At location B, you continue your work, but unless you access the same server as the one at 

location A, you may detect inconsistencies: 

 your updates at A may not have yet been propagated to B 

 you may be reading newer entries than the ones available at A 

 your updates at B may eventually conflict with those at A 

A 

B 
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Eventual Consistency (3) 

 In the previous example, the only thing we really 

want is that the entries we updated and/or read at 

A are in B the way we left them in A.  

 This way the database will appear to be consistent 

to us (client). 

 That is what client-centric consistency is all about! 

 There are four models under the following settings: 

 All R & W are performed locally 

  and eventually propagated to all 

 Data items have an associated  

 owner which is permitted to modify  

 data to avoid W-W conflicts 

 

 
Monotonic Reads  

Monotonic Writes  

Read Your Writes  

Writes Follow Reads  
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Monotonic Reads 

A data store is said to provide monotonic-read consistency if the following condition holds: 

 If a process reads the value of a data item x, any 

successive read operation on x by that process will 

always return that same value or a more recent 

value. 

(a) A monotonic-read consistent 
data store 

(b) A data store that does not provide 
monotonic reads. 

Example 1: Automatically reading your personal calendar updates from different servers. Monotonic Reads guarantees 
that the user sees all updates, no matter from which server the automatic reading takes place. 

Example 2: Reading (not modifying) incoming mail while you are on the move. Each time you connect to a different e-
mail server, that server fetches (at least) all the updates from the server you previously visited. 

We know that x1 at L1  
is propagated to L2 

IMP: When a client reads from a server, that server gets the clients R set to check if 

all Ws have taken place locally. If not, it contacts the other servers to ensure that 

it is brought up to date before read operation   
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Monotonic Writes   

In a monotonic-write consistent store, the following condition holds: 

 A write operation by a process on a data item x,  is 

completed before any successive write operation 

on x by the same process. 

(a) A monotonic-write 
consistent data store.  

(b) A data store that does not provide 
monotonic-write consistency. 

Example 1: Updating a program at server S2, and ensuring that all components on which 
compilation and linking depends, are also placed at S2. 

Example 2: Maintaining versions of replicated files in the correct order everywhere 
(propagate the previous version to the server where the newest version is installed). 

IMP: When a client initiates W at a server, the server gets 
client’s W set and makes sure identified W operations 
performed first and in correct order 
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Read Your Writes 

A data store is said to provide read-your-writes consistency, if the following condition holds: 

 The effect of a write operation by a process on data 

item x will always be seen by a successive read 

operation on x by the same process. 

(a) A data store that provides  
read-your writes consistency.  

(b) A data store that does not. 

Example: Updating your Web page and guaranteeing that your Web browser shows 
the newest version instead of its cached copy. 

IMP: The server  where the read operation is performed has 
seen all the write operations in client’s W set. Simple fetch 
writes from other servers before read 
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Writes Follow Reads 

A data store is said to provide writes-follow-reads consistency, if the following holds: 

 A write operation by a process on a data item x 

following a previous read operation on x by the 

same process is guaranteed to take place on the 

same or a more recent value of x that was read. 

(a) A writes-follow-reads consistent 
data store.  

(b) A data store that does not provide 
writes-follow-reads consistency. 

Example: See reactions to posted articles only if you have the original posting (a read 
“pulls in” the corresponding write operation). 

   Bring the selected server up to date with the write 
operations in client’s R set 
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REPLICA MANAGEMENT 

Where, when, and by whom replicas should be placed and 

Which mechanisms to use for keeping them consistent? 

 

Placement of 

 Servers (find the best location) 

 Content (find the best server)  
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Replica-Server Placement 

 K out of N locations need to be selected:  

 take distances between clients and possible locations 

and min distance. 

 Look at AS view of the Internet, put server into 

ASes with larger degree 

 Position nodes in m-

dim geometric space 

and identify K largest 

cells 

 How to choose a 

proper cell size for 

server placement? 
Appropriate cell size can be computed as a function of average distance 
between the nodes and number of required replicas O(Nxmax{log(N),K}) 
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Content Replication and Placement 

 Permanent replicas: Initial set of processes and  

machines always having a replica (web site mirrors) 

 Server-initiated replica: Processes can dynamically 

host a replica on request of another server in the data 

store (move popular files toward clients) 

 Client-initiated replica: Processes can dynamically 

host a replica on request of a client (client cache) 
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Server-Initiated Replicas 

 How to determine which files need to be replicated 

and where? 

 Counting access requests from different clients. 
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Client-Initiated Replicas 

 Client caches 

 Local storage, management is left to client 

 Keep it for a limited time  

 For consistency client may want server to cooperate 

 (modified-since-then.. In HTML) 

 Cache hit rate is important for performance 

 Server-initiated is becoming more common than 

client-initiated…. Why? 
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CONTENT DISTRIBUTION 

 

How to propagate the updated content to the relevant replicas? 
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State versus Operations 

What is to be propagated: 

1. Propagate only a notification of an update. 

 Invalidation protocols use notifications to inform others 

+ little network overhed 

+ good when W >> R (r/w is small) 

2. Transfer data from one copy to another. 

+ good when W << R (r/w is high) 

3. Propagate the update operation to other copies. 

+ little network overhead 

 - requires same computation power at each replica 

 No single approach is the best, highly depends on 

available bandwidth and r/w ratio at replicas. 
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 Pushing updates:  

 server-initiated approach, in which update is propagated 

regardless whether target asked for it. + good if r/w is high 

 Pulling updates:  

 client-initiated approach, in which client requests to be 

updated. + good if r/w is low 

 

 

 

 We can dynamically switch between pulling and 

pushing using leases (a hybrid form): 

 Lease is a contract in which the server promises to 

push updates to the client until the lease expires. 

Pull versus Push Protocols 
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Lease-based Hybrid Form 
How to determine lease expiration time? 

 Make it dependent on system’s behavior 

(adaptive leases): 

 Age-based leases: An object that hasn’t changed for a 

long time, will not change in the near future, so provide 

a long-lasting lease 

 Renewal-frequency based leases: The more often a 

client requests a specific object, the longer the 

expiration time for that client (for that object) will be 

 State-based leases: The more loaded a server is, the 

shorter the expiration times become 

 Question 

 Why are we doing all this? 
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Unicast vs. Multicast 

 +/- 

 N separate send vs. one send to N servers 

 Pull-based--- unicast  

 Push-based– multicast (broadcast in LAN)  
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CONSISTENCY PROTOCOLS 

Describes the implementation of a specific consistency model. 

     Continuous consistency 

     Primary-based protocols 

     Replicated-write protocols 

     Cache-coherence protocols 

 

Client-centric Consistency (we already mentioned naïve ways) 

Data-centric 
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PRIMARY-BASED 

PROTOCOLS 

 

 

 

How to get globally consistent ordering? 

 

Remote-Write Protocols 

Local-Write Protocols 
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Primary-based Protocols: 
Remote-Write Protocols (primary-backup) 

 All W need to be forwarded to a fixed single server 

 Straightforward implementation of sequential consistency 

 - blocking (non-blocking update is possible) 
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Primary-based Protocols:  
Local-Write Protocols 

 the primary copy migrates between the processes 

wanting to perform an update.  

 

 

 

 

 

 
 also useful for mobile computers that can operate in 

disconnected mode (mobile node becomes the primary before disconnect)  

 Can be nonblocking for better performance 
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REPLICATED-WRITE 

PROTOCOLS 

Carry out W operations at multiple replicas  

 instead of one as in primary-based protocol 

 

Active Replication 

Quorum-Based Protocols 
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Replicated-Write Protocols: 
Active Replication 

 An operation is sent to every replica 

 Execute operations in the same order everywhere,  

 For this, we need a totally-ordered multicast 
(which can be implemented using Lamport’s logical clock) 

 But it does not scale well in large DS 

 Instead use a central coordinator (sequencer) that 

assigns a unique sequence number to each W and 

forwards it to all replicas… 

 +/- ? 
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Replicated-Write Protocols: 
Quorum-Based Protocols (1) 

 Ensure that each operation is carried out in such a 

way that a majority vote is established:  

 Example: Suppose a file is replicated on N servers 

 To update a file, contact at least N/2+1 servers. If they 

agree, change the file and associate a new version # 

 To read, contact at least N/2+1 servers. If all version 

numbers are the same, this is the most recent version…  

 Gifford’s scheme generalized this idea by 

distinguishing  

 NR: read quorum and  

 Nw: write quorum  that are subject to: 

        NR + Nw > N   

       Nw > N/2  

  

 prevent read-write conflicts  
prevent write-write conflicts 
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Replicated-Write Protocols: 
Quorum-Based Protocols (2) 

(a) A correct 
choice of read 
and write set.  

(b) A choice that may 
lead to write-write 
conflicts.  

(c) A correct choice, 
known as ROWA 
(read one, write all). 

NR + Nw > N   
Nw > N/2 

 prevent read-write conflicts  
prevent write-write conflicts 
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CLIENT-CENTRIC 

CONSISTENCY 

 

Straightforward if performance issues are ignored 
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A Naïve implementation 

 Each W is assigned a globally unique ID by the 

server to which W is submitted 

 For each client, keep track of  two sets of W:  

 R set: W relevant for the R performed by the client 

 W set: W performed by the client 

 Monotonic Reads  

 When a client reads from a 

server, that server gets the 

clients R set to check if all Ws 

have taken place locally. If not, 

it contacts the other servers to 

ensure that it is brought up to 

date before read operation   
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A Naïve implementation 

 Monotonic Writes  

 When a client initiates W at a server, 

the server gets client’s W set and 

makes sure identified W operations 

performed first and in correct order 

 Read Your Writes  

 The server  where the read operation 

is performed has seen all the write 

operations in client’s W set. Simple 

fetch writes from other servers before 

read 

 Writes Follow Reads  

 Bring the selected server up to date 

with the write operations in client’s R 

set 
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EXTRAS 
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CONTINUOUS CONSISTENCY 

Bounding numerical error 

Bounding Staleness  

Bounding Ordering Deviations 
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Continuous Consistency:  
Bounding numerical error (1) 

 Consider a data item x and let weight(W) denote 

the numerical change in its value after a write 

operation W.  Assume that W : weight(W) > 0. 

 W is initially forwarded to one of the N replicas, 

denoted as origin(W). 

 Si keeps track of Li of writes performed on its own 

local copy 

 TW[i, j] are the writes executed by server Si that 

originated from Sj: (aggregated writes submitted to Si): 

 TW[i, j] = {weight(W) | origin(W) = Sj and W  Li} 
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Continuous Consistency:  
Bounding numerical error (2) 

   
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Continuous Consistency:  
Bounding numerical error (3) 

General Approach: 

 Let every server Sk maintain a view TWk[i, j] of 

what it believes is the value of TW[i, j].  

 Note that: 

 This information can be gossiped when an update 

is propagated.  

Solution 

 Sk sends operations from its log Lk to Si when it 

sees that TWk[i,k] is getting too far from TW[k,k], in 

particular, when TW[k,k]−TWk [i,k] > i / (N −1). 
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Continuous Consistency:  
Bounding Staleness Deviation 

Solution (analogous to previous one): 

 Let every server Sk maintain a real-time vector 

clock RVCk[i] = T(i) to keep track of what has been 

seen last from Si 

 Suppose servers are loosely synchronized … 

 Then, when Sk notes that T(k) - RVCk[i] is about to 

exceed the given time limit, then it starts pulling 

writes  that are originated from Si with a timestamp 

latter than RVCk[i]  
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Continuous Consistency:  
Bounding Ordering Deviation 

 Each server will have a queue for tentative writes 

for which the actual order needs to be determined  

 Specify the maximum length for these queues 

 When the length at Sk exceeds the limit, Sk will no 

longer accepts any new writes and try to commit 

tentative writes after negotiating the correct order 

with other servers (i.e., we need global ordering of 

tentative writes) 

 For this, primary-based or quorum-based protocols 

can be used which are discussed next…. 
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CACHE-COHERENCE 

PROTOCOLS 

 

Special case of replication controlled by client, but from 

consistency point of view they are similar to what we discussed so 

far… 
 

Much work is done in the context of shared-memory systems and 

use hardware support 
 

Solution should be software based in the context of DS 

 When inconsistencies are actually detected? 

 How caches are kept consistent with the copies at server? 
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Cache-coherence Protocols (when?) 

 Static: compiler inserts instructions to deal with 

inconsistency 

 Dynamic: (in DS) a check is made with the server to 

see if the cached data is modified 

 A distributed database may want to make sure that 

cached data is consistent before using it in a transaction 

 (optimistic) let process proceed while verification taking 

place. if it is consistent then performance improves; 

otherwise, abort transaction… 

 Check when about to commit  
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Cache-coherence Protocols (how?) 

Do not allow shared data to be cached: 

 Simple but limits performance improvements  

Suppose shared data is allowed to be cached   

 If the modification is done at server: 

1. Let the server send invalidation msg to all clients or 

2. Propagate the update 

 Which one would you select? Why? 

 If the modification is done at clients: 

 Write-through cache 

 Write-back cache 
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Cache-coherence Protocols (how?) 

 Write-through cache 

 Clients modified cached data and forward updates to  

server 

 Similar to primary-based local write (clients cache is 

temp-primary) 

 Client should have exclusive write permission to avoid w-

w conflicts 

 Write-back cache 

 Group multiple updates to further improve performance 

 Used in distributed file systems… 

 


