
1.1 TS Distributed Systems

Chapter 7: CONSISTENCY AND

REPLICATION

Thanks to the authors of the textbook [TS] for providing the base slides. I made several changes/additions.
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.

So I would like to thank him, too.
Turgay Korkmaz

korkmaz@cs.utsa.edu

How to keep all the copies same?

1.2 TS Distributed Systems

Chapter 7: CONSISTENCY AND REPLICATION

 INTRODUCTION
 Reasons for Replication, Replication as Scaling Technique

 DATA-CENTRIC CONSISTENCY MODELS
 Continuous Consistency, Consistent Ordering of Operations

 CLIENT-CENTRIC CONSISTENCY MODELS
 Eventual Consistency

 Monotonic Reads, Monotonic Writes

 Read Your Writes, Writes Follow Reads

 REPLICA MANAGEMENT
 Replica-Server Placement, Content Replication and Placement

 Content Distribution

 CONSISTENCY PROTOCOLS
 Continuous Consistency

 Primary-Based Protocols

 Replicated-Write Protocols

 Cache-Coherence Protocols

 Implementing Client-Centric Consistency

1.3 TS Distributed Systems

Objectives

 To understand replication and related issues in

DS

 To learn about how to keep multiple replicas

consistent with each other

1.4 TS Distributed Systems

Reasons for Replication

 Data are replicated

 To increase the reliability of a system.

 To improve performance

Scaling in numbers

Scaling in geographical area (e.g., place copies of data

close to the processes using them. So clients can quickly

access the content.)

 Problems

 How to keep replicas consistent

Distribute replicas

Propagate modifications

 Cost of increased resources and bandwidth for

maintaining consistent replications

1.5 TS Distributed Systems

Does it itself Scale?

 What if there is an update?

 Update all in an atomic way (sync replication)

 To keep replicas consistent, we generally need to ensure

that all conflicting operations are done in the same order

everywhere

Read–write conflict: a read operation and a write operation act

concurrently

Write–write conflict: two concurrent write operations

 This itself may create scalability problem, making the

cure worse than the disease!

 Solution

 Loosen the consistency constraint so that hopefully

global synchronization can be avoided

 Depends on application but improves performance

1.6 TS Distributed Systems

CONSISTENCY MODELS

Data-centric

Client-centric

1.7 TS Distributed Systems

Data-centric Consistency Models

 A contract between a (distributed) data store and

processes, in which the data store specifies precisely

what the results of read and write operations are in the

presence of concurrency. Read the last write!

A data store is a

distributed

collection of

storages, R-W

System-wide

consistency

Without a global clock, it is hard to define precisely which write is the last

one! So we need other definitions [degree/range of consistency]

1.8 TS Distributed Systems

Continuous Consistency

 We can actually talk about a degree of consistency:

 replicas may differ in their numerical value

 replicas may differ in their relative staleness

 there may be differences with respect to number and

order of performed update operations

 Examples

 Replication of stock market prices (e.g., no more than

$.02 or 0.5% difference between any two copies)

 Duration of updates (e.g., weather reports stay accurate

over some time, web pages)

 Order of operations could be different (e.g., see next slide)

1.9 TS Distributed Systems

Continuous Consistency (cont’d)

 Conit (Consistency unit) specifies the data unit over

which consistency is to be measured (e.g., a stock value)

 An example of keeping track of consistency deviations

Conit (contains the
variables x and y)

 Each replica maintains a

vector clock

 B sends A operation

<5,B>: x := x +2;

 A has made this operation

permanent (cannot be rolled

back)

 A has three pending

operations  order deviation

= 3

 A has missed one operation

from B, yielding a max diff of

5 units  (1,5)

1.10 TS Distributed Systems

CONSISTENT ORDERING OF

OPERATIONS

How to reach a global order of operations applied to replicated data so

we can provide a system-wide consistent view on data store?

Comes from concurrent programming.

 Sequential consistency

 Causal consistency

1.11 TS Distributed Systems

Sequential Consistency (1)

 The result of any execution is the same as if the

operations of all processes were executed in some

sequential order, and the operations of each

individual process appear in this sequence in the

order specified by its program.

 Behavior of two processes operating

on the same data item. The horizontal axis is time.

 it took sometime to propagate new value of x

1.12 TS Distributed Systems

Sequential Consistency (2)

 Any valid interleaving of R and W is acceptable as long as

all processes see the same interleaving of operations.

 Everyone sees all W in the same order

 (a) A sequentially

consistent data store.

 (b) A data store that is

not sequentially

consistent. Why?

1.13 TS Distributed Systems

Sequential Consistency (3)

 Three concurrently-executing processes.

valid execution sequences

1.14 TS Distributed Systems

Causal Consistency (1)

 Weakening of sequential consistency

 Instead of all, only causally related W should be seen in

the same order…

 For a data store to be considered causally

consistent, it is necessary that the store obeys the

following condition:

 Writes that are potentially causally related must be seen

by all processes in the same order.

 Concurrent writes may be seen in a different order on

different machines.

 If event b is caused by an earlier event a, ab

 P1: Wx P2: Rx then Wy, then Wx  Wy (potentially causally related)

1.15 TS Distributed Systems

Causal Consistency (2)

 This sequence is allowed with a causally-consistent

store, but not with a sequentially consistent store.

(a) A violation of a causally-
consistent store

(b) A correct sequence of events
in a causally-consistent store.

Implementing causal consistency requires keeping track of which processes have
seen which writes…
Construct a dependency graph using vector timestamps…

1.16 TS Distributed Systems

Grouping Operations (1)

 Previous R and W granularities are due to historic

reason (they were developed for shared-memory multiprocessor systems)

 In a DS, instead of making each R and W

immediately known to other processes, we just

want the effect of the series of such operations to

be known.

 So use synchronization

 Enter_CS … multiple R and W… Leave_CS

 Level of granularity is increased

1.17 TS Distributed Systems

Grouping Operations (2)

 Semantic for Synchronization variables
 Accesses to synchronization variables are sequentially consistent.

 No access to a synchronization variable is allowed to be performed

until all previous writes have completed everywhere.

 No data access is allowed to be performed until all previous

accesses to synchronization variables have been performed.

 A valid event sequence for entry consistency.

 How to associate data with sync variables:

 Explicit tell middleware which sync var is for which data

 Implicit (like one lock per obj in OO)

1.19 TS Distributed Systems

CLIENT-CENTRIC

CONSISTENCY MODELS

Show how we can perhaps avoid data-centric (system-wide)

consistency, by concentrating on what specific clients want, instead

of what should be maintained by all servers as in data-centric

models.

1.20 TS Distributed Systems

Eventual Consistency (1)

 Observation: In some applications, most

processes hardly ever perform updates while a

few do updates

 How fast updates should be made available to

only reading processes (e.g., DNS)

 Consider WWW pages…

To improve performance clients cache web pages. Caches

might be inconsistent with original page for some time…

Eventually all will be brought up to date

 Eventual consistency:

 If no updates take place for a long time, all

replicas will become consistent

1.21 TS Distributed Systems

Eventual Consistency (2)

 As long as a client access the

same replica, then there is

no problem…

 But when the client (mobile

one) accesses different

replica, then we have a

problem…
Example: Consider a distributed database to which you have access through
your notebook. Assume your notebook acts as a front end to the database.

 At location A, you access the database doing reads and updates.

 At location B, you continue your work, but unless you access the same server as the one at

location A, you may detect inconsistencies:

 your updates at A may not have yet been propagated to B

 you may be reading newer entries than the ones available at A

 your updates at B may eventually conflict with those at A

A

B

1.22 TS Distributed Systems

Eventual Consistency (3)

 In the previous example, the only thing we really

want is that the entries we updated and/or read at

A are in B the way we left them in A.

 This way the database will appear to be consistent

to us (client).

 That is what client-centric consistency is all about!

 There are four models under the following settings:

 All R & W are performed locally

 and eventually propagated to all

 Data items have an associated

 owner which is permitted to modify

 data to avoid W-W conflicts

Monotonic Reads

Monotonic Writes

Read Your Writes

Writes Follow Reads

1.23 TS Distributed Systems

Monotonic Reads

A data store is said to provide monotonic-read consistency if the following condition holds:

 If a process reads the value of a data item x, any

successive read operation on x by that process will

always return that same value or a more recent

value.

(a) A monotonic-read consistent
data store

(b) A data store that does not provide
monotonic reads.

Example 1: Automatically reading your personal calendar updates from different servers. Monotonic Reads guarantees
that the user sees all updates, no matter from which server the automatic reading takes place.

Example 2: Reading (not modifying) incoming mail while you are on the move. Each time you connect to a different e-
mail server, that server fetches (at least) all the updates from the server you previously visited.

We know that x1 at L1
is propagated to L2

IMP: When a client reads from a server, that server gets the clients R set to check if

all Ws have taken place locally. If not, it contacts the other servers to ensure that

it is brought up to date before read operation

1.24 TS Distributed Systems

Monotonic Writes

In a monotonic-write consistent store, the following condition holds:

 A write operation by a process on a data item x, is

completed before any successive write operation

on x by the same process.

(a) A monotonic-write
consistent data store.

(b) A data store that does not provide
monotonic-write consistency.

Example 1: Updating a program at server S2, and ensuring that all components on which
compilation and linking depends, are also placed at S2.

Example 2: Maintaining versions of replicated files in the correct order everywhere
(propagate the previous version to the server where the newest version is installed).

IMP: When a client initiates W at a server, the server gets
client’s W set and makes sure identified W operations
performed first and in correct order

1.25 TS Distributed Systems

Read Your Writes

A data store is said to provide read-your-writes consistency, if the following condition holds:

 The effect of a write operation by a process on data

item x will always be seen by a successive read

operation on x by the same process.

(a) A data store that provides
read-your writes consistency.

(b) A data store that does not.

Example: Updating your Web page and guaranteeing that your Web browser shows
the newest version instead of its cached copy.

IMP: The server where the read operation is performed has
seen all the write operations in client’s W set. Simple fetch
writes from other servers before read

1.26 TS Distributed Systems

Writes Follow Reads

A data store is said to provide writes-follow-reads consistency, if the following holds:

 A write operation by a process on a data item x

following a previous read operation on x by the

same process is guaranteed to take place on the

same or a more recent value of x that was read.

(a) A writes-follow-reads consistent
data store.

(b) A data store that does not provide
writes-follow-reads consistency.

Example: See reactions to posted articles only if you have the original posting (a read
“pulls in” the corresponding write operation).

 Bring the selected server up to date with the write
operations in client’s R set

1.27 TS Distributed Systems

REPLICA MANAGEMENT

Where, when, and by whom replicas should be placed and

Which mechanisms to use for keeping them consistent?

Placement of

 Servers (find the best location)

 Content (find the best server)

1.28 TS Distributed Systems

Replica-Server Placement

 K out of N locations need to be selected:

 take distances between clients and possible locations

and min distance.

 Look at AS view of the Internet, put server into

ASes with larger degree

 Position nodes in m-

dim geometric space

and identify K largest

cells

 How to choose a

proper cell size for

server placement?
Appropriate cell size can be computed as a function of average distance
between the nodes and number of required replicas O(Nxmax{log(N),K})

1.29 TS Distributed Systems

Content Replication and Placement

 Permanent replicas: Initial set of processes and

machines always having a replica (web site mirrors)

 Server-initiated replica: Processes can dynamically

host a replica on request of another server in the data

store (move popular files toward clients)

 Client-initiated replica: Processes can dynamically

host a replica on request of a client (client cache)

1.30 TS Distributed Systems

Server-Initiated Replicas

 How to determine which files need to be replicated

and where?

 Counting access requests from different clients.

1.31 TS Distributed Systems

Client-Initiated Replicas

 Client caches

 Local storage, management is left to client

 Keep it for a limited time

 For consistency client may want server to cooperate

 (modified-since-then.. In HTML)

 Cache hit rate is important for performance

 Server-initiated is becoming more common than

client-initiated…. Why?

1.32 TS Distributed Systems

CONTENT DISTRIBUTION

How to propagate the updated content to the relevant replicas?

1.33 TS Distributed Systems

State versus Operations

What is to be propagated:

1. Propagate only a notification of an update.

 Invalidation protocols use notifications to inform others

+ little network overhed

+ good when W >> R (r/w is small)

2. Transfer data from one copy to another.

+ good when W << R (r/w is high)

3. Propagate the update operation to other copies.

+ little network overhead

 - requires same computation power at each replica

 No single approach is the best, highly depends on

available bandwidth and r/w ratio at replicas.

1.34 TS Distributed Systems

 Pushing updates:

 server-initiated approach, in which update is propagated

regardless whether target asked for it. + good if r/w is high

 Pulling updates:

 client-initiated approach, in which client requests to be

updated. + good if r/w is low

 We can dynamically switch between pulling and

pushing using leases (a hybrid form):

 Lease is a contract in which the server promises to

push updates to the client until the lease expires.

Pull versus Push Protocols

1.35 TS Distributed Systems

Lease-based Hybrid Form
How to determine lease expiration time?

 Make it dependent on system’s behavior

(adaptive leases):

 Age-based leases: An object that hasn’t changed for a

long time, will not change in the near future, so provide

a long-lasting lease

 Renewal-frequency based leases: The more often a

client requests a specific object, the longer the

expiration time for that client (for that object) will be

 State-based leases: The more loaded a server is, the

shorter the expiration times become

 Question

 Why are we doing all this?

1.36 TS Distributed Systems

Unicast vs. Multicast

 +/-

 N separate send vs. one send to N servers

 Pull-based--- unicast

 Push-based– multicast (broadcast in LAN)

1.37 TS Distributed Systems

CONSISTENCY PROTOCOLS

Describes the implementation of a specific consistency model.

 Continuous consistency

 Primary-based protocols

 Replicated-write protocols

 Cache-coherence protocols

Client-centric Consistency (we already mentioned naïve ways)

Data-centric

1.38 TS Distributed Systems

PRIMARY-BASED

PROTOCOLS

How to get globally consistent ordering?

Remote-Write Protocols

Local-Write Protocols

1.39 TS Distributed Systems

Primary-based Protocols:
Remote-Write Protocols (primary-backup)

 All W need to be forwarded to a fixed single server

 Straightforward implementation of sequential consistency

 - blocking (non-blocking update is possible)

1.40 TS Distributed Systems

Primary-based Protocols:
Local-Write Protocols

 the primary copy migrates between the processes

wanting to perform an update.

 also useful for mobile computers that can operate in

disconnected mode (mobile node becomes the primary before disconnect)

 Can be nonblocking for better performance

1.41 TS Distributed Systems

REPLICATED-WRITE

PROTOCOLS

Carry out W operations at multiple replicas

 instead of one as in primary-based protocol

Active Replication

Quorum-Based Protocols

1.42 TS Distributed Systems

Replicated-Write Protocols:
Active Replication

 An operation is sent to every replica

 Execute operations in the same order everywhere,

 For this, we need a totally-ordered multicast
(which can be implemented using Lamport’s logical clock)

 But it does not scale well in large DS

 Instead use a central coordinator (sequencer) that

assigns a unique sequence number to each W and

forwards it to all replicas…

 +/- ?

1.43 TS Distributed Systems

Replicated-Write Protocols:
Quorum-Based Protocols (1)

 Ensure that each operation is carried out in such a

way that a majority vote is established:

 Example: Suppose a file is replicated on N servers

 To update a file, contact at least N/2+1 servers. If they

agree, change the file and associate a new version #

 To read, contact at least N/2+1 servers. If all version

numbers are the same, this is the most recent version…

 Gifford’s scheme generalized this idea by

distinguishing

 NR: read quorum and

 Nw: write quorum that are subject to:

 NR + Nw > N

 Nw > N/2

 prevent read-write conflicts
prevent write-write conflicts

1.44 TS Distributed Systems

Replicated-Write Protocols:
Quorum-Based Protocols (2)

(a) A correct
choice of read
and write set.

(b) A choice that may
lead to write-write
conflicts.

(c) A correct choice,
known as ROWA
(read one, write all).

NR + Nw > N
Nw > N/2

 prevent read-write conflicts
prevent write-write conflicts

1.45 TS Distributed Systems

CLIENT-CENTRIC

CONSISTENCY

Straightforward if performance issues are ignored

1.46 TS Distributed Systems

A Naïve implementation

 Each W is assigned a globally unique ID by the

server to which W is submitted

 For each client, keep track of two sets of W:

 R set: W relevant for the R performed by the client

 W set: W performed by the client

 Monotonic Reads

 When a client reads from a

server, that server gets the

clients R set to check if all Ws

have taken place locally. If not,

it contacts the other servers to

ensure that it is brought up to

date before read operation

1.47 TS Distributed Systems

A Naïve implementation

 Monotonic Writes

 When a client initiates W at a server,

the server gets client’s W set and

makes sure identified W operations

performed first and in correct order

 Read Your Writes

 The server where the read operation

is performed has seen all the write

operations in client’s W set. Simple

fetch writes from other servers before

read

 Writes Follow Reads

 Bring the selected server up to date

with the write operations in client’s R

set

1.48 TS Distributed Systems

EXTRAS

1.49 TS Distributed Systems

CONTINUOUS CONSISTENCY

Bounding numerical error

Bounding Staleness

Bounding Ordering Deviations

1.50 TS Distributed Systems

Continuous Consistency:
Bounding numerical error (1)

 Consider a data item x and let weight(W) denote

the numerical change in its value after a write

operation W. Assume that W : weight(W) > 0.

 W is initially forwarded to one of the N replicas,

denoted as origin(W).

 Si keeps track of Li of writes performed on its own

local copy

 TW[i, j] are the writes executed by server Si that

originated from Sj: (aggregated writes submitted to Si):

 TW[i, j] = {weight(W) | origin(W) = Sj and W  Li}

1.51 TS Distributed Systems

Continuous Consistency:
Bounding numerical error (2)



1.52 TS Distributed Systems

Continuous Consistency:
Bounding numerical error (3)

General Approach:

 Let every server Sk maintain a view TWk[i, j] of

what it believes is the value of TW[i, j].

 Note that:

 This information can be gossiped when an update

is propagated.

Solution

 Sk sends operations from its log Lk to Si when it

sees that TWk[i,k] is getting too far from TW[k,k], in

particular, when TW[k,k]−TWk [i,k] > i / (N −1).

1.53 TS Distributed Systems

Continuous Consistency:
Bounding Staleness Deviation

Solution (analogous to previous one):

 Let every server Sk maintain a real-time vector

clock RVCk[i] = T(i) to keep track of what has been

seen last from Si

 Suppose servers are loosely synchronized …

 Then, when Sk notes that T(k) - RVCk[i] is about to

exceed the given time limit, then it starts pulling

writes that are originated from Si with a timestamp

latter than RVCk[i]

1.54 TS Distributed Systems

Continuous Consistency:
Bounding Ordering Deviation

 Each server will have a queue for tentative writes

for which the actual order needs to be determined

 Specify the maximum length for these queues

 When the length at Sk exceeds the limit, Sk will no

longer accepts any new writes and try to commit

tentative writes after negotiating the correct order

with other servers (i.e., we need global ordering of

tentative writes)

 For this, primary-based or quorum-based protocols

can be used which are discussed next….

1.55 TS Distributed Systems

CACHE-COHERENCE

PROTOCOLS

Special case of replication controlled by client, but from

consistency point of view they are similar to what we discussed so

far…

Much work is done in the context of shared-memory systems and

use hardware support

Solution should be software based in the context of DS

 When inconsistencies are actually detected?

 How caches are kept consistent with the copies at server?

1.56 TS Distributed Systems

Cache-coherence Protocols (when?)

 Static: compiler inserts instructions to deal with

inconsistency

 Dynamic: (in DS) a check is made with the server to

see if the cached data is modified

 A distributed database may want to make sure that

cached data is consistent before using it in a transaction

 (optimistic) let process proceed while verification taking

place. if it is consistent then performance improves;

otherwise, abort transaction…

 Check when about to commit

1.57 TS Distributed Systems

Cache-coherence Protocols (how?)

Do not allow shared data to be cached:

 Simple but limits performance improvements

Suppose shared data is allowed to be cached

 If the modification is done at server:

1. Let the server send invalidation msg to all clients or

2. Propagate the update

 Which one would you select? Why?

 If the modification is done at clients:

 Write-through cache

 Write-back cache

1.58 TS Distributed Systems

Cache-coherence Protocols (how?)

 Write-through cache

 Clients modified cached data and forward updates to

server

 Similar to primary-based local write (clients cache is

temp-primary)

 Client should have exclusive write permission to avoid w-

w conflicts

 Write-back cache

 Group multiple updates to further improve performance

 Used in distributed file systems…

