
1.1 TS Distributed Systems

Chapter 8: FAULT TOLERANCE I

Thanks to the authors of the textbook [TS] for providing the base slides. I made several changes/additions.
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.

So I would like to thank him, too.
Turgay Korkmaz

korkmaz@cs.utsa.edu

Continue to operate even when something goes wrong!

1.2 TS Distributed Systems

Chapter 8: FAULT TOLERANCE

 INTRODUCTION TO FAULT TOLERANCE
 Basic Concepts, Failure Models

 PROCESS RESILIENCE
 Design Issues, Failure Masking and Replication

 Agreement in Faulty Systems, Failure Detection

 RELIABLE CLIENT-SERVER COMMUNICATION
 Point-to-Point Communication, RPC Semantics

 RELIABLE GROUP COMMUNICATION
 Basic Reliable-Multicasting Schemes, Scalability

 Atomic Multicast

 DISTRIBUTED COMMIT
 Two-Phase Commit, Three-Phase Commit

 RECOVERY
 Introduction

 Checkpointing

 Message Logging

 Recovery-Oriented Computing

1.3 TS Distributed Systems

Objectives

 To understand failures and their implications

 To learn about how to deal with failures

1.4 TS Distributed Systems

What is Fault Tolerance?
From Merriam-webster:

 Failure is a state of inability to perform a normal

function (e.g., a received msg corrupted)

 Error is an act involving an unintentional deviation

from truth or accuracy (e.g., reading 1 instead of 0)

 Fault is ….
From our textbook

 Fault is the cause of an error that may need to a

failure (e.g., software bugs, broken line, or weather)

 It is important to find out what may cause an error

and construct the system in such a way that it can

tolerate faults (i.e., automatically recover and

continue to operate (e.g., re-transmit damaged msg))

1.5 TS Distributed Systems

Failure in….

Distributed Systems

 Failure is partial

 Some components

might be still working

 Entire system may

still function

Non-Distributed systems

 Failure is total

 All components would

be affected

 Entire system may be

down

Questions:

Can we hide the effects of faults?

Can we recover from partial failures?

Answers are strongly related to what are called

dependable systems

1.6 TS Distributed Systems

Dependable Systems

 A component provides services to clients. To

provide services, the component may require the

services from other components a component

may depend on some other component.

 Dependability implies the following:

 Availability ready to be used

 Reliability run continuously w/o failure

 Safety temp failure should not cause catastrophic happens

 Maintainability how easy to repair a failed system

 Security (ch 9)?

High availability == high reliability?

1.7 TS Distributed Systems

How to control faults?

 Fault prevention

 prevent the occurrence of a fault

 Fault removal

 reduce the presence, number, seriousness of faults

 Fault forecasting

 estimate the present number, future incidence, and the

consequences of faults

 Fault tolerance

 build a component in such a way that it can meet its

specifications in the presence of faults (i.e., mask the

presence of faults)

How to build a dependable system?

1.8 TS Distributed Systems

Types of Faults

 Transient faults

 Occur once and then disappear

 E.g., disturbance during wireless communication

 Try it again, it will work next time!

 Intermittent faults

 Disappear and reappear: unpredictable (and notorious)

 E.g., loose contact on a connector

 Hard to detect since it sometimes works or do not work!

 Permanent faults

 Continue to exist until faulty components are repaired/replaced

 E.g., software bugs or burnt out chips

1.9 TS Distributed Systems

Failure Models

There are various types of failures:

 Crash failure

 component simply halts, but behaves correctly before halting

 Omission failure

 component fails to receive or send

 Timing failure

 correct output, but lies outside a specified real-time interval

 Response failure
 incorrect response (wrong value or state transition)

 Arbitrary/Byzantine failure:

 Arbitrary/Malicious output

 Cannot be detected easily

In DS, we have a collection of servers and channels.
System may fail because servers, channels, or both are not working…

1.10 TS Distributed Systems

 How can clients distinguish between a crashed

component and one that is just a bit slow?

 Consider a server from which a client is expecting output

 Is the server perhaps exhibiting timing or omission failures?

 Is the channel between client and server faulty?

 Assumptions we can make

 Fail-stop : The component exhibits crash failures, but its
failure can be detected (either through announcement or
timeouts)

 Fail-silent : The component exhibits omission or crash
failures; clients cannot tell what went wrong

 Fail-safe : The component exhibits arbitrary, but benign
failures that cannot do any harm (e.g., junk output that can
be recognized)

Failure Detection

1.11 TS Distributed Systems

Fault Tolerance Techniques

 Redundancy: key technique to tolerate faults

 Hiding failures and effect of faults

 Recovery and rollback (more later in Section 8.6)

 Bringing system to a consistent state

1.12 TS Distributed Systems

Redundancy Techniques

 Information redundancy

 e.g., parity bit and Hamming codes

 Time redundancy

 Repeat action

 e.g., re-transmit a msg

 Physical (software/hardware) redundancy

 Replication

 e.g., extra CPUs, multi-versions of a software

1.13 TS Distributed Systems

Physical Redundancy
Triple Modular Redundancy (TMR)

 If A2 fails V1: majority vote B gets good result

 What if V1 fails?!

V1 V2 V3

1.14 TS Distributed Systems

TMR (cont.)

 Correct results are obtain via majority vote

 Mask ONE fault

bad

ok

ok ok

ok

ok

Assume that prob Vx fails is 0.1
What is the probability that the above system fails?

1.15 TS Distributed Systems

PROCESS RESILIENCE

Protect yourself against faulty processes by replicating and

distributing computations in a group.

1.16 TS Distributed Systems

Design Issues

 To tolerate a faulty process, organize several

identical processes into a group

 A group is a single abstraction of a collection of

processes

 So we can send a message to a group without explicitly

knowing who are they, how many are there, or where

are they (e.g., e-mail groups, newsgroups)

 Key property: When a message is sent, all members of

the group must receive it. So if one fails, the others can

take over for it.

 Groups could be dynamic

 So we need mechanisms to manage groups and

membership (e.g., join, leave, be part of two groups)

1.17 TS Distributed Systems

Flat vs. Hierarchical Groups

 Flat groups: information exchange

immediately occurs with all group

members

 + good for fault tolerance,

 + no single point of failure

 - may impose more overhead as

control is completely distributed

 - hard to implement

 Hierarchical groups: All

communication through a single

coordinator

 - not really fault tolerant or scalable,

 + but relatively easy to implement.

1.18 TS Distributed Systems

Group Membership
How to add/delete groups and manage join/leave groups?

 Centralized: have a group server to maintain a

database for each group and get these requests

 Efficient, easy to implement, but single point of failure

 Distributed:

 to join a group, a new process can send a message to all

group members that it wishes to join the group (Assume that

reliable multicasting is available)

 To leave, a process can ideally send a goodbye msg to

all, but if it crashes (not just slow) then the others should

discover that and remove it from the group!

 What if many leaves…. Re-build the group….

1.19 TS Distributed Systems

Failure masking by Replication

Use protocols from Ch 7:

 Primary-based

 Organize processes in an hierarchical fashion

 Primary coordinates all W operations

 Primary is fixed but its role can be taken by a backup

 If the primary fails, backups elect a new primary

 Replicated write protocols

 Organize processes into flat group

 W operations are performed using active replication or

quorum-based protocols

 No single point of failure, but distributed coordination cost

 How much replication is needed or enough?

1.20 TS Distributed Systems

Level of Redundancy
 K-Fault Tolerance

 A system is said to be k-fault tolerant if it can

survive faults in k components and still meet its

specifications….

 How many components (processes) do we need

to provide k-fault tolerance?

 Depends on what kind of faults can happen?

1.21 TS Distributed Systems

Level of Redundancy

 Assume crash failure semantics (i.e., fail-stop)

 k + 1 components are needed to survive k failures

 if k of them stops, the last one can still take over

 Ensure at least one functional component !

 Assume arbitrary/Byzantine (but non-malicious)
failure semantics (i.e., continue to run when sick
and send out random or erroneous replies)

 Suppose group output is defined by voting and
component failures are independent

 2k+1 components are needed

 If k wrong then (k+1) must be good to have majority

 Theoretically correct, but hard to convince: k+1 vs. k
(some statistical analysis is needed)

1.22 TS Distributed Systems

Level of Redundancy:
Agreement Problem

 Problem: Assume Byzantine (malicious) failure
semantics and need agreement on non-faulty
components

 Faulty components cooperate to cheat!!!

 3k+1 components are needed to tolerate k failures

 Agreement is possible only if more than two-thirds of
components work properly.

 In democracy, usually majority vote is enough but for
certain things 2/3 is required (e.g., CS bylaws). Why do
you think this might be the case?

1.23 TS Distributed Systems

Agreement in Faulty systems (1)

 A process group is required to reach an agreement

for many things (e.g., electing a coordinator, deciding to commit a

transaction or not, dividing tasks among workers, synchronization etc.),

 If all processes and communication channels are

perfect, it is easy to reach an agreement.

 But not!

 So the goal is to have all non-faulty processes

reach consensus and establish this consensus

within a finite number of steps!

 Solutions differ under different assumptions.

1.24 TS Distributed Systems

Reaching agreement is only possible for below cases

Agreement in Faulty systems (2)

Sync: if any process has taken c+1 steps,
 then every other has taken at least 1 step

Async: if not sync

In practice

1.25 TS Distributed Systems

Byzantine Agreement Problem

 N generals including k traitors

 Problems:

 Can trusted generals agree on

their army sizes?

 What should be N and k?

 Assumptions:

 Traitors can lie, others don’t know

who the traitors are

 Reliable communication channel

more specifically …

1.26 TS Distributed Systems

Lamport’s Agreement Algorithm

1. Each general i sends its army size vi to others

 Loyal generals tell the truth

 Traitors can lie

2. Each general collects received information as a

vector s.t. V[i] == vi if general i is non-faulty

3. Each general sends its vector to others

 Loyal generals send what they have

 Traitors can change the vectors

4. Each general determines vector elements by

voting among all vectors he/she receives

1.27 TS Distributed Systems

An Example: N=4, k=1

N = 3*k+1 for agreement

Majority vote?
1 got 2 got 3 got

1 2 ? 4 1 2 ? 4 1 2 ? 4

(d)

1.28 TS Distributed Systems

An Example: N=3, k=1

Fail to agree!

Majority vote?
1 got 2 got

? ? ? ? ? ?

(d)

For agreement, we need at least
2k+1 correctly functioning nodes
+ k faulty ones
so N is 3k+1….

1.29 TS Distributed Systems

Failure detection

 How can we decide if a node is failed or just slow?

 There are essentially two mechanisms:

 Actively send “Are you alive” and expect an answer or

passively wait until messages come from others

 Use timeouts:

Setting timeouts properly is difficult and application dependent

Premature timeouts generates false positives

You cannot distinguish process failures from network failures

 Also all non-faulty processes need to decide

(agree on) who is failed and still a member or not!

 Consider failure notification throughout the system:
 Gossiping (i.e., proactively disseminate a failure detection)

 On failure detection, pretend you failed as well to propagate it recursively

