
1.1 TS Distributed Systems 

Chapter 8: FAULT TOLERANCE I 

Thanks to the authors of the textbook [TS] for providing the base slides. I made several changes/additions.  
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.  

So I would like to thank him, too.  
Turgay Korkmaz 

korkmaz@cs.utsa.edu 

Continue to operate even when something goes wrong! 
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Chapter 8: FAULT TOLERANCE 

 INTRODUCTION TO FAULT TOLERANCE  
 Basic Concepts, Failure Models  

 PROCESS RESILIENCE  
 Design Issues, Failure Masking and Replication  

 Agreement in Faulty Systems, Failure Detection  

 RELIABLE CLIENT-SERVER COMMUNICATION  
 Point-to-Point Communication, RPC Semantics   

 RELIABLE GROUP COMMUNICATION  
 Basic Reliable-Multicasting Schemes, Scalability 

 Atomic Multicast  

 DISTRIBUTED COMMIT  
 Two-Phase Commit, Three-Phase Commit  

 RECOVERY  
 Introduction  

 Checkpointing  

 Message Logging  

 Recovery-Oriented Computing 
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Objectives 

 To understand failures and their implications  

 To learn about how to deal with failures 

   
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What is Fault Tolerance? 
From Merriam-webster: 

 Failure is a state of inability to perform a normal 

function (e.g., a received msg corrupted) 

 Error is an act involving an unintentional deviation 

from truth or accuracy (e.g., reading 1 instead of 0) 

 Fault is …. 
From our textbook 

 Fault is the cause of an error that may need to a 

failure (e.g., software bugs, broken line, or weather) 

 It is important to find out what may cause an error 

and construct the system in such a way that it can 

tolerate faults (i.e., automatically recover and 

continue to operate (e.g., re-transmit damaged msg) ) 
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Failure in…. 

Distributed Systems 

 Failure is partial 

 Some components 

might be still working 

 Entire system may 

still function 

Non-Distributed systems 

 Failure is total 

 All components would 

be affected 

 Entire system may be 

down 

Questions: 

Can we hide the effects of faults? 

Can we recover from partial failures? 

Answers are strongly related to what are called 

dependable systems 
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Dependable Systems  

 A component provides services to clients. To 

provide services, the component may require the 

services from other components  a component 

may depend on some other component. 

 Dependability implies the following: 

 Availability ready to be used 

 Reliability run continuously w/o failure 

 Safety  temp failure should not cause catastrophic happens 

 Maintainability how easy to repair a failed system 

 Security (ch 9)? 

High availability == high reliability? 
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How to control faults? 

 Fault prevention 

 prevent the occurrence of a fault 

 Fault removal 

 reduce the presence, number, seriousness of faults 

 Fault forecasting 

 estimate the present number, future incidence, and the 

consequences of faults 

 Fault tolerance 

 build a component in such a way that it can meet its 

specifications in the presence of faults (i.e., mask the 

presence of faults) 

 

How to build a dependable system? 
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Types of Faults 

 Transient faults 

 Occur once and then disappear 

 E.g., disturbance during wireless communication 

 Try it again, it will work next time! 

 Intermittent faults 

 Disappear and reappear: unpredictable (and notorious) 

 E.g., loose contact on a connector 

 Hard to detect since it sometimes works or do not work! 

 Permanent faults 

 Continue to exist until faulty components are repaired/replaced 

 E.g., software bugs or burnt out chips 
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Failure Models 

There are various types of failures: 

 Crash failure 

 component simply halts, but behaves correctly before halting 

 Omission failure 

 component fails to receive or send 

 Timing failure 

 correct output, but lies outside a specified real-time interval 

 Response failure 
 incorrect response (wrong value or state transition) 

 Arbitrary/Byzantine  failure:  

 Arbitrary/Malicious output 

 Cannot be detected easily 

In DS, we have a collection of servers and channels.  
System may fail because servers, channels, or both are not working…  
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 How can clients distinguish between a crashed 

component and one that is just a bit slow? 

 Consider a server from which a client is expecting output 

 Is the server perhaps exhibiting timing or omission failures? 

 Is the channel between client and server faulty? 

 Assumptions we can make 

 Fail-stop : The component exhibits crash failures, but its 
failure can be detected (either through announcement or 
timeouts)  

 Fail-silent : The component exhibits omission or crash 
failures; clients cannot tell what went wrong  

 Fail-safe : The component exhibits arbitrary, but benign 
failures that cannot do any harm (e.g., junk output that can 
be recognized) 

Failure Detection 



1.11 TS Distributed Systems 

Fault Tolerance Techniques 

 Redundancy: key technique to tolerate faults 

 Hiding failures and effect of faults 

 

 Recovery and rollback (more later in Section 8.6) 

 Bringing system to a consistent state 
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Redundancy Techniques 

 Information redundancy 

 e.g., parity bit and Hamming codes 

 

 Time redundancy 

 Repeat action 

 e.g., re-transmit a msg   

 

 Physical (software/hardware) redundancy 

 Replication   

 e.g., extra CPUs, multi-versions of a software 
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Physical Redundancy 
Triple Modular Redundancy (TMR) 

 If A2 fails  V1: majority vote  B gets good result 

 What if V1 fails?! 

V1 V2 V3 
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TMR (cont.) 

 Correct results are obtain via majority vote 

 Mask ONE fault  

bad 

ok 

ok ok 

ok 

ok 

Assume that prob Vx fails is 0.1 
What is the probability that the above system fails?  
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PROCESS RESILIENCE 

Protect yourself against faulty processes by replicating and 

distributing computations in a group. 
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Design Issues 

 To tolerate a faulty process, organize several 

identical processes into a group 

 A group is a single abstraction of a collection of 

processes 

 So we can send a message to a group without explicitly 

knowing who are they, how many are there, or where 

are they (e.g., e-mail groups, newsgroups) 

 Key property: When a message is sent, all members of 

the group must receive it. So if one fails, the others can 

take over for it. 

 Groups could be dynamic  

 So we need mechanisms to manage groups and 

membership (e.g., join, leave, be part of two groups) 
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Flat vs. Hierarchical Groups 

 Flat groups: information exchange 

immediately occurs with all group 

members 

 + good for fault tolerance,  

 + no single point of failure   

 - may impose more overhead as 

control is completely distributed  

 - hard to implement 

 Hierarchical groups: All 

communication through a single 

coordinator 

 - not really fault tolerant or scalable,  

 + but relatively easy to implement. 
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Group Membership 
How to add/delete groups and manage join/leave groups? 

 Centralized: have a group server to maintain a 

database for each group and get these requests 

 Efficient, easy to implement, but single point of failure 

 Distributed: 

 to join a group, a new process can send a message to all 

group members that it wishes to join the group (Assume that 

reliable multicasting is available) 

 To leave, a process can ideally send a goodbye msg to 

all, but if it crashes (not just slow) then the others should 

discover that and remove it from the group! 

 What if many leaves…. Re-build the group…. 
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Failure masking by Replication 

Use protocols from Ch 7: 

 Primary-based  

 Organize processes in an hierarchical fashion  

 Primary coordinates all W operations 

 Primary is fixed but its role can be taken by a backup 

 If the primary fails, backups elect a new primary 

 Replicated write protocols 

 Organize processes into flat group 

 W operations are performed using active replication or 

quorum-based protocols 

 No single point of failure, but distributed coordination cost 

 How much replication is needed or enough? 
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Level of Redundancy 
 K-Fault Tolerance 

 A system is said to be k-fault tolerant if it can 

survive faults in k components and still meet its 

specifications…. 

 How many components (processes) do we need 

to provide k-fault tolerance? 

 Depends on what kind of faults can happen? 
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Level of Redundancy 

 Assume crash failure semantics (i.e., fail-stop) 

 k + 1 components are needed to survive k failures 

 if k of them stops, the last one can still take over 

 Ensure at least one functional component !  

 Assume arbitrary/Byzantine (but non-malicious) 
failure semantics (i.e., continue to run when sick 
and send out random or erroneous replies)  

 Suppose group output is defined by voting and 
component failures are independent  

 2k+1 components are needed  

 If k wrong then (k+1) must be good to have majority 

 Theoretically correct, but hard to convince: k+1 vs. k 
(some statistical analysis is needed) 
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Level of Redundancy:  
Agreement Problem 

 Problem: Assume Byzantine (malicious) failure 
semantics and need agreement on non-faulty 
components 

 Faulty components cooperate to cheat!!! 

 3k+1 components are needed to tolerate k failures  

 Agreement is possible only if more than two-thirds of 
components work properly. 

 

 

 In democracy, usually majority vote is enough but for 
certain things 2/3 is required (e.g., CS bylaws). Why do 
you think this might be the case? 
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Agreement in Faulty systems (1) 

 A process group is required to reach an agreement  

for many things (e.g., electing a coordinator, deciding to commit a 

transaction or not, dividing tasks among workers, synchronization etc.),  

 If all processes and communication channels are 

perfect, it is easy to reach an agreement. 

 But not! 

 So the goal is to have all non-faulty processes 

reach consensus and establish this consensus 

within a finite number of steps! 

 Solutions differ under different assumptions. 
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Reaching agreement is only possible for below cases 

Agreement in Faulty systems (2) 

Sync: if any process has taken c+1 steps,  
         then every other has taken at least 1 step 
 
Async: if not sync 

In practice 
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Byzantine Agreement Problem 

 N generals including k traitors 
 

 Problems:  

 Can trusted generals agree on 

their army sizes?  

 What should be N and k? 
 

 Assumptions:  

 Traitors can lie, others don’t know 

who the traitors are   

 Reliable communication channel  

more specifically … 
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Lamport’s Agreement Algorithm 

1. Each general i sends its army size vi to others 

 Loyal generals tell the truth 

 Traitors can lie 

2. Each general collects received information as a 

vector s.t. V[i] == vi if general i is non-faulty 

3. Each general sends its vector to others 

 Loyal generals send what they have 

 Traitors can change the vectors 

4. Each general determines vector elements by 

voting among all vectors he/she receives 
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An Example: N=4, k=1 

N = 3*k+1 for agreement 

 
Majority vote? 
1 got      2 got 3 got 

1 2 ? 4      1 2 ? 4        1 2 ? 4 
 

(d) 
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An Example: N=3, k=1 

Fail to agree! 

Majority vote? 
1 got     2 got 

? ? ?         ? ? ?          

(d) 

For agreement, we need  at least 
2k+1 correctly functioning nodes 
+ k faulty ones  
so N is 3k+1….  
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Failure detection 

 How can we decide if a node is failed or just slow? 

 There are essentially two mechanisms: 

 Actively send “Are you alive” and expect an answer or 

passively wait until messages come from others 

 Use timeouts: 

Setting timeouts properly is difficult and application dependent 

Premature timeouts generates false positives 

You cannot distinguish process failures from network failures 

 Also all non-faulty processes need to decide 

(agree on) who is failed and still a member or not! 

 Consider failure notification throughout the system: 
 Gossiping (i.e., proactively disseminate a failure detection) 

 On failure detection, pretend you failed as well to propagate it recursively 

 

 


