
1.1 TS Distributed Systems

Chapter 8: FAULT TOLERANCE I

Thanks to the authors of the textbook [TS] for providing the base slides. I made several changes/additions.
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.

So I would like to thank him, too.
Turgay Korkmaz

korkmaz@cs.utsa.edu

Continue to operate even when something goes wrong!

1.2 TS Distributed Systems

Chapter 8: FAULT TOLERANCE

 INTRODUCTION TO FAULT TOLERANCE
 Basic Concepts, Failure Models

 PROCESS RESILIENCE
 Design Issues, Failure Masking and Replication

 Agreement in Faulty Systems, Failure Detection

 RELIABLE CLIENT-SERVER COMMUNICATION
 Point-to-Point Communication, RPC Semantics

 RELIABLE GROUP COMMUNICATION
 Basic Reliable-Multicasting Schemes, Scalability

 Atomic Multicast

 DISTRIBUTED COMMIT
 Two-Phase Commit, Three-Phase Commit

 RECOVERY
 Introduction

 Checkpointing

 Message Logging

 Recovery-Oriented Computing

1.3 TS Distributed Systems

Objectives

 To understand failures and their implications

 To learn about how to deal with failures



1.4 TS Distributed Systems

What is Fault Tolerance?
From Merriam-webster:

 Failure is a state of inability to perform a normal

function (e.g., a received msg corrupted)

 Error is an act involving an unintentional deviation

from truth or accuracy (e.g., reading 1 instead of 0)

 Fault is ….
From our textbook

 Fault is the cause of an error that may need to a

failure (e.g., software bugs, broken line, or weather)

 It is important to find out what may cause an error

and construct the system in such a way that it can

tolerate faults (i.e., automatically recover and

continue to operate (e.g., re-transmit damaged msg))

1.5 TS Distributed Systems

Failure in….

Distributed Systems

 Failure is partial

 Some components

might be still working

 Entire system may

still function

Non-Distributed systems

 Failure is total

 All components would

be affected

 Entire system may be

down

Questions:

Can we hide the effects of faults?

Can we recover from partial failures?

Answers are strongly related to what are called

dependable systems

1.6 TS Distributed Systems

Dependable Systems

 A component provides services to clients. To

provide services, the component may require the

services from other components  a component

may depend on some other component.

 Dependability implies the following:

 Availability ready to be used

 Reliability run continuously w/o failure

 Safety temp failure should not cause catastrophic happens

 Maintainability how easy to repair a failed system

 Security (ch 9)?

High availability == high reliability?

1.7 TS Distributed Systems

How to control faults?

 Fault prevention

 prevent the occurrence of a fault

 Fault removal

 reduce the presence, number, seriousness of faults

 Fault forecasting

 estimate the present number, future incidence, and the

consequences of faults

 Fault tolerance

 build a component in such a way that it can meet its

specifications in the presence of faults (i.e., mask the

presence of faults)

How to build a dependable system?

1.8 TS Distributed Systems

Types of Faults

 Transient faults

 Occur once and then disappear

 E.g., disturbance during wireless communication

 Try it again, it will work next time!

 Intermittent faults

 Disappear and reappear: unpredictable (and notorious)

 E.g., loose contact on a connector

 Hard to detect since it sometimes works or do not work!

 Permanent faults

 Continue to exist until faulty components are repaired/replaced

 E.g., software bugs or burnt out chips

1.9 TS Distributed Systems

Failure Models

There are various types of failures:

 Crash failure

 component simply halts, but behaves correctly before halting

 Omission failure

 component fails to receive or send

 Timing failure

 correct output, but lies outside a specified real-time interval

 Response failure
 incorrect response (wrong value or state transition)

 Arbitrary/Byzantine failure:

 Arbitrary/Malicious output

 Cannot be detected easily

In DS, we have a collection of servers and channels.
System may fail because servers, channels, or both are not working…

1.10 TS Distributed Systems

 How can clients distinguish between a crashed

component and one that is just a bit slow?

 Consider a server from which a client is expecting output

 Is the server perhaps exhibiting timing or omission failures?

 Is the channel between client and server faulty?

 Assumptions we can make

 Fail-stop : The component exhibits crash failures, but its
failure can be detected (either through announcement or
timeouts)

 Fail-silent : The component exhibits omission or crash
failures; clients cannot tell what went wrong

 Fail-safe : The component exhibits arbitrary, but benign
failures that cannot do any harm (e.g., junk output that can
be recognized)

Failure Detection

1.11 TS Distributed Systems

Fault Tolerance Techniques

 Redundancy: key technique to tolerate faults

 Hiding failures and effect of faults

 Recovery and rollback (more later in Section 8.6)

 Bringing system to a consistent state

1.12 TS Distributed Systems

Redundancy Techniques

 Information redundancy

 e.g., parity bit and Hamming codes

 Time redundancy

 Repeat action

 e.g., re-transmit a msg

 Physical (software/hardware) redundancy

 Replication

 e.g., extra CPUs, multi-versions of a software

1.13 TS Distributed Systems

Physical Redundancy
Triple Modular Redundancy (TMR)

 If A2 fails  V1: majority vote  B gets good result

 What if V1 fails?!

V1 V2 V3

1.14 TS Distributed Systems

TMR (cont.)

 Correct results are obtain via majority vote

 Mask ONE fault

bad

ok

ok ok

ok

ok

Assume that prob Vx fails is 0.1
What is the probability that the above system fails?

1.15 TS Distributed Systems

PROCESS RESILIENCE

Protect yourself against faulty processes by replicating and

distributing computations in a group.

1.16 TS Distributed Systems

Design Issues

 To tolerate a faulty process, organize several

identical processes into a group

 A group is a single abstraction of a collection of

processes

 So we can send a message to a group without explicitly

knowing who are they, how many are there, or where

are they (e.g., e-mail groups, newsgroups)

 Key property: When a message is sent, all members of

the group must receive it. So if one fails, the others can

take over for it.

 Groups could be dynamic

 So we need mechanisms to manage groups and

membership (e.g., join, leave, be part of two groups)

1.17 TS Distributed Systems

Flat vs. Hierarchical Groups

 Flat groups: information exchange

immediately occurs with all group

members

 + good for fault tolerance,

 + no single point of failure

 - may impose more overhead as

control is completely distributed

 - hard to implement

 Hierarchical groups: All

communication through a single

coordinator

 - not really fault tolerant or scalable,

 + but relatively easy to implement.

1.18 TS Distributed Systems

Group Membership
How to add/delete groups and manage join/leave groups?

 Centralized: have a group server to maintain a

database for each group and get these requests

 Efficient, easy to implement, but single point of failure

 Distributed:

 to join a group, a new process can send a message to all

group members that it wishes to join the group (Assume that

reliable multicasting is available)

 To leave, a process can ideally send a goodbye msg to

all, but if it crashes (not just slow) then the others should

discover that and remove it from the group!

 What if many leaves…. Re-build the group….

1.19 TS Distributed Systems

Failure masking by Replication

Use protocols from Ch 7:

 Primary-based

 Organize processes in an hierarchical fashion

 Primary coordinates all W operations

 Primary is fixed but its role can be taken by a backup

 If the primary fails, backups elect a new primary

 Replicated write protocols

 Organize processes into flat group

 W operations are performed using active replication or

quorum-based protocols

 No single point of failure, but distributed coordination cost

 How much replication is needed or enough?

1.20 TS Distributed Systems

Level of Redundancy
 K-Fault Tolerance

 A system is said to be k-fault tolerant if it can

survive faults in k components and still meet its

specifications….

 How many components (processes) do we need

to provide k-fault tolerance?

 Depends on what kind of faults can happen?

1.21 TS Distributed Systems

Level of Redundancy

 Assume crash failure semantics (i.e., fail-stop)

 k + 1 components are needed to survive k failures

 if k of them stops, the last one can still take over

 Ensure at least one functional component !

 Assume arbitrary/Byzantine (but non-malicious)
failure semantics (i.e., continue to run when sick
and send out random or erroneous replies)

 Suppose group output is defined by voting and
component failures are independent

 2k+1 components are needed

 If k wrong then (k+1) must be good to have majority

 Theoretically correct, but hard to convince: k+1 vs. k
(some statistical analysis is needed)

1.22 TS Distributed Systems

Level of Redundancy:
Agreement Problem

 Problem: Assume Byzantine (malicious) failure
semantics and need agreement on non-faulty
components

 Faulty components cooperate to cheat!!!

 3k+1 components are needed to tolerate k failures

 Agreement is possible only if more than two-thirds of
components work properly.

 In democracy, usually majority vote is enough but for
certain things 2/3 is required (e.g., CS bylaws). Why do
you think this might be the case?

1.23 TS Distributed Systems

Agreement in Faulty systems (1)

 A process group is required to reach an agreement

for many things (e.g., electing a coordinator, deciding to commit a

transaction or not, dividing tasks among workers, synchronization etc.),

 If all processes and communication channels are

perfect, it is easy to reach an agreement.

 But not!

 So the goal is to have all non-faulty processes

reach consensus and establish this consensus

within a finite number of steps!

 Solutions differ under different assumptions.

1.24 TS Distributed Systems

Reaching agreement is only possible for below cases

Agreement in Faulty systems (2)

Sync: if any process has taken c+1 steps,
 then every other has taken at least 1 step

Async: if not sync

In practice

1.25 TS Distributed Systems

Byzantine Agreement Problem

 N generals including k traitors

 Problems:

 Can trusted generals agree on

their army sizes?

 What should be N and k?

 Assumptions:

 Traitors can lie, others don’t know

who the traitors are

 Reliable communication channel

more specifically …

1.26 TS Distributed Systems

Lamport’s Agreement Algorithm

1. Each general i sends its army size vi to others

 Loyal generals tell the truth

 Traitors can lie

2. Each general collects received information as a

vector s.t. V[i] == vi if general i is non-faulty

3. Each general sends its vector to others

 Loyal generals send what they have

 Traitors can change the vectors

4. Each general determines vector elements by

voting among all vectors he/she receives

1.27 TS Distributed Systems

An Example: N=4, k=1

N = 3*k+1 for agreement

Majority vote?
1 got 2 got 3 got

1 2 ? 4 1 2 ? 4 1 2 ? 4

(d)

1.28 TS Distributed Systems

An Example: N=3, k=1

Fail to agree!

Majority vote?
1 got 2 got

? ? ? ? ? ?

(d)

For agreement, we need at least
2k+1 correctly functioning nodes
+ k faulty ones
so N is 3k+1….

1.29 TS Distributed Systems

Failure detection

 How can we decide if a node is failed or just slow?

 There are essentially two mechanisms:

 Actively send “Are you alive” and expect an answer or

passively wait until messages come from others

 Use timeouts:

Setting timeouts properly is difficult and application dependent

Premature timeouts generates false positives

You cannot distinguish process failures from network failures

 Also all non-faulty processes need to decide

(agree on) who is failed and still a member or not!

 Consider failure notification throughout the system:
 Gossiping (i.e., proactively disseminate a failure detection)

 On failure detection, pretend you failed as well to propagate it recursively

