
 1

Name / ID (please PRINT) Seq#:____ Seat #:_____

__

CS 3733.001 -- Operating system
Fall 2017 -- Midterm I -- Oct 5, 2017

You have 75 min. Good Luck!

 This is a closed book/note examination. But You can use C reference card(s) given to you..

 This exam has 5 questions in 9 pages. Please read each question carefully and answer all the

questions, which have 100 points in total. Feel free to ask questions if you have any doubts about

questions.

 Partial credit will be given, so do not leave questions blank.

__

You can get 2pt bonus credit if you complete the boldfaced two columns of the grading table below.

Please do this after answering the questions in the exam. Thanks!

Question

Topic

Possible

Points

Difficulty level of

this question

1: Easiest

5: Most difficulty

Student

Expects

Student

Received

1 Review questions, short

explanations

20

2 Program and Process,

static keyword, cmd line

20

3 CPU Scheduling 20

4 Unix I/O and file

operations, fork/exec

20

5 IPC: pipes -fifo 20

 Bonus 2

 Bonus for pipe quiz 4

Total 100+6

 2

1. [20 points] Answer the following questions with short explanations. You can also draw figures to better

explain your reasoning if needed.

a. [2pt] What are the goals of Operating System? Briefly explain/discuss.

Convenience: Make the computer convenient to use for general user and programmers..

Efficiency: Manage system resources in an efficient manner

b. [5pt] What are the two key mechanisms to interact with the Operating System kernel (1pt)? And

explain how they work (each 2pt)?

System Calls Interrupts

• User application calls a user-level library

routine (gettimeofday(), read(), exec(), etc.)

• Invokes system call through stub, which

specifies the system call number. From

unistd.h:

#define __NR_getpid 172

__SYSCALL(__NR_getpid, sys_getpid)

• This generally causes a software interrupt,

trapping to kernel

• Kernel looks up system call number in

syscall table, calls appropriate function

• Function executes and returns to interrupt

handler, which returns the result to the user

space process

1. The interrupt is issued

2. Processor finishes execution of current

instruction

3. Processor signals acknowledgement of

interrupt

4. Processor pushes PSW(Program Status

Word) and PC to control stack

5. Processor loads new PC value through the

interrupt vector

6. ISR saves remainder of the process state

information

7. ISR executes

8. ISR restores process state information

Old PSW and PC values are restored from the

control stack

 3

[if needed, here is extra space for question 1.b]

c. [2pt] What are the important information items stored in a generic Process Control Block (PCB)

structure. List at least 4 items (each 0.5 pt).

Registers: in addition to general registers

- Program Counter (PC): contains the memory address of the next instruction to be fetched.

- Stack Pointer (SP): points to the top of the current stack in memory. The stack contains one

frame for each procedure that has been entered but not yet exited.

- Program Status Word (PSW): contains the condition code bits and various other control bits

CPU scheduling information

Memory-management information

Accounting information

I/O status information

Thread synchronization and communication resource: semaphores and sockets

d. [2pt] Suppose you are asked to choose a CPU scheduling algorithm for a computing system where

most of the programs are interactive applications. If you are asked to choose only one scheduling

algorithm, which one would you choose (1pt)? And why (1pt)?

Round robin with relatively short quantum so that we can quickly serve each Interactive systems

Response/wait time: respond quickly to users’ requests

Proportionality: meet users’ expectations

 4

e. [4pt] There are two types of links in Unix/Linux: Hard and Symbolic/Soft links. Using diagrams

explain the difference between them.

Hard link: A hard link just creates another file (a new entry in directory) with a link to the same

underlying inode.

Symbolic/Soft link: link to another filename in the file system

f. [5pt] Suppose the following code sections are executed without any error. Draw the diagrams

showing the relationship between the file descriptors, pipes and processes (first one is given).

Code section Diagram after the execution of the code section

 int fda[2], fdb[2];

 pipe(fda);

 dup2(fda[0], STDIN_FILENO);

 dup2(fda[1], STDOUT_FILENO);

 close(fda[0]);

 close(fda[1]);

 pipe(fdb); // 2pt

 fork(); // 3pt

 5

2. [20 points] Program and Process, command-line arguments, static keyword , ...

a. [10 points] You are asked to implement a function char *next_label(); whose consecutive

calls will return labels like "Fig. 1", "Fig. 2", and so on. One possible solution is given

below. However, it is not safe (e.g., when the second label is generated the first one is overwritten).

Also it uses a global variable, which might be changed in other parts of the program. Re-implement

this function by avoiding the use of a global variable and making it thread safe.

int count=0;

char *next_label()

{

 static char b[10];

 count++;

 sprintf(b,"Fig. %d", count);

 return b;

}

char *next_label()

{

 static int count=0;

 char *b;

 b = malloc(10);

 if (!b) exit();

 count++;

 sprintf(b,"Fig. %d", count);

 return b;

}

b. [10 pt] Show the relationship among the process created in the following program and give at least

two possible outputs except a, b, c, d, e, f, g.

void main()

{

 printf("a\n");

 if (fork() == 0) {

 printf("b\n");

 if (fork() == 0) {

 printf("c\n");

 exit(0);

 }

 printf("d\n");

 wait(NULL);

 printf("e\n");

 exit(0);

 }

 printf("f\n");

 wait(NULL);

 printf("g\n");

 exit(0);

}

Complete the relationship diagram (6pt)
 c

 | |

 b | |

 ____*_____*_____

 | d e |

 a | |

_____*_______f________*____g__

Two possible outputs (each 2pt)

a, f, b, c, d, e, g
a, b, f, c, d, e, g

a, b, c, f, d, e, g

a, b, c, d, f, e, g

a, b, c, d, e, f, g

c d can appear in different order

 6

3. [20 Points] CPU Scheduling

a. [12 points] Consider two processes as in Assignment 2/Quiz 4, where each process has two CPU bursts

with one I/O burst in between on a single core CPU. Suppose P1 and P2 have the following life-cycles:

 P1 has x1=6, y1=1, z1=2 units for the first CPU burst, I/O burst, second CPU burst, respectively.

 P2 has x2=8, y2=7, z2=3 units for the first CPU burst, I/O burst, second CPU burst, respectively.

Both arrives at the same time (in case of ties, pick P1) and there is no other processes in the system.

For each of the scheduling algorithms below, create process Gantt charts as you did for the Quiz 4. Fill each

box with the state of the corresponding process. Use R for Running, w for Waiting, and r for ready.

Calculate the waiting times and CPU utilization (as a fraction) for each process and fill in the table below.

Gantt Charts for SJF (Shortest Job First, non-preemptive) [4pt]

 a) SJF 5 10 15 20 25 30

P1

P2

Gantt Charts for PSJF (Preemptive SJF) [4pt]

 b) PSJF 5 10 15 20 25 30

P1

P2

Waiting time and CPU utilizations [4pt]

Algorithm Waiting times

in ready queue

Process 1 Process 2 average

Finish time

Process 1 Process 2

Longest

Schedule

length

CPU

utilization

b) SJF

c) PSJF

b. [8 points] Suppose we have a system using multilevel queuing. Specifically there are two queues and each

queue has its own scheduling algorithm: QueueA uses RR with quantum 3 while QueueB uses RR with

quantum 2. CPU simply gets processes form these two queues in a weighted round robin manner with 2:1 ratio

(i.e. it gets two processes from QueueA then gets one process from QueueB, and then gets two processes from

QueueA then gets one process from QueueB, and so on), But when it gets a process from QueueA, it applies

RR scheduling with q=3. When it gets a process from QueueB, it applies RR wit q=2 scheduling.

Draw the Gantt charts (5pt) and compute waiting times (3pt) for the following four processes: P1, P2, P3, P4 on

a single core CPU. Assume these processes arrived at the same time and in that order. Each process has a single

CPU burst time of 5 units. There is no other processes or IO bursts.

 ratio 5 10 15 20

QueueA
2

P1 R R R R R

RR q=3 P2 R R R R R

QueueB
1

P3 R R R R R

RR q=2 P4 R R R R R

Compute Waiting times in ready queue

P1 P2 P3 P4 average

5 7 14 15 41/4= 10.25

 7

4. [20 points] Unix I/O and file operations

a. [10 points] Suppose the following code is executed correctly without generating any errors, and

parent's PID is 7 while child's PID is 8.
main(){

 fprintf(stdout, "%d: a ", getpid());

 fprintf(stderr, "%d: a has been written \n", getpid());

 fprintf(stdout, "%d: b \n", getpid());

 fprintf(stderr, "%d: b has been written \n", getpid());

 fprintf(stdout, "%d: c ", getpid());

 fork();

 fprintf(stdout, "%d: all done! \n", getpid());

 return 0;
}

Give a possible output for the above program.
7: a has been written

7: a 7: b

7: b has been written

7: c 7: all done

7: c 8: all done

Last two lines might change

b. [10 points] Consider the given INODE structure and assume that block size is 8K bytes and

pointers are 4 bytes. So each block has num_ptr = 8*1024/4 pointers! You are asked to

implement char *get_blk_n_di(struct inode *myinode, int n); which returns

the address of the n
th
 double indirect (di) data block (if it exists); otherwise, it returns NULL.

For the first di data block (if exists), n is 0. When n is 0, return myinode->di[0][0];

For the last di data block (if exists), n is num_ptr*num_ptr-1. In this case,
 return myinode->di[num_ptr-1][num_ptr-1];

Note that direct or any indirect level might be partially filled with blocks! So if there is no more

block or level the corresponding pointer will contain NULL.

char *get_blk_n_di(struct inode *myinode, int n)

 int i, j, k;

 int count=0;

 int num_ptr = 8 * 1024 / 4;

 if (n<0 || n > num_ptr*num_ptr-1) return NULL;

 if (myinode->di){

 for(i=0; i < num_blk; i++)

 if (myinode->di[i]) {

 for(j=0; j < num_blk; j++)

 if (myinode->di[i][j]) {

 if (n==0) return myinode->di[i][j];

 n--;

 } else return NULL;

 } else return NULL;

 }

 return NULL;

} // A BETTER WAY

i = n / num_blk;

j = n % num_blk;

if (myinode->di && myinode->di[i] && myinode->di[i][j])

 return myinode->di[i][j];

else return NULL;

dp

si

di

ti

 8

5. [20 points] IPC and pipes -fifo

Write a program (say prog.c) that forks and runs a sub-shell as a child process, and simply counts the

number of output characters that the shell printed on the standard output. When the sub-shell

terminates, the parent simply reports the number of output characters produced by the sub-shell.

For parent to do its job, it needs to get everything the child shell prints on the standard output. Hope you

see how a pipe will be useful here:

 child [1:STDOUT_FILENO] --> pipe --> [0: STDIN_FILENO] parent.

Since now the parent can get everything the child writes on the standard output, the parent can count

the number of characters and write them into its own standard output.

You are asked to complete the following program so you can create the necessary pipe, child process

and connect them as explained in the above scenario. You can ignore most of the error checking to

make your solution clear, but you need to close all unnecessary file or pipe descriptors and check what

read-write etc return. Also read/write one char at a time to make counting job easy!

/* your simple implementation of prog.c */

#include <fcntl.h>

#include <stdio.h>

#include <unistd.h>

#include <sys/stat.h>

int main (int argc, char *argv[]) {

 int mypipe[2];

 int childpid, numread, numwrite, count=0;

 char buf;

 /* 4pt - create pipe and child process */

 pipe(mypipe);

 childpid = fork();

if(childpid == 0){ /* child */

 /* 4pt - child sets up the pipe */

 dup2(mypipe[1], STDOUT_FILENO);

 close(mypipe[0]);

 close(mypipe[1]);

 execl("/bin/bash","shell",NULL);

 perror("cannot start shell");

 return 1;

}

/* continue in the next page */

 9

/* continue problem 5.b here */

 /* 4pt - parent sets up the pipe */

dup2(mypipe[0], STDIN_FILENO);

close(mypipe[0]);

close(mypipe[1]);

 /* 8pt - parent reads from the pipe as long as there is data */

/* counts the characters and puts them on standard output */

while(1){

 numread = read(STDIN_FILENO ,&buf, 1);

 if (numread <= 0) break; // what if EINTER ?

 count++;

 numwrite = write(STDOUT_FILENO, &buf, 1);

 if (numwrite<=0) break; // what if EINTER ?

 } // end of while

 // no need for close in that case

 fprintf(stderr,Shell printed %d characters \n", count);

 waitpid(NULL);

}

