
Introduction to CSIM

Turgay Korkmaz

Computer Science

University of Texas at San Antonio

Outline

• Simulation (from big picture perspective)

• Steps in Simulation

• World Views in Simulation

• CSIM

1

Simulation (from big picture perspective)

System

Analytical
solution

Experiment Experiment with a

model of systemwith actual system

Physical model
Mathematical

model

SIMULATION

When to simulate?

• Analytical model too complex

• Analytical model cannot be solved

• Validate analytical solutions

• Understand the operation and performance

Simulation models:

• Static vs. Dynamic

• Deterministic vs. Stochastic

• Continues vs. Discrete

2

Steps in Simulation

System MODEL

inputs and parameters

response variables response variables

inputs and parameters

• Problem formulation

• Data collection and Model development

• Computer programming (e.g., CSIM)

• Verification of the program and model

• Design Experiments

• Run simulation (several times)

• Analyze output

• Report results

3

World View

How we look at the system while modeling it?

• System: a set of entities interacting with each

other

• Entities: components of a system

• Rules: (Laws & policies) how the entities behave

• State: complete description of the system

• Event: a point in time that the state changes

queue server

packets

arrivals

departures

Most commonly used world views

• Event-scheduling (...): focuses on events and

describes what to do when an event occurs

• Process-oriented (CSIM): focuses on entities and

describes their progresses through the model

4

CSIM

CSIM (online at http://www.mesquite.com)

• is a library of routines in C/C++

• creates process-oriented, discrete-event simulation

The structures provided in CSIM are as follows:

• Processes: the active entities that request service,

wait for events, communicate with others

• Facilities: passive entities that are

reserved/relased or used by processes

• Storages: resources that can be partially allocated

to processes (has a counter and a queue for

processes waiting to receive the requested

allocation)

• Buffers: resources that can be partially allocated to

processes (has a counter and two queues: one for

processes waiting to receive the requested tokens;

one for processes to return tokens)

5

• Events: used to synchronize and control process

activities

• Mailboxes: used for inter-process communications

between processes

• Random Numbers and Streams: streams of

random numbers

• Data collection structures (Tables, Qtables, Meters,

Boxes): used to collect data during the execution of

a model

• Process classes: used to segregate statistics for

reporting purposes

• Other Features: inspector functions, report

functions, debug options

6

An example in CSIM

/* simulate an M/M/1 queue */

#include "csim.h"

FACILITY f; /* pointer for facility (server) */

void sim() /* 1st process - named sim */

{

create("sim"); /* required create statement */

f = facility("server"); /* initialize server */

while(simtime()<5000.0) {

hold(exponential(1.0)); /* inter-arrival time */

packet(); /* a new packet */

}

report();

terminate();

}

void packet()

{

create("packet"); /* a new process */

use(f, exponential(0.5)); /* use server */

terminate();

}

7

Processes in CSIM

The active entities of a system (a C/C++ procedure)

// see void packet(){...} in previous page

Differences from normal C/C++ procedures

• create() creates a new process (unique id, priority)

and immediately returns the control to the

invoking process

• CSIM execution supervisor controls the operation

of processes

• Many instances of the same process can be “active”

• Processes are in one of four process states:

Computing, Ready to start, Holding, Waiting

• A process remains in the Computing state

(executing) until it voluntarily takes one of the

following actions: hold(1.0), wait(e),

terminate()

• A process cannot return control to its caller (or

return a functional value to its caller);

8

Resources

Passive entities (used or allocated by processes)

• Facilities represent resources used “one-at-a-time”

– Single server facility

FACILITY f;

f = facility ("fac");

use (f, expntl(1.0));

reserve (f);

hold(expntl(1.0));

release(f);

– Multi-server facility or an array of single server

facilities

– Service disciplines can be specified (fcfs,

priority, preempt-resume)

• Storages and buffers represent resources partially

allocated

9

Process Interactions

• Events used to synchronize process activities

– Two states: OCC and NOT OCC

EVENT e;

e = event ("arrive");

wait(e); timed_wait (e, 100.0);

queue (EVENT e); timed_queue (e, 100.0);

set(e);

state (e);

wait_cnt(e); queue_cnt(e);

• Mailboxes used for inter-process communications

MBOX m;

m = mailbox ("requests");

send (m, (long) buffer);

receive (m,(long*) &ptr);

result=timed_receive(m,(long*) &ptr, 100.0);

if (result ! = TIMED_OUT) ...

msg_cnt (m)

• An array of events/mailboxes can be defined

10

Random Number Generation

• Single Stream

reseed (NIL, 13579);

uniform (min, max)

triangular (min, max, mode)

....

normal (mean, stddev)

....

geometric (prob_success)

• Multiple Streams

STREAM s;

s = create_stream ();

reseed (s, 24680);

stream_uniform (s, min, max)

stream_triangular(s, min, max, mode)

....

stream_normal (s, mean, stddev)

....

stream_geometric (s, prob_success)

11

