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Abstract—Cloud storage services are associated with high
latency variance, and degraded throughput which is problem-
atic when users are fetching and storing content for interactive
applications. This can be attributed to performance hotspots
created by slow nodes in a storage cluster, and performance
interference caused by multi-tenancy, and background tasks
such as data scrubbing, backfilling, recovery, etc. In this paper,
we present DLR, a system that improves the performance
of cloud storage services in the presence of hardware het-
erogeneity, and performance interference through a dynamic
load redistribution technique. We designed DLR to dynamically
adjust the load serving ratio of storage servers based on the
system-level performance measurements from the storage clus-
ter. We implemented DLR using Ceph, a popular distributed
object storage system, and evaluated its performance on NSF-
Cloud’s Chameleon testbed using Ceph’s Rados benchmark.
Experimental results show that DLR improves the average
throughput and latency of Ceph storage by up to 65%, and
41% respectively compared to the default case. Compared to
Ceph’s in-built load balancing technique, DLR improves the
throughput by up to 98%, and latency by 96%.

Keywords-Hardware Heterogeneity; Performance Interfer-
ence; Ceph; Cloud Storage;

I. INTRODUCTION

Cloud storage services (both public and private) are in-

creasingly used as cost-effective platforms for storing large-

scale enterprise data due to the flexibility, availability, and

scalability provided by the underlying object-based storage

technology (e.g OpenStack Swift [3], Ceph [18], Amazon

S3, etc.). However, on today’s cloud services, both fetch-

ing and storing content are associated with high latency

variance [16, 21], and degraded throughput. This can be

attributed to performance hotspots created by slow nodes in a

heterogeneous storage cluster, and performance interference

caused by multi-tenancy [13] as well as background tasks

such as data scrubbing, backfilling, recovery, etc.

Unlike traditional application and organization-specific

clusters, consolidated cloud environments are likely to be

constructed from a variety of machine classes [11, 14, 15].

Furthermore, with the advent of software-defined storage

system such as Ceph, which supports rolling hardware and

software upgrades, as well as the ability to run mixed

hardware configurations, the storage nodes are even more

likely to be heterogeneous. Our motivational case study in

Section III shows that the presence of four slower nodes in a

Ceph storage cluster of eight nodes degrades the object store

throughput by up to 54% and causes 2.2X increase in the

latency. As cloud storage is shared by multiple tenants, the

contention of shared resources can cause significant perfor-

mance degradation [13]. Furthermore, storage related back-

ground tasks such as data scrubbing, backfilling, recovery,

etc. are potential sources of performance interference. Unlike

hardware heterogeneity, performance interference can cause

various nodes to become performance hotspots at different

times. Our motivational case study shows that inducing

performance hotspots on randomly selected nodes in a Ceph

storage cluster degrades the object store throughput by 55%

and increases the latency by 2.3X.

Existing cloud storage services implement very simple

schemes that have little or no ability to react quickly to

performance hotspots. Recent efforts [16] propose to reduce

latencies in cloud data store by adaptively selecting one out

of multiple replica servers to serve a request based on a

continuous stream of in-band feedback about a server’s load.

However, such approach is only suitable for low-latency data

stores (e.g key-value store) where the service times of indi-

vidual requests are small enough so that sufficient feedback

can be collected to accurately rank the replica servers in

the face of performance fluctuations, and changing system

dynamics. However, large-scale cloud storage systems such

as object-based storage have to deal with a wide range of

data object sizes, and correspondingly varying service times.

In this paper we present DLR, a system that improves

the performance of cloud storage services in the presence

of hardware heterogeneity, and performance interference

through a dynamic load redistribution technique. DLR dy-

namically adjusts the load serving ratio of storage servers

based on the system-level performance feedback from the

storage cluster. It leverages the fact that system-level per-

formance metrics such %iowait is highly correlated with the

performance of storage nodes, and at the same time such

metrics can be collected quickly irrespective of individual

request service times. DLR is applicable to any cloud

storage system where data is replicated, and a mechanism to

adjust the load serving ratio of storage servers is available.

We implemented DLR in Ceph, a popular software-defined
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(a) Throughput Degradation due to Hard-
ware Heterogeneity
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(b) Latency Degradation due to Hard-
ware Heterogeneity
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(c) Throughput Degradation due to Per-
formance Interference
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(d) Latency Degradation due to Perfor-
mance Interference

Figure 1: Performance Degradation due to Hardware Heterogeneity and Performance Interference

storage (SDS) solution based on a fully distributed, reli-

able and autonomous object store. Performance evaluation

was conducted on a Ceph cluster built using NSFCloud’s

Chameleon testbed. Similar to others [10, 17] we ran Rados

Bench, an in-built benchmarking program, to measure the

performance of Ceph object store. As a baseline for per-

formance comparison, we used Ceph in the default mode,

and also applied Ceph’s in-built load balancing technique.

Experimental results show that DLR improves the average

throughput and latency of Ceph storage by up to 65%, and

41% respectively compared to the default case. Compared

to Ceph’s in-built load balancing technique, DLR improves

the throughput by up to 98%, and latency by 96%.

The rest of the paper is organized as follows. Section

II provides background studies, and Section III describes

about the motivations and challenges of this work. Section

IV discusses the DLR system architecture and design. Sec-

tion V evaluates the proposed system using Ceph’s Rados

benchmarks. Section VI outlines related work. Section VII

summarizes our contribution and discusses future work.

II. BACKGROUND

Ceph is an open source software-defined storage (SDS)

solution, which is gaining increasing popularity due to

its robust design and scaling capabilities. It provides all

data access methods (file, object, block) and appeals to IT

administrators with its unified storage approach. Its core,

RADOS, is a fully distributed, reliable and autonomous

object store [20]. Ceph’s building blocks are called OSDs

Object Storage Daemons, which are responsible for storing

objects on local filesystems, as well as working together to

replicate data, detect and recover from failures, or migrate

data when OSDs join or leave the cluster. Ceph OSD

Daemons create object replicas on other Ceph Nodes to

ensure data safety and high availability.

Ceph uses a pseudo-random placement algorithm

called CRUSH (Controlled Replication Under Scalable

Hashing)[19], which allows OSDs and clients to compute

object locations instead of looking them up in a centralized

table. Then clients can directly interact with the OSDs for

I/O. The CRUSH map also allows for defining hierarchies of

failure domains for placing object replicas at different levels,

e.g. disk, host, rack and room. Based on these hierarchies

and on CRUSH rules, CRUSH maps objects to placement

groups (logical aggregations of objects inside one pool) and

then maps each placement group to one primary OSD, and

some replica OSDs. A Ceph client always reads data from

the primary OSD. While writing, the client writes data to

primary OSD, and then replicates the data to the other OSDs.

Ceph monitors are responsible for maintaining the cluster

map, which includes information on the cluster topology,

a list of OSDs, pools, placement groups, and mapping of

placement groups to OSDs. Clients contact one of the mon-

itors to obtain the most recent cluster map. Ceph exposes

different interfaces to storage: a POSIX-compliant filesys-

tem (CephFS), block storage (Rados Block Device/RBD)

and a RESTful API (Rados Gateway). Clients can directly

access RADOS through librados, with support for several

programming languages, including: C/C++ and Python.

III. MOTIVATION

A. Effect of Hardware Heterogeneity

To study the impact of hardware heterogeneity on cloud

storage performance, we setup an eight node Ceph cluster

on the NSF Cloud’s Chameleon testbed, and simulate low

I/O bandwidth on four of the nodes by running fio [2]

benchmark in the background. We run the Rados Bench in

write, sequential read, and random read modes on the Ceph

cluster with and without heterogeneity. Each experiment

is repeated three times, and the average performance is

reported. As shown in Figures 1a and 1b, the presence of

four slower nodes in a Ceph storage cluster of eight nodes

degrades the object store throughput by up to 54% and

causes 2.2X increase in the latency.

B. Performance Interference

Unlike hardware heterogeneity, performance interference

from various sources are likely to cause time-varying perfor-

mance hotspots across various cloud storage nodes. To study

the impact of performance interference on cloud storage

performance, we run fio random read benchmark in four

randomly selected nodes in the Ceph cluster, and repeated
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Figure 2: System Architecture

the process after 90 second interval. We measure the average

throughput, and latency of Rados Bench with and without

performance interference. Figures 1c and 1d, show that in-

ducing performance hotspots on randomly selected nodes in

a Ceph storage cluster degrades the object store throughput

by up to 55% and increases the latency by 2.3X.

IV. DESIGN

A. System Architecture

The DLR system architecture consists of two main mod-

ules: the Performance Monitor and Affinity Controller. The

modules run as daemon processes on Ceph admin node.

The Performance Monitor periodically measures the system-

level performance metrics of the OSDs, and sends the

performance data to the Affinity Controller module. The

Affinity Controller processes the performance data and up-

dates the primary affinity values of the OSDs according to

a dynamic affinity control algorithm. In Ceph, each OSD is

associated with a primary affinity value between 0 and 1,

which determines the probability that the OSD will act as

the primary OSD. Hence, primary affinity can be used as

a mechanism to control the load serving ratio of an OSD.

The Affinity Controller invokes the Ceph monitor to update

the OSDmap of the Ceph cluster so that the new primary-

affinity values of the OSDs take effect. Figure 2 shows the

high level overview of our proposed architecture.

B. Performance Monitor

The Performance Monitor relies on system level perfor-

mance metrics as an indicator for detecting performance

hotspots in a cloud storage cluster. Since disk I/O is a major

source of performance bottleneck for data-intensive applica-

tions, we study I/O related performance metric, %iowait, and

its correlation with the observed object store performance.

%iowait metric provides the percentage of time that the

CPU or CPUs are idle during which the system has an

outstanding disk I/O request. Figure 3 shows the average

%iowait values among the OSDs, and the performance of

Rados Bench Sequential Read for various server load mixes.

A,B,C,D,E denote the server load mixes in which we run

the fio benchmark with increasing job sizes (A=250MB,

B=500MB, C=1GB, D=2GB, E=4GB) as background jobs
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Figure 3: Effect of average %iowait values on Rados Per-

formance
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Figure 4: Effect of the variance of %iowait values on Rados

Performance

to introduce disk I/O contention on all the OSDs. The

configuration details of fio is given in Section V-B. As shown

in Figure 3, as the average %iowait values among the OSDs

increases, the Rados throughput decreases. We got similar

results for other Rados benchmarks. We further study the

relationship between the variance of %iowait values among

the OSDs, and the observed object store performance by

running various server load mixes. Figure 4 shows that

increase in the variance of %iowait values among the OSDs

is correlated with the decrease in Rados throughput.

C. Affinity Controller

The Affinity Controller periodically adjusts the primary-

affinity of the OSDs according to the dynamic affinity

control algorithm given in Algorithm 1. In the algorithm,

we apply three threshold values to control the change in the

primary-affinity values of the OSDs. The first threshold, θh
is used to determine if the %iowait value of an OSD is high

enough to consider a decrease in its primary-affinity value.

If the %iowait value is larger than θh, we check if (δ2) the

relative difference between the OSD’s %iowait value, and

the average %iowait among all OSDs is greater than the

second threshold, θi. This relative difference represents the

extent of load imbalance in the cluster. If the load imbalance

is high enough, we decrease the primary affinity of the

corresponding OSD by the sum of δ1, and δ2. Here, δ1 is

the normalized difference between the OSD’s %iowait value,
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Figure 5: Effect of threshold values on Rados Performance

and the upper threshold θh. We set the lower limit on the

primary-affinity value as 0.1. We apply a third threshold, θl
to determine if the %iowait value of an OSD is too low,

indicating that the OSD is no longer a performance hotspot.

If the condition is met then we increase the primary-affinity

aggressively to the maximum limit of 1. The control interval

of the Affinity Controller is set to be 20 seconds. If this

duration is too small, the measurement of %iowait value can

be noisy, and if the duration is too large then the controller

will be less sensitive to the performance hotspots.

Algorithm 1 Dynamic Affinity Control Algorithm

1: Variable: n: total number of OSDs, θh: threshold1, θi:
threshold2, θl: threshold3, iow: %iowait values for an

OSD, φ: percentage difference from average %iowait

value for an OSD, α: current primary-affinity value of

an OSD

2: while True do

3: avgiow =
∑

n

i=1
(iowi/n)

4: for i in n do

5: if (iowi > θh) then

6: δ1 ← (iowi − θh)/100
7: φi ← (iowi − avgiow)/iowi

8: if (φi > θi) then

9: δ2 ← (φi − θi)
10: αi+1 ← max(0.1, (αi − (δ1 + δ2)))
11: end if

12: else

13: if (iowi < θl) and (αi < 1) then

14: αi+1 ← 1
15: end if

16: end if

17: end for

18: end while

D. Threshold Parameter Tuning

It is important to tune the threshold values used in

Algorithm 1 to optimize the performance of DLR approach.

From our observation and also from the results shown in

Figure 3, we found that if the %iowait value of an OSD

exceeds 50, the overall performance degrades drastically. So

we set the value of θh to be 50. θl is set to be 20. For

tuning the value of θi, we ran Rados bench with various

thresholds while inducing performance hotspots on random

nodes. In all cases, we found that setting θi to be 0.2 gives

the best Rados performance overall, e.g. Figure 5 shows the

throughput of Rados Sequential read for various θi.

V. EVALUATION

A. Testbed

For the experiments we setup an 8-node Ceph storage

cluster on the NSFCloud’s Chameleon testbed. One extra

node is used as the Ceph Admin. Each node is equipped

with 2.3GHz Intel Xeon dual-core processor E312xx (Sandy

Bridge). The nodes run Ubuntu Linux 14.04.1 LTS with

kernel 3.13.0 and each has 40GB of hard disk space and

4GB of memory. Ceph version 9.2.1 (Infernalis-stable) is

used. The Ceph admin node is also configured as the Ceph

monitor node of the cluster. The Ceph cluster has three pools

with 512 placement groups and a replication factor of 2.

B. Benchmarks

Ceph comes with an inbuilt benchmark known as RADOS

bench which is used to measure the performance of a Ceph

object store. It has a command line interface, where one

can pass different parameters, such as: I/O operation (Write,

Sequential Read, Random Read), number of concurrent

operations, duration of run or object size. RADOS Write

bench simply writes out objects to the underlying object

storage as fast as possible, and Rados Sequential Read and

Random Read reads the objects in sequential and random

order respectively. The performance metric used for Rados

Write and Sequential Read is the throughput (MB/s), and the

metric for the Rados Random Read is the IOPs. The latency

for the Rados bench is also measured. In our experiments,

we run fio (version 2.1.3) as background processes on the

OSDs to induce performance hotspots. We use the default

fio blocksize (4KB), libaio ioengine, iodepth of 16 and ran

4 parallel randread jobs of size 2GB each.

As a baseline for performance comparison, we used Ceph

in the default mode, and Ceph with its in-built load balancing

technique called Ceph osd-reweight-by-utilization[1]. This

technique reduces the weight of the heavily overused OSDs

to load balance the cluster. Reducing the weight of over-

loaded OSDs is expected to improve the overall performance

as data is moved from the over utilized OSDs to the OSDs

that have average utilizations below a given threshold.

C. Addressing the Impact of Hardware Heterogeneity

For simulating a heterogeneous storage cluster, we run fio

random read benchmark as background processes on half of

the OSDs in the Ceph cluster. In this setting, we run the three

Rados Benchmark (Write, Sequential Read and Random

Read) for a duration of 180 seconds each with default object
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case of Hardware Heterogeneity
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Figure 7: Comparison of Average Rados Performance among default approach, reweight-by-utilization and DLR during

different time interval in the case of Hardware Heterogeneity

size of 4MB and 16 concurrent I/O operations. All of the

experiments are run 3 times and the average performance

and standard error is measured. The OS cache was cleared

after each run to remove any effects of caching.

Figure 6a and Figure 6b compare the normalized Rados

throughput and latency among the default mode, reweight-

by-utilization, and DLR. The average performance is nor-

malized according to the performance of the default Ceph

mode. As shown in Figures 6a, and 6b, DLR significantly

outperforms the Ceph default, and reweight-by-utilization

case. Compared to default Ceph, DLR improves the Sequen-

tial Read throughput by 45%, and the Random Read IOPs by

65%. DLR achieves 30% improvement in Sequential Read

latency and 41% improvement in Random Read latency.

The superior performance of DLR is due to its ability

to mitigate performance hotspots through dynamic affinity

control. Figure 6c shows the change in the primary-affinity

of the OSDs due to DLR. Figure 7 compares the average

Rados performance among the default approach, reweight-

by-utilization and DLR during different time intervals.

The Ceph OSD reweight-by-utilization approach does not

show much performance improvement due to the associated

data movement overhead. We observe that in case of the

Rados Write benchmark, DLR achieves a small performance

improvement over other approaches. DLR’s primary affinity

adjustment does not have much impact on Ceph write

operation since every write operation on a primary OSD

is followed by subsequent writes on the replica OSDs.

D. Mitigating Performance Interference

For simulating time-varying performance hotspots caused

by interference, we ran fio random read for 90 seconds

on four random OSDs, and then after killing the initial fio

random reads we repeated the process on four other random

OSDs. We ran each Rados Bench for 180 seconds with 4MB

object size and 16 concurrent I/O operations. Figures 8a

and 8b compare the normalized Rados throughput and

latency among the default approach, reweight-by-utilization

and DLR. We observe that compared to default Ceph, DLR

improves the throughput of Rados Sequential and Random

Read benchmarks by 9% and 19% respectively. The latency

improvement is 8% and 16% respectively. Compared to

the hardware heterogeneity case, the performance difference

between DLR, and default Ceph is less here. This is because

the performance degradation of Rados read benchmarks

due to performance interference is relatively less than the

degradation caused by hardware heterogeneity in our ex-

periments. Hence, there is less opportunity for performance
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case of Performance Interference

 0

 50

 100

 150

 200

 250

 300

0 20 40 60 80 100 120 140 160 180

A
vg

 R
ad

os
 T

hr
ou

gh
pu

t (
M

B
/s

)

Time (s)

default
with rwu

with DLR

(a) Rados Seq Rd Avg Throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

0 20 40 60 80 100 120 140 160 180

A
vg

 L
at

en
cy

 (
s)

Time (s)

default
with rwu

with DLR

(b) Rados Seq Rd Avg Latency

 0

 0.2

 0.4

 0.6

 0.8

 1

0 20 40 60 80 100 120 140 160 180

A
vg

 L
at

en
cy

 (
s)

Time (s)

default
with rwu

with DLR

(c) Rados Random Rd Avg Latency

Figure 9: Comparison of Average Rados Performance among default approach, reweight-by-utilization and DLR during

different time interval in the case of Performance Interference
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Figure 10: Comparison of Average Rados Sequential Read Performance among default approach, reweight-by-utilization and

DLR over different object sizes in the case of Hardware Heterogeneity and Performance Interference

improvement by DLR. We also observe that OSD reweight-

by-utilization shows much worse performance than the de-

fault case, since it incurs frequent data movement overheads

in the face of dynamically changing performance hotspots.

Figure 8c shows the change in the OSD primary-affinity of

the OSDs due to DLR. In this case, the primary-affinity of

the OSDs suffering from background interference decreases

in steps and then increases at the end of interference.

Figure 9 compares the average Rados performance among

the default approach, reweight-by-utilization and DLR.

E. Evaluation with Various Object Sizes

Figure 10 compares Rados sequential read throughput,

and latency achieved by the default approach, reweight-by-

utilization and DLR over different object sizes in the case

of hardware heterogeneity and performance interference.

Similar to [10], we observe that the throughput was low

for smaller object sizes, which is a common scenario for

storage systems. The bandwidth reaches the network limit

for medium sized objects, and when the object size is

larger than a saturation point, throughput drops and the
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latency increases drastically. In all of the scenarios, DLR

outperforms the default Ceph and reweight-by-utilization

approach. We got similar performance improvements when

we experimented with other Rados benchmarks, and with

various thread counts with fixed object size.

F. Overhead Analysis of DLR

Figure 11 shows the runtime of the Performance Monitor,

and Affinity Controller of DLR in our testbed. We observe

that the total time taken by the components is minimal, and

significantly less than the control interval of 20 seconds.

Since the Performance Monitor can collect the %iowait

values of the OSDs in parallel, the overhead of performance

monitoring will be negligible even for large clusters. The

Affinity Controller also has minimal overhead since chang-

ing primary affinity only requires an update on the OSD

map and unlike the OSD reweight-by-utilization technique,

it does not involve data movement among the OSDs.

VI. RELATED WORK

There are several studies focusing on mitigating the

impact of hardware heterogeneity, and performance inter-

ference in the Cloud environment. In [6, 8] heterogene-

ity aware workload placement strategies were proposed

to greedily place tenant jobs onto good performing VMs.

Harmony [22], is a heterogeneity-aware framework that

dynamically adjusts the number of machines to achieve

a balance between energy savings and scheduling delay,

while considering the reconfiguration cost. Lee et al. [12]

proposed a system architecture to allocate resource in a

cost-effective manner, and discussed a scheduling scheme

that provides good performance and fairness simultaneously

in heterogeneous cluster, by adopting progress share as a

share metric. Paragon [7] proposes an online and scalable

data center scheduler that is heterogeneity and interference-

aware. It uses collaborative filtering techniques to classify

incoming workload and then greedily schedules the ap-

plications minimizing interference and maximizing server

utilization. Bu et al. [5] also considered data locality in

their interference aware task scheduler. In contrast to these

works, we focus mitigating the performance hotspots caused

by hardware heterogeneity and performance interference in

the Cloud storage clusters.

Several other studies have proposed different solutions

on improving performance by balancing storage loads in a

cloud or data center, mostly in the context of achieving fault-

tolerance through data replication, e.g. Hadoop Distributed

File System (HDFS), Google File System (GFS) [9], DepSky

storage system [4], etc. In the context of Microsoft Azure

and Amazon S3, CosTLO [21] presented the efficacy of

using request duplication in coping with performance vari-

ability. In contrast to these works, our approach does not rely

on redundant requests and is complementary to the above.

In a recent effort, Suresh et al. [16] propose to reduce

latencies in cloud data store by adaptively selecting one out

of multiple replica servers to serve a request based on a

continuous stream of in-band feedback about a server’s load.

However, such approach is only suitable for low-latency data

stores (e.g key-value store) where the service times of indi-

vidual requests are small enough so that sufficient feedback

can be collected to accurately rank the replica servers in

the face of performance fluctuations, and changing system

dynamics. However, large-scale cloud storage systems such

as object-based storage have to deal with a wide range of

data object sizes, and correspondingly varying service times.

In this paper, we propose to dynamically adjust the load

serving ratio of storage servers based on the system-level

performance feedback from the storage cluster. We leverage

the fact that system-level performance metrics such %iowait

is highly correlated with the performance of storage nodes,

and at the same time such metrics can be collected quickly

irrespective of individual request service times.

In [17], Wang et al. presented file and block I/O per-

formance and scalability evaluation of Ceph for scientific

high-performance computing (HPC) environments. Through

systematic experiments and tuning efforts, they observed that

Ceph can perform close to 70% of raw hardware bandwidth

at object level and about 62% of at file system level. Gudu et

al. [10] presented a multidimensional scalability evaluation

of Ceph with the aim to achieve better understanding of

how each dimension (number of OSDs, number of clients,

object size) affects performance. In contrast to these works,

this paper focuses on improving the performance of a Ceph

cluster in the presence of performance hotspots through dy-

namic load redistribution. To the best of our knowledge, this

is one of the first works to address the issue of performance

hotspots in a Ceph cluster.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a dynamic load redistribution

technique to tame the performance hotspots caused by hard-

ware heterogeneity and performance interference in cloud

storage. The proposed technique periodically adjusts the

load serving ratios of storage nodes according to a dynamic

affinity control algorithm. We implemented the proposed

technique in Ceph, an open source software-defined stor-

age system, and evaluated its performance on NSFCloud’s
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Chameleon testbed using Ceph’s Rados benchmark. Experi-

mental results show that our approach improves the average

throughput and latency of Ceph storage by up to 65%, and

41% respectively compared to the default case. Compared to

Ceph’s in-built load balancing technique, DLR improves the

throughput by 98%, and latency by 96%. In future, we will

work on incorporating dynamic tuning of the thresholds and

will evaluate our technique at a larger scale using high-level

application benchmarks, e.g Cosbench [23], etc.
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