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Abstract—A virtualized data center faces important but chal-
lenging issue of performance isolation among heterogeneous cus-
tomer applications. Performance interference resulting from the
contention of shared resources among co-located virtual servers
has significant impact on the dependability of application QoS.
We propose and develop NINEPIN, a non-invasive and energy
efficient performance isolation mechanism that mitigates per-
formance interference among heterogeneous applications hosted
in virtualized servers. It is capable of increasing data center
utility. Its novel hierarchical control framework aligns perfor-
mance isolation goals with the incentive to regulate the system
towards optimal operating conditions. The framework combines
machine learning based self-adaptive modeling of performance
interference and energy consumption, utility optimization based
performance targeting and a robust model predictive control
based target tracking. We implement NINEPIN on a virtualized
HP ProLiant blade server hosting SPEC CPU2006 and RUBiS
benchmark applications. Experimental results demonstrate that
NINEPIN outperforms a representative performance isolation
approach, Q-Clouds, improving the overall system utility and
reducing energy consumption.
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Servers, Energy Efficiency, Robustness, Fuzzy MIMO Control

I. INTRODUCTION

A modern data center utilizes virtualization technology to
consolidate multiple customer applications onto high density
servers for improving server utilization and reducing energy
consumption costs [5], [9], [23], [27]. It also aims to satisfy
the Quality of Service (QoS) needs of hosted applications
for increasing data center utility. However, QoS experienced
by these applications may be significantly impacted by the
performance interference between virtual machines (VMs) that
are co-located in the underlying multi-core servers [11], [21].
It is mainly due to the contention of resources such as the
last level cache, memory bandwidth, etc, which are shared by
VMs residing on a multi-core processor. For instance, VMs
running on adjacent CPU cores may experience significantly
reduced performance due to an increased miss rate in the
last level cache [3], [31]. Performance isolation is essential to
dependable virtualized servers shared by various applications.

In this paper, we propose to design and develop a non-
invasive and energy efficient performance isolation mechanism
that increases the overall utility of a virtualized server system
hosting heterogeneous customer applications. It is important
but challenging to achieve performance isolation between
Internet applications running on virtualized servers.
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Fig. 1. NINEPIN: non-invasive performance isolation in virtualized servers.

There are invasive techniques based on hardware and soft-
ware resource partitioning, which require instrumentation and
modification of the guest operating system or the virtualization
management layer to avoid performance interference between
co-located VMs [2], [24], [29], [30]. However, resource par-
titioning can be difficult and costly to implement and even
if accomplished may result in inefficient resource utilization
indeed [28]. Due to portability and transparency needs, non-
invasive performance isolation is desirable in the context of
modern data centers provisioning cloud computing services,
which host third-party customer applications and often use
virtualization software from third-party vendors.

From a data center’s economic perspective, performance
isolation should be aligned with the incentive to maximize the
overall system utility, which includes the service-level utility
of customer applications and the utility of server energy con-
sumption. A service-level utility function specifies the business
value of providing various levels of service to the users of an
application in terms of revenue or penalty [26]. The utility
of energy consumption is determined by the electricity costs
as well as the carbon footprint associated with it. However,
existing performance isolation techniques are utility-agnostic.

A naive approach that disregards the economic perspective
may achieve performance isolation by allocating additional
resources to compensate the effect of performance interference
among co-located VMs. Recently an important non-invasive
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performance isolation approach, Q-Clouds [21] was proposed
to ensure that the performance experienced by applications
is the same as they would have achieved if there was no
performance interference. However, such an approach does not
guarantee optimal operating conditions with respect to energy
efficiency of underlying servers and the service-level utility of
hosted applications.

Furthermore, there are practical issues in achieving robust
performance isolation among heterogeneous applications co-
located in the same physical server. These applications may
have different performance metrics as well as workload dy-
namics. For instance the performance of compute intensive
jobs is measured in terms of how fast a job is completed
whereas interactive web applications with multi-tier architec-
ture are concerned with end-to-end response time of requests.
Furthermore an interactive web application shows dynamic
workload variations at small time scales [13], [16], [25].
As a result, co-located VMs experience frequently changing
performance interference effects and even resource saturation.
Moreover, energy consumption characteristic of VMs may also
depend on the workload intensity. Hence, it is very challenging
to achieve performance isolation and energy efficiency at the
same time in a heterogeneous application environment.

In this paper, we propose and develop NINEPIN, a non-
invasive and energy efficient performance isolation mechanism
that mitigates the performance interference between heteroge-
neous customer applications hosted in virtualized servers. As
shown in Figure 1, NINEPIN interacts with the virtualization
management layer of a multi-core server and the co-located
VMs at the application layer. Its core is a novel two-level
control structure. The first level performs a steady-state utility
optimization that aims to maximize the overall system utility.
It determines the economically optimal performance targets
for each application and sends these targets to the second
level, the model predictive controller. The controller regulates
the system’s dynamic behavior towards the optimal targets
by adjusting the allocation of resources among co-located
applications. The utility optimization and control are based
on system models that capture the performance interference
relationship between co-located applications and the total
energy consumption of the underlying physical server for
various resource allocations.

NINEPIN constructs fuzzy multiple-input multiple-output
(MIMO) models for estimating the performance interference
and energy usage in a virtualized server when different CPU
usage limits are enforced on the co-located VMs. A key
strength of fuzzy MIMO model is its ability to accurately
represent the inherently non-linear relationship of performance
and energy with CPU usage. NINEPIN applies subtractive
clustering and artificial neural network based machine learn-
ing techniques to construct the performance interference and
energy usage models. In order to achieve system robustness
against dynamic workload variation and application hetero-
geneity, it adapts the models online by use of a fast learning
algorithm, weighted Recursive Least Squares (wRLS), when-
ever a significant error in prediction of energy usage and

performance is detected. Then, it re-computes the optimal per-
formance targets using the updated performance interference
and energy models. The model predictive controller uses a
dynamic model that is derived by linearizing the fuzzy MIMO
model at the current operating state.

We implement NINEPIN on a testbed of HP ProLiant
BL460C G6 blade server hosting SPEC CPU2006 benchmark
applications and an e-commerce benchmark application RU-
BiS. The testbed uses VMware virtual machines. Due to its
non-intrusiveness, NINEPIN is applicable to any virtualization
software given that the mechanisms to adjust VM resources are
available. Experimental results demonstrate the effectiveness
and energy efficiency of NINEPIN in achieving performance
isolation among multiple heterogeneous customer applications.
For performance comparison, we also implement the rep-
resentative non-invasive performance isolation approach, Q-
Clouds [21] at the same testbed. Q-Clouds uses a closed loop
controller to compensate the effect of performance interference
between co-located VMs by allocating additional resources.
However, such an approach does not guarantee optimal oper-
ating conditions with respect to energy efficiency of underlying
servers and the overall system utility. It also does not consider
heterogeneous application support.

Compared to Q-Clouds, NINEPIN achieves better system
utility and significantly reduces energy consumption. We have
observed that the advantage of NINEPIN approach is even
more significant in case of heterogeneous applications with
dynamic workload variations. NINEPIN is able to re-compute
and assure optimal performance targets in response to the
dynamic environment in agile and robust manner.

To our knowledge, NINEPIN is the first non-invasive per-
formance isolation mechanism that drives a virtualized server
system towards optimal operating conditions with respect
to both energy efficiency and service-level utility of hosted
applications. The main contributions of NINEPIN are:

1) It provides effective performance isolation between co-
located applications in virtualized servers while maxi-
mizing the overall system utility. It increases data center
utility by aligning performance isolation goals with a
data center’s economic optimization objective.

2) It is energy efficient. It reduces the energy consumption
of virtualized servers while trading off performance
objectives in a flexible manner. The tradeoff between
inherently conflicting objectives of energy efficiency and
performance guarantee can be specified by a data center
administrator.

3) It is robust against application heterogeneity and dy-
namic workload variations.

4) It provides desirable non-invasive performance isolation
for a data center hosting third-party customer applica-
tions and using virtualization software from third-party
vendors.

NINEPIN combines the strengths of machine learning based
self-adaptive system modeling, utility based performance tar-
geting and a model predictive control based target tracking.
The two-level structure of NINEPIN integrates utility com-
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puting paradigm with control theoretical approach. Together
with the strength of fuzzy logic, our novel hierarchical control
framework achieves this complex integration while avoiding
highly complex system modeling and computationally expen-
sive control. Hence, NINEPIN is practical for real virtualized
server systems. We demonstrate the merits of NINEPIN with
implementation on a testbed of virtualized servers.

In the following, Section II discusses related work. Sec-
tions III-B through V present NINEPIN architecture and
hierarchical control design. Section VI presents the testbed
implementation. Section VII provides the experimental results
and analysis. Section VIII concludes the paper.

II. RELATED WORK

Performance isolation of customer applications in a virtual-
ized data center is an important research topic. Despite several
advantages such as security isolation, fault isolation, and
environment isolation, prevalent virtualization techniques do
not provide effective performance isolation between VMs [11],
[21]. The behavior of one VM can affect the performance of
another adversely due to the shared use of resources in the
system. VMs running on the underlying multi-core servers of
a virtualized data center mainly suffer from the performance
interference caused by the contention of last level cache
and memory bandwidth. The performance impact of shared
resource contention in multi-core servers has been well studied
in the studies [7], [11], [21].

Several research efforts have focused on hardware and
software resource partitioning based techniques for perfor-
mance isolation of applications running on a multi-core server.
Hardware-based cache partitioning schemes are mainly in-
volved with modification of cache replacement policies [30]
with various partition granularity such as cache ways and
cache blocks. On the other hand, software partitioning tech-
nique based on static and dynamic page coloring addresses
cache contention between competing applications, without
requiring any hardware level support [2], [24], [29]. Page
coloring reserves a portion of the cache for each application,
and allocates the physical memory such that the application’s
cache lines map only into the reserved portion. However, such
approaches in virtualized servers require invasive instrumen-
tation and modification of the guest operating system or the
virtualization management layer.

Some prior studies investigated the design of cache-aware
scheduling algorithms that achieves performance isolation
among competing applications by minimizing resource con-
tention [3], [10], [31]. For instance, Fedorova et. al designed
a cache-aware scheduler that compensates threads that were
hurt by cache contention by giving them extra CPU time [3].
Knauerhase et. al [10] proposed to reduce cache interference
by spreading the cache intensive applications apart and co-
scheduling them with non-intensive applications. A common
drawback of cache-aware scheduling and resource partitioning
based performance isolation mechanism is that they only focus
on a single source of performance interference. However, in

practice there are several dimensions of performance interfer-
ence such as shared I/O and memory bandwidths [11].

Recently, Nathuji al. proposed an interesting non-invasive
performance isolation approach for virtualized servers, Q-
Clouds [21]. Q-Clouds builds MIMO models that capture
interference relationships between co-located VMs and applies
a closed loop controller to achieve specified performance levels
for each VM. Due to its non-invasive nature, the approach does
not need to determine the underlying sources of interference.
However, it disregards the economic objective of a data center,
which is defined by the service-level utility of customer ap-
plications. Furthermore, it does not consider energy efficiency
and heterogeneous application support.

Energy consumption costs and the impact of carbon foot-
print on the environment have become critical issues for
data centers today [4], [19]. There are recent studies that
aim to guarantee fixed performance targets of data center
applications while minimizing the power consumption [1], [8],
[12], [15], [17], [18]. However, they do not consider the impact
of performance interference between co-located VMs on the
energy efficiency and the system utility.

III. NINEPIN ARCHITECTURE AND DESIGN

A. Design Goals and Motivations
NINEPIN provides an attractive and practical non-invasive

and energy efficient performance isolation mechanism for
virtualized servers that host heterogeneous applications. It
maximizes the overall system utility. The key design issues
of NINEPIN are as follows:

1) Non-invasiveness with utility optimization: An intuitive
approach of non-invasive performance isolation among
co-located applications is to allocate additional resources
to achieve the performance that customers would have
realized if they were running in isolation. However, such
approaches are inherently utility-agnostic. Integration of
non-invasive performance isolation with utility optimiza-
tion would require highly complex system modeling and
computationally expensive control. NINEPIN addresses
the challenge by using a novel hierarchical control
framework.

2) Energy efficiency: A common technique to reducing
server energy consumption is to dynamically transition
the hardware components from high power states to
low-power states. However, it is not applicable in case
of virtualized servers since changing the power state
of a processor will affect the performance of multiple
VMs running different applications. NINEPIN achieves
energy efficiency by controlling the CPU usage limits
on each VM, based on an accurate energy model. It
allows a data center administrator to flexibly trade-
off energy consumption with the service-level utility of
hosted applications.

3) Robust performance isolation: The robustness of per-
formance isolation against application heterogeneity and
dynamic workload variations requires a self-adaptive ap-
proach that responds to the changes in the performance
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Fig. 2. NINEPIN System Architecture.

interference relationship and the energy consumption
characteristic of the co-located VMs. NINEPIN achieves
this goal through a machine learning based online
adaptation of the performance interference and energy
models of the system, the subsequent re-computation
of optimal performance targets and a robust model
predictive control based target tracking.

B. The Architecture

Figure 2 presents the architectural overview of the manage-
ment components used in NINEPIN. The computer system
under control is a virtualized server hosting multiple customer
applications in VMs that logically abstract the resources
provided by the underlying multi-core server. In case of
interactive multi-tier applications, each tier of an application is
deployed at a virtual machine. The NINEPIN framework forms
a control loop that non-invasively mitigates the performance
interference between co-located VMs by adjusting their CPU
resource allocation (i.e, CPU usage limits) in an energy effi-
cient manner, so that the overall system utility is maximized.
The key components in the control loop include a two-
level hierarchical controller, a power monitor, a performance
monitor for each VM and a resource controller. The two-level
control framework integrates utility optimization with control
theoretical approach while avoiding highly complex system
modeling and computationally expensive control.

1) Power and Performance Monitors: The power monitor
measures the average power consumption of the underlying
multi-core server for the last control interval.

The performance monitor measures the average perfor-
mance of the hosted applications in the last control interval.
The actual performance metrics may vary for heterogeneous
applications running in virtualized environments. Our design
does not use any semantic information regarding these perfor-
mance metrics. It treats the performance values as raw data
for modeling and control. Hence, NINEPIN is applicable to
any performance metric.

2) Level-1 Control: At level-1, the utility optimizer calcu-
lates the optimal performance targets for each VM in order to
maximize the overall system utility and sends the calculated
targets to the level-2 controller. The optimization is based on
fuzzy MIMO models that capture the performance interference
relationship between co-located VMs and the energy con-
sumption property of the underlying server for various CPU
resource allocations. These models are constructed offline
by applying machine learning techniques on various data
collected from the system as described in Section IV-A2.

It periodically collects the values of power consumption
from the power monitor, average performance of running
applications from the performance monitor and the CPU usage
limits on various VMs from server logs. Then, it calculates
the corresponding energy usage due to various applications
running in the virtualized server. The total energy usage is a
product of the average power consumption and the average
completion time of the longest running application.

The measured values are compared with the values of
energy usage and performance predicted by the fuzzy MIMO
models. If there are significant prediction errors, the fuzzy
MIMO models are updated based on the new observations
and the optimal performance targets are re-calculated. Such
prediction errors can occur due change in workload.

3) Level-2 Control: At level-2, the model predictive con-
troller computes the CPU usage limits to be enforced on each
VM in order to track the optimal performance targets set by
the utility optimizer. For this purpose, it uses a linear state-
space performance interference model, which is obtained by
linearizing the fuzzy MIMO model at each operating point.
Linearization reduces the computational complexity of the
control problem. It is designed to achieve the performance
targets while maintaining system stability in spite of the
inevitable uncertainties and disturbances in the system.

The CPU resource allocator is the actuator for this control
system. It performs the control actions by enforcing the
computed CPU usage limits on the co-located VMs in order
to regulate the system towards the optimal targets. Applying
CPU usage limits affects a VM’s performance as well as
power consumption. It is due to the idle power management
of modern processors, which can achieve substantive energy
savings when a processor is idle compared to it is active.

IV. LEVEL-1 CONTROLLER DESIGN

Level-1 control computes the optimal service levels of
customer applications co-located in a single virtualized server
and sends these values as the performance targets to the level-
2 controller. It performs utility optimization based on the
current system models. The performance interference model
is for non-invasive performance isolation with heterogeneous
application support and the energy usage model is for energy
efficiency.

A. Performance Interference and Energy Usage Models

The performance interference and energy usage models are
based on fuzzy MIMO modeling technique. In this section,
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we formulate a fuzzy MIMO model to represent a virtualized
multi-core server system hosting multiple applications and dis-
cuss a machine learning based model construction technique.
MIMO modeling is well-suited to capture the performance
interference interactions between co-located VMs. Together
with fuzzy logic, it accurately represents the highly complex
and nonlinear relationship between various system variables.
This is important for achieving modeling accuracy and self-
adaptiveness of the system model at the same time. Although
the initial fuzzy model is learned for a group of applications, it
is adaptive to different workload mixes at run time. We discuss
the need for self-adaptiveness in Section IV-C.

1) Fuzzy MIMO Model Formulation: We consider a number
of applications hosted in a multi-core server as a MIMO
system. The inputs to the system are CPU usage limits set
for various applications. The outputs of the system are the
measured performance of each application and the energy
usage of the underlying server. We obtain two separate models
for energy usage and performance of the system, respectively.
The system is approximated by a collection of MIMO fuzzy
models as follows:

y(k + 1) = R(ξ(k), u(k)). (1)

Let y(k) be the output variable and u(k) = [u1(k), .., um(k)]T

be the vector of current inputs at sampling interval k. The
regression vector ξ(k) includes current and lagged outputs:

ξ(k) = [y(k), .., y(k − ny))]T (2)

where ny specifies the number of lagged values of the output
variable. Note that a regression vector may also include
lagged inputs to achieve even better accuracy of energy usage
and performance prediction. R is a rule based fuzzy model
consisting of K fuzzy rules. Each fuzzy rule is described as
follows:

Ri: If ξ1(k) is Ωi,1 and .. ξ%(k) is Ωi,% and u1(k) is Ωi,%+1

and .. um(k) is Ωi,%+m then

yi(k + 1) = ζiξi(k) + ηiu(k) + φi. (3)

Here, Ωi is the antecedent fuzzy set of the ith rule which
describes elements of regression vector ξ(k) and the current
input vector u(k) using fuzzy values such as ‘large’, ‘small’,
etc. ζi and ηi are vectors containing the consequent parameters
and φi is the offset vector. % denotes the number of elements
in the regression vector ξ(k). Each fuzzy rule describes a
region of the complex non-linear system model using a simple
functional relation given by the rule’s consequent part. The
model output is calculated as the weighted average of the
linear consequents in the individual rules. That is,

y(k + 1) =

∑K
i=1 βi(ζiξi(k) + ηiu(k) + φi)∑K

i=1 βi
(4)

where the degree of fulfillment for the ith rule βi is the product
of the membership degrees of the antecedent variables in that

rule. Membership degrees are determined by fuzzy member-
ship functions associated with the antecedent variables. The
model output is expressed in the form of

y(k + 1) = ζ∗ξi(k) + η∗u(k) + φ∗. (5)

The aggregated parameters ζ∗, η∗ and φ∗ are the weighted
sum of vectors ζi, ηi and φi respectively.

ζ∗ =

∑K
i=1 βi · ζi∑K
i=1 βi

.

η∗ =

∑K
i=1 βi · ηi∑K
i=1 βi

.

φ∗ =

∑K
i=1 βi · φi∑K
i=1 βi

.

2) Machine Learning Based Model Construction: We con-
struct initial fuzzy models by applying a subtractive clustering
technique on data collected from the system. Each obtained
cluster represents a certain operating region of the system,
where input-output data values are highly concentrated. The
clustering process partitions the input-output space and deter-
mines the number of fuzzy rules and the shape of membership
functions. Then, we apply an adaptive network based fuzzy
inference system (ANFIS) to further tune the fuzzy model pa-
rameters. It constructs an artificial neural network to represent
a fuzzy model and tunes its parameters using a combination of
back-propagation algorithm with a least squares method. This
adjustment allows the fuzzy system to learn from the data it is
modeling. The data set includes various values of energy usage
and performance measured from the system for past resource
allocations.

B. Utility Optimizer
The utility optimizer is responsible for finding the optimal

service level for each application so that the overall system
utility is maximized. It maintains the knowledge about the
service-level utility function for each application, the utility
function of energy consumption, the performance interference
model of co-located VMs and the energy usage model of the
underlying multi-core server. The service-level utility function
reflects the revenue or penalty related to service-level agree-
ments with customers, and may also incorporate additional
considerations such as the value of maintaining the data
center’s reputation for providing good service. It is of the form
Ui(S) for application i, where S is the service level achieved
in terms of its average performance. The energy utility U(E)
represents the costs associated with energy consumption. For
a given combination of CPU resource allocations to various
co-located applications, the performance interference model
specifies the service levels that each application can achieve
and the energy usage model specifies the energy consumption
of the virtualized server.

The optimization problem is formulated as follows:

Maximize

N∑
i=1

Ui(S) + ε ∗ U(E) (6)
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where ε is a tunable coefficient expressing the relative value
of energy efficiency and performance objectives. The utility
optimizer first computes the CPU usage limits to be enforced
on co-located VMs so that the overall system utility given
by Eq. (6) is maximized. Then, it determines the optimal
service level targets for each application corresponding to
the computed CPU usage limits by using the performance
interference model. Our optimization algorithm is shown in
Algorithm 1.

Various heuristic optimization algorithms such as Simulated
Annealing, Genetic Algorithm, Hill Climbing and Particle
Swam are well-suited to the optimization problem, due to the
complex non-linear relationship between the objective function
and the decision variables. Here, the decision variables are
the CPU usage limits to be enforced on co-located VMs. In
this work, we apply a genetic algorithm based technique that
searches the space of various possible CPU usage limits and
finds a near-to-optimal solution. It uses the negative of utility
optimization objective in Eq. (6) as the fitness function since
the genetic algorithm is designed to minimize the fitness func-
tion. As a result, it maximizes the system utility. We represent
a solution to the optimization problem by a chromosome. It
is a string of numbers, coding information about the decision
variables. The genetic algorithm generates a new population of
candidate solutions and evaluates their fitness values in various
iterations. We observe that it is able to converge within 600
iterations or generations.

Algorithm 1 The optimization algorithm.
1: Start with a random initial population where each indi-

vidual represents a combination of CPU usage limits on
co-located VMs.

2: repeat
3: Evaluate each individual solution’s fitness according to

the defined fitness function.
4: Select pairs to mate from best-ranked individuals based

on their fitness scores.
5: Apply crossover and mutation operations on the se-

lected pairs to generate a new population.
6: until Number-of-generations ≤ G
7: Calculate the optimal performance targets corresponding

to the final solution of CPU usage limits, based on the
performance interference model.

C. Online Model Adaptation for Robust Performance Isolation

NINEPIN provides robust performance isolation with het-
erogeneous application support. It addresses the practical issue
of hosting compute intensive and interactive applications in
the same virtualized server in two steps. First, it performs
online adaptation of the performance interference and energy
usage models in response to a significant workload variation of
interactive applications that are co-located with VMs running
compute intensive jobs. Then, it re-computes the optimal per-
formance targets corresponding to the updated system model.
Furthermore, the model predictive controller performs control

actions based on the updated performance interference model.
Hence, NINEPIN is robust against variations in the workload
and heterogeneity of the hosted applications.

The online model adaptation is performed only when a
significant error in the prediction of energy usage and per-
formance is detected. This avoids the overhead of frequent
adaptation and computationally expensive re-optimization.
NINEPIN applies a wRLS (weighted Recursive Least Squares)
method to adapt the consequent parameters of the fuzzy
MIMO model as new measurements are sampled from the
runtime system. It applies exponentially decaying weights on
the sampled data so that larger weights are assigned to more
recent observations.

For online model adaptation, we express the fuzzy model
output in Eq. (4) as follows:

y(k + 1) = Xθ(k) + e(k) (7)

where e(k) is the error value between actual output of the
system (i.e., measured performance) and predicted output of
the model. θ = [θT1 θ

T
1 ..θ

T
p ] is a vector composed of the

model parameters. X = [w1X(k), w2X(k), .., wpX(k)] where
wi is the normalized degree of fulfillment of ith rule and
X(k) = [ξTi (k), u(k)] is a vector containing current and
previous outputs and inputs of the system. The parameter
vector θ(k) is estimated so that the following cost function
is minimized. That is,

Cost =

k∑
j=1

λk−je2(j). (8)

Here λ is a positive number smaller than one. It is called
“forgetting factor” as it gives larger weights on more recent
samples in the optimization. This parameter determines in
what manner the current prediction error and old errors affect
the update of parameter estimation. The parameters of fuzzy
model are updated by the wRLS method.

θ(k) = θ(k−1)+Q(k)X(k−1)[y(k)−X(k−1)θ(k−1)]. (9)

Q(k) =
1

λ
[Q(k−1)−Q(k − 1)X(k − 1)XT (k − 1)Q(k − 1)

λ+XT (k − 1)Q(k − 1)X(k − 1)
].

(10)
Q(k) is the updating matrix. The initial value of θ(0) is equal
to the value obtained in the off-line identification.

V. LEVEL-2 CONTROLLER DESIGN

The level-2 controller applies the model predictive control
principle to regulate the virtualized server system’s dynamic
behavior towards the optimal performance targets. The main
advantage of using a control theoretical foundation is the
ability to achieve the performance targets with better control
accuracy and stability in spite of the inevitable uncertainties
and disturbances that exist in the system.
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A. Linearized State-Space Model

To apply the model predictive control theory on the virtu-
alized server system, the level-2 controller first linearizes the
fuzzy MIMO model and represents it as a state-space linear
time variant model in the following form:

xlin(k + 1) = A(k)xlin(k) +B(k)u(k).

y(k) = C(k)xlin(k). (11)

The state vector for the state-space description is defined as

xlin(k + 1) = [ξT (k), 1]T . (12)

The matrices A(k),B(k) and C(k) are constructed by freezing
the parameters of the fuzzy model at a certain operating
point y(k) and u(k) as follows. The current operating point
is determined by the performance values of each application
and the current CPU usage limits measured from the runtime
system. We calculate the degree of fulfillment βi for the
current inputs (i.e CPU usage limits) chosen for the system and
compute the aggregated parameters ζ∗, η∗ and φ∗. Comparing
Eq. (5) and Eq. (11), the state matrices are computed as
follows:

A=



ζ∗1,1 ζ∗1,2 .. .. .. ζ∗1,% φ∗
1

1 0 .. 0 0

0 1
... 0 0

...
...

. . .
...

...
ζ∗2,1 ζ∗2,2 .. .. .. ζ∗2,% φ∗

2

0
...

. . .
...

...
ζ∗p,1 ζ∗p,2 .. .. .. ζ∗p,% φ∗

p

0 0 1 0 0 0 0

...
...

...
. . .

...
...

...
0 .. 0 .. 0 0 1



B=



η∗1,1 η∗1,2 .. η∗1,m
0 .. .. 0

...
...

η∗2,1 η∗2,2 .. η∗2,m
0 .. .. 0

...
...

η∗p,1 η∗p,2 .. η∗p,m
0 .. .. 0
0 .. .. 0


C=

[
1 0 .. .. .. .. 0

...
. . .

...
0 .. .. .. .. 1 0

]

where ζ∗ij is the jth element of aggregate parameter vectors ζ∗

for application i. Similarly, η∗ij is the jth element of aggregate
parameter vectors η∗ for application i.

B. The Model Predictive Controller

The control goal is to steer the system into a state of
optimum target tracking, while penalizing large changes in
the control variables. It minimizes the deviation of application
performance from their respective targets.

1) MIMO Control Problem: The model predictive con-
troller decides the control actions at every control period k
by minimizing the following cost function:

V (k) =

Hp∑
i=1

||r − y(k + i)||2P +

Hc−1∑
j=0

||∆u(k + j)||2Q. (13)

Here, y(k) is a vector containing the performance measure
of each application. The controller uses the linearized state-
space model to predict each application’s performance over
Hp control periods, called the prediction horizon. It computes
a sequence of control actions ∆u(k),∆u(k + 1), ..,∆u(k +
Hc − 1) over Hc control periods, called the control horizon,
to keep the predicted performance close to their pre-defined
targets r. The control action is the change in CPU usage limits
imposed on various applications. P and Q are the weighting
matrices whose relative magnitude provides a way to tradeoff
tracking accuracy for better stability in the control actions.

The control problem is subject to the constraint that the
sum of CPU usage limits assigned to all applications must be
bounded by the total CPU capacity of the physical server. The
constraint is formulated as:

M∑
j=1

(∆uj(k) + uj(k)) ≤ Umax (14)

where M is the number of applications hosted in a resource
pool and Umax is the total CPU capacity of the resource pool.

2) Transformation to Quadratic Programming Problem:
We transform the control formulation to a standard quadratic
programming problem, which allows us to design and imple-
ment the control algorithm based on an effective quadratic
programming method. The MIMO control problem defined by
Eq. (13) is transformed to a quadratic program:

Minimize
1

2
∆u(k)TH∆u(k) + cT∆u(k) (15)

subject to constraint Ω∆u(k) ≤ ω.
The matrices Ω and ω are chosen to formulate the con-

straints on CPU resource usage. Here, ∆u(k) is a matrix con-
taining the CPU usage limits on each virtual machine over the
entire control horizon Hc. In the minimization formulation,

H = 2(RT
uPRu +Q). (16)

c = 2[RT
uP

T (RxAx(k)− r)]T . (17)

The matrices Ru and Rx are associated with the performance
interference model of the hosted applications.

Ru=


C
CA

...
CAHp−1

 Rx=


CB 0 .. 0
CAB CB .. 0

...
...

. . .
...

CAHp−1B CAHp−1B .. CAHp−HcB


VI. SYSTEM IMPLEMENTATION

A. The Testbed

We have implemented NINEPIN on a testbed of an HP
ProLiant BL460C G6 blade server module and an HP EVA
storage area network with 10 Gbps Ethernet and 8 Gbps
Fibre/iSCSI dual channels. The blade server is equipped with
Intel Xeon E5530 2.4 GHz quad-core processor and 32 GB
PC3 memory. Xeon processor incorporates a three level cache
hierarchy, where each core has its own L1 (32KB) and L2
(256KB) caches, and there is a large shared 8MB L3 cache.
Virtualization of the server is enabled by an enterprise-level
virtualization product, VMware ESX 4.1. VMware’s vSphere
module controls the CPU usage limits in MHz allocated to the
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Fig. 3. SPEC CPU2006 workload mixes.

VMs. It also provides an API to support the remote manage-
ment of VMs. We create a resource pool from the virtualized
server to host multiple applications. Each application is hosted
inside a VMware virtual machine with one VCPU, 4 GB RAM
and 15 GB hard disk space. We assign the CPU affinity of each
VM to a particular CPU core. The guest operating system used
is Ubuntu Linux version 10.04.

Our testbed utilizes four VMs on the same quad-core
processor to host a set of four CPU bound benchmark appli-
cations from the SPEC CPU2006 suite. We choose five of the
SPEC CPU2006 benchmarks that are identified as being cache
sensitive in study [20], and use all possible combinations of
four as experimental workload mixes shown in Figure 3.

For experiments with heterogeneous application environ-
ment, we use SPEC CPU2006 benchmark with the popular
RUBiS benchmark [6], [14], [22]. RUBiS is an open-source
multi-tier application benchmark. It implements the core func-
tionality of an eBay like auction site: selling, browsing and
bidding. The application contains a Java-based client that
generates a session-oriented workload. RUBiS sessions have
an average duration of 15 minutes and the average think time
is five seconds. We use three VMs to host a three-tier RUBiS
application and the fourth VM to host one SPEC CPU2006
benchmark application. We instrument RUBiS clients to gen-
erate workloads of time-varying intensity.

B. NINEPIN Components

We implement the components of the NINEPIN framework
on a separate machine and issue commands to the virtualized
server over the network using VMware vSphere API 4.1.

1) Power Monitor: The average power consumption of the
virtualized server is measured at the resource pool level
by using a new feature of VMware ESX 4.1. VMware
gathers such data through its Intelligent Power Manage-
ment Interface sensors. The power monitor program uses
vSphere API to collect the power measurement data.

2) Performance Monitor: It uses a sensor program provided
by RUBiS client for performance monitoring of the
interactive application in terms of average end-to-end
request response time. For compute intensive jobs, it
measures the average job completion time of each VM
running the SPEC CPU2006 benchmark application.

3) Performance Interference and Energy Usage Modeling:
It applies subtractive clustering and ANFIS techniques
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Fig. 4. Service-level utility of various SPEC CPU2006 applications.

on the data collected from the virtualized server system
to construct performance interference and energy usage
models. The fuzzy logic toolbox in MATLAB is invoked
for this purpose.

4) Hierarchical Controller: It applies a genetic algorithm
for system utility optimization and invokes a quadratic
programming solver, quadprog, in MATLAB to execute
the control algorithm described in Section V-B. The
solution of the control algorithm in terms of VM CPU
usage limits is sent to the resource allocator.

5) Resource Allocator: It uses vSphere API to impose CPU
usage limits on the VMs. The vSphere module provides
an interface to execute a method ReconfigVM Task
to modify a VM’s CPU usage limit.

VII. PERFORMANCE EVALUATION

For performance evaluation, we consider various service-
level utility functions of SPEC CPU2006 applications as
shown in Figure 4. We chose these utility functions as a
case study without any loss of generality. We consider that
the utility of energy consumption is given by a linear utility
function as follows:

U(E) = ε ∗ Energy (18)

where Energy is the total energy consumed by virtualized
resource pool hosting multiple SPEC CPU2006 applications
and ε is a negative constant, which expresses the relative
value of energy and performance objectives. Note that the
applicability of NINEPIN in virtualized servers is independent
of the chosen utility functions.

We use SPEC CPU2006 suite’s runspec tool to run various
benchmarks simultaneously on the co-located VMs. Each
benchmark is run on multiple iterations to measure its average
performance in terms of the SPECspeed metric. It is amount
of time taken to complete a single task. The energy usage
is measured in kilojoules (kJ). It is a product of the average
power consumption and the average task completion time of
the benchmark with the longest running tasks.

A. Performance Isolation

First, we study the impact of performance interference
between co-located applications on their performance. We
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TABLE 1
PERFORMANCE OF WORKLOAD MIX-1’S CPU2006 BENCHMARK

APPLICATIONS WITHOUT PERFORMANCE ISOLATION.

Application Completion Time (ms)
Running alone Running in co-located VMs

436.cactusADM 2433 2931
437.leslie3d 1091 1586

459.GemsFDTD 1190 1676
470.lbm 825 1145

TABLE 2
PERFORMANCE OF WORKLOAD MIX-1’S CPU2006 BENCHMARK

APPLICATIONS WITH PERFORMANCE ISOLATION.

Application Completion Time (ms)
Q-Clouds NINEPIN

436.cactusADM 2796.5 2482.65
437.leslie3d 1435.52 1091

459.GemsFDTD 1487.5 1190
470.lbm 993.97 750

consider SPEC CPU2006 workload mix 1 that consists of CPU
2006 benchmark applications 436.cactusADM, 437.leslie3d,
459.GemsFDTD and 470.lbm. Table 1 compares the average
completion time of the four benchmark applications in the
workload mix 1 when each is run on an isolated VM as
opposed to when all of them are run simultaneously in
co-located VMs. All four benchmark applications exhibit
performance degradation in the absence of a performance
isolation mechanism. For example, for benchmark applica-
tion 436.cactusADM, the performance degradation is about
20%. For benchmark application 437.leslie3d, the performance
degradation is about 20%. We observe an average performance
degradation of 36% in the workload mix 1 due to the fact that
VMs running on adjacent CPU cores experience contention of
the underlying resources.

Next, we use workload mix 1 to evaluate the performance
isolation effectiveness of NINEPIN when the service-level
utility and energy utility functions are not available. In this
case, NINEPIN aims to mitigate the performance interference
effects without optimizing the overall system utility. Table 2
show that the average completion time of each benchmark ap-
plication running on co-located VMs is reduced by NINEPIN,
compared to both Q-Clouds and the default case in Table 1

TABLE 3
PERFORMANCE TARGETS FOR SPEC CPU2006 APPLICATIONS.

Target CPU Equivalent Performance %
Set 436.cactusADM 437.leslie3d 459.GemsFDTD 470.lbm
1 25 25 25 25
2 50 50 50 50
3 75 75 75 75
4 100 100 100 100
5 70 83 78 88

that does not apply any performance isolation mechanism.
We assume that all four VMs require 50% of the CPU

resource when there is no performance interference. We
measure performance isolation in terms of the normalized
performance of the VMs when they are co-located in the
same virtualized server. The normalization is performed with
respect to the performance shown by the VMs when they
run in isolation. Figures 5(a) and 5(b) show that NINEPIN,
compared to Q-Clouds and the default case that does not
apply any performance isolation mechanism, is able to achieve
much better performance isolation among co-located VMs.
Figure 5(c) shows the CPU resources allocated to mitigate the
performance interference between various hosted applications.
The improvement in performance isolation by NINEPIN is
due to the use of the fuzzy MIMO model, which captures the
performance interference relationship more accurately. Due to
the space limitation, we omit the results of other workload
mixes and refer to the studies with workload mix 1 as the
representative.

B. Optimal Performance Targeting

We evaluate the merits of utility optimization based per-
formance targeting by NINEPIN. We define a performance
target set as a group of performance targets for the applications
co-located in a virtualized server. Each performance target is
specified as the desired CPU equivalent performance that is
the percentage of CPU resource required to achieve a certain
performance level [21].

We consider SPEC CPU2006 workload mix 1 that con-
sists of benchmark applications 436.cactusADM, 437.leslie3d,
459.GemsFDTD and 470.lbm. Table 3 gives the performance
target sets. Figures 6(a) and 6(b) compare the system utility
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TABLE 4
UTILITY AND ENERGY EFFICIENCY.

Workload Mix System Utility Energy Consumption (KJ)
Q-Clouds NINEPIN Q-Clouds NINEPIN

1 1667 1961 100.8 74.67
2 1467 1942 115.2 55.72
3 1500 1955 122.4 82.8
4 1400 1840 104.4 79.2
5 1470 1900 118.8 86.4

and energy consumption associated with the performance
target sets. We observe that the performance target set 5, which
is computed with NINEPIN, is able to maximize the system
utility and minimize the energy consumption. Furthermore,
Figure 6(c) shows that the optimal performance targets vary
with all five different SPEC CPU2006 workload mixes. It
is due to the variation in performance interference relation-
ship and the service-level utility functions corresponding to
the applications of different workload mixes. Nevertheless,
NINEPIN is able assure the optimal performance targets.

C. System Utility and Energy Efficiency

A utility based model provides a practical way to integrate
performance assurance and energy efficiency goals of data
center applications to maximize the profitability of cloud
service provider. Table 4 compares the overall system util-
ity and energy efficiency between NINEPIN and Q-Clouds
for various workload mixes of SPEC CPU2006 suite. Note
that both approaches can mitigate performance interference

between co-located applications. However, NINEPIN provides
significantly lower energy consumption while improving the
system utility.

As shown in Figures 7(a) and 7(c), NINEPIN is able
to achieve better system utility than Q-Clouds for all five
workload mixes of SPEC CPU2006 suite. The system utility is
a combination of the service-level utility of various co-located
applications and the utility of energy consumption. NINEPIN
hierarchical control framework maximizes the overall system
utility by finding the optimal performance targets based on
utility optimization and regulating the system to achieve the
reference targets using the model predictive controller. The
regulatory action takes place in the form of CPU resource
allocations to co-located VMs in the virtualized server. The
system utility and energy consumption varies with workload
mixes. It is because different combination of applications co-
located in a virtualized server manifest different performance
interference relationships, energy consumption patterns and
service-level utility functions. On average, the improvement
in the system utility by NINEPIN is 28%.

Figures 7(b) and 7(c) illustrate the improvement in energy
efficiency by NINEPIN for various workload mixes of SPEC
CPU2006 suite. NINEPIN reduces the energy consumption of
the virtualized server by controlling each VM’s CPU usage
limits according to an energy usage model. It is able to
tradeoff the utility of meeting performance objectives with
energy efficiency. On the other hand, Q-Clouds always aims
to achieve a fixed performance target without considering the
cost of energy consumption. On average, the improvement in
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TABLE 5
IMPROVEMENT IN SYSTEM UTILITY AND ENERGY EFFICIENCY.

Compared with RUBiS workload
500 clients 1000 clients

System Utility Default 20% 160%
Q-Clouds 7.3% 137%

Energy Efficiency Default 12% 27%
Q-Clouds 9.7% 23%

energy efficiency by NINEPIN over Q-Clouds is 32% running
the SPEC CPU2006 mixes.

D. NINEPIN Robustness

We evaluate the robustness of NINEPIN against application
heterogeneity and dynamic workload variation. As a case
study, we run one interactive three-tier application RUBiS
with a dynamic workload and one SPEC CPU2006 benchmark
application, 470.lbm, in the same virtualized server. RUBiS
application initially faces a workload of 500 concurrent users.
At the fifth control interval, the workload intensity is doubled.

The prediction accuracy of NINEPIN’s system models in the
face of dynamic workload variation has a significant impact
on its robustness. Thus, we first measure the accuracy of the
fuzzy MIMO models obtained by NINEPIN for performance
and energy usage prediction. The accuracy is measured by the
normalized root mean square error (NRMSE), a standard met-
ric for deviation. We compare our results with the modeling
technique used in Q-Clouds.

Figures 8(a), (b) and (c) show that NINEPIN outperforms

Q-Clouds in predicting the performance of co-located appli-
cations and the energy usage of the underlying server under
different workload intensities. The average improvement in the
prediction accuracy of performance and energy usage are 26%
and 23% respectively. The improvement is more significant
when the workload changes from 500 concurrent users to
1000 concurrent users. It is due to the fuzzy MIMO model’s
ability to adapt more effectively to the change in workload
and capture the inherent non-linearity of the system.

We measure the system utility and energy usage in the face
of a dynamic workload shown in Figure 9(a). Figure 9(b)
illustrates the instantaneous system behavior of the virtualized
server under the influence of Q-Clouds and NINEPIN mech-
anisms for performance isolation. We observe that NINEPIN
achieves consistently lower energy consumption and improved
system utility as compared to Q-Clouds. At the fifth control
interval, there is a sharp decline in the system utility for
both performance isolation mechanisms. It is due to a sudden
change in the performance interference relationship between
heterogeneous applications, which is caused by the workload
variation. Furthermore due to increase in the workload inten-
sity, the energy consumption by the underlying server also in-
creases. Indeed, performance interference effects are impacted
by the workload intensity as well as characteristics of co-
located applications. Note that the performance improvement
by NINEPIN is more significant after the fifth control interval.
It is due to its ability to re-compute and assure the optimal
operating conditions of the system in response to the changing
performance interference relationship between heterogeneous
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applications. Figure 9(c) summarizes the energy consumption
improvement by NINPIN.

Table 5 shows the improvement in system utility and
energy efficiency by NINEPIN for different RUBiS workloads,
compared to Q-Clouds and the default case that does not apply
any performance isolation mechanism. In the two scenarios,
NINEPIN outperforms Q-Clouds in average energy efficiency
and average system utility by 16% and 72%, respectively.

VIII. CONCLUSION AND FUTURE WORK

Performance isolation among heterogeneous customer ap-
plications is an important but very challenging problem in a
virtualized data center. NINEPIN provides a desirable non-
invasive performance isolation mechanism for a data center
hosting third-party customer applications and using virtual-
ization software from third-party vendors. As demonstrated
by modeling, analysis and experimental results based on
the testbed implementation, its main contributions are robust
performance isolation of heterogeneous applications, energy
efficiency and overall system utility optimization. It increases
data center utility by aligning performance isolation goals with
a data center’s economic optimization objective. The main
technical novelty of NINEPIN is due to the proposed and
developed hierarchical control framework that integrates the
strengths of machine learning based system modeling, utility
based performance targeting and a model predictive control
based target tracking and optimization.

Our future work will extend NINEPIN to address perfor-
mance interference between I/O bound workloads.
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