
Towards Self-Managing Cloud Storage with

Reinforcement Learning

Ridwan Rashid Noel

Dept. of Computer Science

University of Texas at San Antonio

San Antonio, Texas-78249

Email: ridwanrashid.noel@utsa.edu

Rohit Mehra

Dept. of Computer Science

University of Texas at San Antonio

San Antonio, Texas-78249

Email: rohit.mehra@my.utsa.edu

Palden Lama

Dept. of Computer Science

University of Texas at San Antonio

San Antonio, Texas-78249

Email: palden.lama@utsa.edu

Abstract—Cloud storage services are often associated with var-
ious performance issues due to load imbalance, interference from
background tasks such as data scrubbing, backfilling, recovery,
and the difference in processing capabilities of heterogeneous
servers in a datacenter. This has a significant impact on a broad
range of applications that are characterized by massive working
sets and real-time constraints. However, it is challenging and
burdensome for human operators to hand-tune various control-
knobs in a cloud-scale storage cluster for maintaining optimal
performance under diverse workload conditions. Our study on
an open-source object-based storage system, Ceph, shows that
common load balancing strategies are ineffective unless they
are adapted according to workload characteristics. Furthermore,
positive effects of an applied strategy may not be immediately
visible.

To address these challenges, we developed a machine learning
based system adaptation technique that enables a cloud storage
system to manage itself through load balancing and data migra-
tion with the aim of delivering optimal performance in the face of
diverse workload patterns and resource bottlenecks. In particular,
we applied a stochastic policy gradient based reinforcement
learning technique to track performance hotspots in the storage
cluster, and take appropriate corrective actions to maximize
future performance under a variety of complex scenarios. For this
purpose, we leveraged system-level performance monitoring and
commonly available control-knobs in object-based cloud storage
systems. We implemented the developed techniques to build an
Adaptive Resource Management (ARM) system for object based
storage cluster, and evaluated its performance on NSF Cloud’s
Chameleon testbed. Experiments using Cloud Object Storage
Benchmark (COSBench) show that, ARM improves the average
read and write response time of Ceph storage cluster by upto
50% and 33% respectively, compared to the default case. It
also outperforms a state-of-the-art dynamic load rebalancing
technique in terms of read and write performance of Ceph
storage by 43% and 36% respectively.

Keywords-Performance Interference; Ceph; Cloud Storage;
Reinforcement Learning.

I. INTRODUCTION

Cloud storage services provide cost-effective, highly scal-

able and reliable platforms for storing large scale enterprise

data. This is possible due to the underlying object-based

storage technology (e.g OpenStack Swift [4], Ceph [26], Ama-

zon S3, etc.). However, todays cloud services are associated

with various performance issues [21, 27]. One of the factors

influencing cloud storage performance is the interference from

background tasks such as data scrubbing, recovery, rebalancing

etc. running on a storage cluster. Furthermore, the difference

in the processing capabilities of storage servers, which arises

as servers are gradually upgraded and replaced in a cloud

datacenter, can also be detrimental to the overall performance

of the storage cluster. Existing cloud storage systems mostly

rely on human operators to tune various control knobs to

address performance issues. For example, a datacenter ad-

ministrator needs to tune various configuration parameters to

determine load balancing and data distribution strategies for

the storage cluster. Manually tuning these control knobs for

maintaining optimal performance is not only burdensome but

may also be ineffective if they are not adapted to diverse

workload patterns. In our motivational case study on an open-

source object storage system, Ceph, we observed a complex

interplay between various workload patterns (i.e. read-write

ratio, data object size, etc.), underlying resource bottlenecks,

and the performance of storage cluster under different system

adaptation strategies. We also observed that the positive effects

of an applied strategy may not be immediately visible, which

further complicates the task of performance tuning.

There are recent studies that address performance issues

caused by hardware and workload heterogeneity on distributed

storage systems through workload-specific configuration of

multiple independent micro object stores [6]. However, de-

termining the optimal number of microstores and performing

workload-to-microstore mapping on the fly is challenging in a

multi-tenant cloud environment. Various works have enabled

elastic scaling of cloud based storage [11, 23]. In contrast, our

work focuses on addressing the adverse effects performance

hotspots which may in fact arise due to the overheads of

data movement when a cloud storage cluster is being scaled.

There are client-centric approaches on addressing high la-

tency variance associated with cloud storage services through

request duplication [27], replica selection [21], and storage

tiering [9, 20] . Such approaches are complementary to our

work, which aims to reduce the burden of performance tuning

from datacenter administrators by developing self-managing

capabilities in a cloud storage system.

In this paper, we developed a reinforcement learning based

system adaptation technique that enables a cloud storage sys-

tem to manage itself through load balancing and data migration

34

2019 IEEE International Conference on Cloud Engineering (IC2E)

978-1-7281-0218-4/19/$31.00 ©2019 IEEE
DOI 10.1109/IC2E.2019.000-9

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 16,2020 at 19:16:44 UTC from IEEE Xplore. Restrictions apply.

with the aim of minimizing the average response time in the

face of diverse workload patterns and resource bottlenecks.

Such self-managing and self-adaptive capability in cloud-

scale storage systems can significantly reduce human efforts

required for datacenter administration while delivering near

optimal performance. In particular, we make the following

contributions.

1) We analyzed system-level performance metrics to cap-

ture resource bottlenecks in a cloud storage system

under various workload conditions and interference from

background jobs. Utilizing system level metrics makes

our approach easily portable to any storage software. We

further studied the performance impact of commonly

available control knobs such as adjusting load serving

ratios and data migration among storage servers to

develop effective system adaptation heuristics.

2) We applied a stochastic policy gradient based reinforce-

ment learning technique to select the corrective actions

needed to mitigate performance hotspots in the storage

cluster under various workload conditions and resource

bottlenecks. Reinforcement learning is particularly well-

suited for this problem since it is able to generate

policies optimizing a long-term goal instead of focusing

only on immediate outcomes. This property enables

cloud storage systems to take beneficial actions even

though their positive effect may not be immediately

visible. Furthermore, stochastic policies can robustly

handle the uncertainties and performance variability of

a cloud environment.

3) We implemented the developed techniques to build an

Adaptive Resource Management (ARM) system for ob-

ject based storage cluster. We evaluated ARM on NSF

Cloud’s Chameleon testbed. Our experiments using an

open source Cloud Object Storage Benchmark (COS-

Bench) [30] show that, ARM improves the average read

and write response time of the Ceph storage by upto 50%

and 33% respectively, compared to the default case. It

also outperforms a state-of-the-art dynamic load rebal-

ancing technique in terms of read and write performance

of Ceph storage by 43% and 36% respectively.

The rest of the paper is organized as follows. Section II

provides the background studies and motivation of this work.

Section III outlines related work. Section IV describes the

research challenges. Section V discusses reinforcement learn-

ing approach of system adaptation. Section VI presents the

implementation details and Section VII evaluates the proposed

system. Section VIII provides convergence and overhead anal-

ysis of the proposed solution. Section IX summarizes our

contribution and discusses future work.

II. BACKGROUND

As a representative cloud storage system we use Ceph,

an open-source distributed object storage platform, which is

gaining increasing popularity due to its robust design and

scaling capabilities. Ceph provides all data access methods

(file, object, block) and appeals to IT administrators with its

Fig. 1: Objects grouped into placement groups, and distributed

to OSDs via CRUSH, a specialized replica placement function

in Ceph.

unified storage approach. Its core, RADOS, is a fully dis-

tributed, reliable and autonomous object store. Ceph’s building

blocks are called OSDs (Object Storage Daemons), which are

responsible for storing objects on local filesystems, as well

as working together to replicate data, detect and recover from

failures, or migrate data when OSDs join or leave the cluster.

An OSD generally consists of one ceph-osd daemon for one

storage drive within a host machine. Ceph OSD daemons cre-

ate object replicas on other Ceph nodes to ensure data safety.

Ceph is highly scalable mainly due to its pseudo-random

placement algorithm called CRUSH (Controlled Replication

Under Scalable Hashing) [26], which allows OSDs and clients

to compute object locations instead of looking them up in a

centralized table. As a result, clients can directly interact with

the OSDs for I/O after obtaining the most recent copy of the

cluster map from a Ceph Monitor. Based on the hierarchies of

failure domains for placing object replicas at different levels,

e.g. disk, host, rack, etc. and a set of rules, CRUSH maps

objects to placement groups (logical aggregations of objects

inside one pool) and then maps each placement group to one

primary OSD, and some replica OSDs as shown in Figure

1. Placement groups eliminate the computationally expensive

task of tracking object placement and object metadata on a

per-object basis.

Despite the flexibility and extreme scalability of object-

based cloud storage systems, they are vulnerable to the detri-

mental effects of performance hotspots in the storage cluster.

Here performance hotspots refer to a subset of storage servers

that are slower than others due to various reasons. One of

the primary reasons for this is hardware heterogeneity. Al-

though storage clusters are initially setup using homogeneous

configuration, hardware heterogeneity arises as servers are

gradually upgraded, replaced and added in a cloud datacen-

ter. Furthermore, with the advent of software-defined storage

system such as Ceph, which supports rolling hardware and

software upgrades, as well as the ability to run mixed hardware

configurations, the storage nodes are even more likely to be

heterogeneous.

Another important cause of performance hotspots is the

interference from various background tasks. Object storage

systems in general run data scrubbing tasks as a part of

maintaining data consistency and cleanliness. In Ceph, OSD

daemons perform data scrubbing periodically by comparing

35

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 16,2020 at 19:16:44 UTC from IEEE Xplore. Restrictions apply.

object metadata in one placement group with its replicas in

placement groups stored on other OSDs to detect inconsis-

tencies and filesystem errors. Furthermore, Ceph runs other

background tasks such as data recovery and rebalancing in

response to structural changes in the storage cluster. For

example, when a component in a storage cluster fails, Ceph

initiates recovery operations during which all data that was

hosted on the failed OSD device is moved to other OSDs.

Similarly when a new OSD is added to the storage cluster,

the cluster map gets updated with the new OSD and Ceph

starts rebalancing the cluster by migrating some of the PGs

from existing OSDs to the new OSD.

III. RELATED WORK

Performance interference in multi-tenant systems has at-

tracted significant attention in recent year [8, 12, 19]. Delim-

itrou et al. [12] developed a collaborative filtering technique to

classify an unknown, incoming workload with respect to how

much interference it will cause to co-scheduled applications

and how much interference it can tolerate. Govindan et al. [14]

present a scheme to quantify the effects of cache interference

between consolidated workloads. Chang et al. [8] proposed a

statistical machine learning based I/O interference prediction

model, and an interference-aware scheduler for data-intensive

applications in virtualized environments. However, these tech-

niques mainly focuses on performance isolation in the compute

cluster and may not be easily extended to apply on cloud

storage system.

Addressing high latency variance associated with cloud

storage services has been a focus of several recent works.

Anwar et al. [6] addressed the mismatch between the differ-

ent applications requirements and capabilities of the object

store by designing an architecture that supports independently

configured micro stores each tuned dynamically to the needs

of a particular type of workload. Wu et al. [27] focused

on reducing the high latency variance associated with cloud

storage services by augmenting GET/PUT requests issued

by end-hosts with redundant requests, so that the earliest

response can be considered. However, relying on redundant

GET/PUT requests, and independently configured micro stores

often incur additional costs, and inefficient resource utilization.

Suresh et al. [21] reduced latencies in cloud data store by

adaptively selecting one out of multiple replica servers to serve

a request based on a continuous stream of in-band feedback

about a servers load. These approaches are complementary to

our work, which focuses on developing self-managing capabil-

ities in a cloud storage system with system-level performance

monitoring and machine learning.

Storage tiering has also been explored in recent works [9,

20] . Cheng et al. [9] proposed a Cloud Analytics Storage

Tiering solution that cloud tenants can use to reduce monetary

cost and improve performance of analytics workloads. This

approach performs offline workload profiling to construct job

performance prediction models on different cloud storage ser-

vices, and combines these models with workload specifications

and high-level tenant goals to generate a cost-effective data

placement and storage provisioning plan. In [20], the concept

of storage tiering was extended from a single cloud storage

to the wide-area and multiple data-centers. However, these

approaches need application-specific fine tuning, and can not

be generalized to a broad range of applications.

Scalability of storage clusters has been studied in the

past. In [24], Wang et al. presented file and block I/O

performance and scalability evaluation of Ceph for scientific

high-performance computing (HPC) environments. Through

systematic experiments and tuning efforts, they observed that

Ceph can perform close to 70% of raw hardware bandwidth

at object level and about 62% of at file system level. Gudu

et al. [15] presented a multidimensional scalability evaluation

of Ceph with the aim to achieve better understanding of how

each dimension (number of OSDs, number of clients, object

size) affects performance. Trushkowsky et al. [23] presented

the SCADS Director, a control framework that reconfigures the

storage system on-the-fly by adding or removing storage nodes

in response to workload changes using a performance model

of the system. In contrast, our work focuses on addressing

the adverse effects of performance hotspots which may in fact

arise due to the overheads of data movement when a cloud

storage cluster is being scaled.

Dynamic load redistribution (DLR) technique was applied

by Noel et al [18] to improve the performance of a Ceph

cluster in the presence of performance hotspots caused by

hardware heterogeneity and interference from background

workloads. DLR relies on manually tuned thresholds on sys-

tem level performance metrics to trigger load balancing among

Ceph OSDs by adjusting their load serving ratio. However, our

study shows that such approach is ineffective in the presence

of diverse workload characteristics and resource bottlenecks.

Machine learning techniques have been applied for au-

tomated resource management of networked systems in the

past [7, 12, 13, 28, 29] . Dutreilh et al. [13] applied rein-

forcement learning for automated resource allocation of cloud

applications, and introduced further optimization for faster

convergence of the learning algorithm. Xu et al. [28] applied

reinforcement learning to automate the configuration processes

of virtualized machines and appliances running in the virtual

machines. Yadwadkar et al. [29] applied supervised machine

learning technique to improve task scheduling in distributed

data processing frameworks. Cano et al. [7] presented a

reinforcement learning based algorithm for storage tiering

in enterprise clusters. In particular, they applied Q-learning

technique [25] to decide how much data to keep in SSDs and

HDD under diverse workload conditions.

In this paper, we apply reinforcement learning based adap-

tive load balancing and data migration to improve cloud

storage performance. Unlike the related works that apply

deterministic reinforcement learning approach (i.e Q-learning),

we apply a stochastic policy gradient technique to determine

an action in the face of diverse workload conditions and

resource bottlenecks. Stochastic policies are well-suited to an

uncertain cloud environment, where executing a fixed action

in a given state may not always be optimal.

36

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 16,2020 at 19:16:44 UTC from IEEE Xplore. Restrictions apply.

’heatmap-mix1-cpu.txt’ matrix

 0 1 2 3 4 5 6 7 8 9

Sampling Interval (30 sec)

 0

 1

 2

 3

 4

 5

 6
S

to
ra

ge
 n

od
e

 0

 20

 40

 60

 80

 100

(a) CPU utilization

’heatmap-mix1-io-rd.txt’ matrix

 0 1 2 3 4 5 6 7 8 9

sampling interval (30 sec)

 0

 1

 2

 3

 4

 5

 6

S
to

ra
ge

 n
od

e

 0

 5

 10

 15

 20

(b) %Iowait

’heatmap-mix1-net.txt’ matrix

 0 1 2 3 4 5 6 7 8 9

sampling interval (30 sec)

 0

 1

 2

 3

 4

 5

 6

S
to

ra
ge

 n
od

e

 0

 20

 40

 60

 80

 100

(c) Network utilization

Fig. 2: Heat maps of various system-level metrics in the Ceph storage cluster.

3

5
6
7

 1

 2

 4

 8

CPU I/O Network

N
or

m
al

iz
ed

 R
es

po
ns

e
T

im
e

Resource with Imbalanced Usage

workload A
workload B

(a) Workload A and B

3

5
6
7

 1

 2

 4

 8

CPU I/O Network

N
or

m
al

iz
ed

 R
es

po
ns

e
T

im
e

Resource with Imbalanced Usage

read response time
write response time

(b) Workload C

3

5
6
7

 1

 2

 4

 8

CPU I/O Network

N
or

m
al

iz
ed

 R
es

po
ns

e
T

im
e

Resource with Imbalanced Usage

read response time
write response time

(c) Workload D

Fig. 3: Ceph performance degradation due to imbalance in CPU, disk I/O and network usage for various workload mixes.

IV. CHALLENGES IN MANAGING CLOUD STORAGE

PERFORMANCE

A. Selecting Appropriate System Adaptation Heuristics

Existing cloud storage systems provide various control

knobs that can be used to adapt system behavior. However, it

is challenging to determine which adaptation technique should

be applied under what conditions and how much adaptation is

needed to mitigate performance issues in the storage cluster.

In this paper, we focus on two adaptation techniques provided

by Ceph, which involves adjusting the primary affinity and

weight associated with Ceph OSDs.

In Ceph, a primary affinity value determines the probability

that an OSD will act as the primary OSD. Any read operation

is always done from the primary OSD. By default, all OSDs

have a primary affinity value of 1 and decreasing an OSDs

primary affinity value reduces the amount of read workload

that it serves. Hence, primary affinity can be utilized to adjust

the read workload serving ratio of Ceph OSDs. However, this

has little effect on write-heavy workloads. This is because a

write operation in Ceph is performed on all OSDs within a

placement group (PG) regardless of the primary affinity values

associated with them. While writing, data is first written to

primary OSD, and then replicated to the other OSDs.

Another mechanism of system adaptation in Ceph is to

adjust the OSD weights. The OSD weights control the amount

of data stored in the OSDs by mapping PGs to OSDs in propor-

tion to their weights. Although OSD weights influence both

read and write performance, changing the weights result in

data migration between OSDs, and incur associated overheads.

TABLE I: Ceph COSBench workload profile

Workload Obj. size Operation distribution App. scenario

A 1-8MB G: 90%, P: 5%, D: 5% Online video sharing
B 1-8MB G: 5%, P: 90%, D: 5% Enterprise backup
C 1-128KB G: 50%, P: 50%, D: 0% General
D 1-8MB G: 50%, P: 50%, D: 0% General

B. Performance Hotspots under Various Workload Mixes

Determining a corrective action to improve cloud storage

performance in response to system-level performance metrics

is non-trivial due to a complex interplay between various

workload patterns (i.e. read-write ratio, data object size, etc.),

underlying resource bottlenecks, and the performance of stor-

age cluster. To analyze this complex behavior, we setup an

8-node Ceph cluster on the NSF Clouds Chameleon testbed.

One of the node was used as Ceph Admin, and the remaining

7 nodes were used as storage nodes, each hosting one OSD.

Consideration of multiple OSDs per node is out of scope for

this paper. The Ceph version used was 9.2.1 (Infernalis-stable).

We examined four different workload mixes derived from

COSBench [30] (version 0.4.2) to represent real-world appli-

cations that use cloud object storage as listed in Table I. The

37

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 16,2020 at 19:16:44 UTC from IEEE Xplore. Restrictions apply.

workload mixes have different ratio of read, write and delete

operations. Workload A is read-heavy with 90% GET requests,

5% PUT requests and 5% DELETE requests. Workload B is

write-heavy with 5% GET requests, 90% PUT requests and 5%

DELETE requests. The remaining workloads have balanced

read and write ratio. The object size distribution is uniform in

the range of 1 to 8 MB for workloads A, B, D, and 1 to 128

KB for workload C. We setup two storage containers in the

Ceph cluster and worked with a total number of 500 objects

for workload A, B and D and 5000 objects for workload C.

Each COSBench job was run for 5 minutes.

To introduce performance hotspots in the storage cluster,

we ran various background jobs, one at a time, on two of

the Ceph nodes starting at time 2 minutes. The background

jobs worked on creating specific resource contention in the

Ceph OSDs. We used sysbench [17] cpu benchmark for

stressing the CPU resource, fio [2] tool for introducing I/O

contention, and iperf [3] tool for introducing contention in the

network bandwidth. More details on the experimental setup

and background jobs are described in section VII-B. Figure 2

shows the heat maps of CPU utilization, %iowait and network

utilization in the Ceph storage cluster. Here, %iowait provides

the percentage of time that the CPU or CPUs are idle during

which the system has an outstanding disk I/O request. Since

both read-heavy and write-heavy workloads resulted in similar

heat maps, we only show one set of data. We observe that the

background jobs cause various degrees of imbalance in the

utilization of CPU, disk I/O and network resources across the

Ceph storage nodes starting at the 4th sampling interval.

Figure 3 shows the impact of imbalance in the CPU uti-

lization, %iowait and network utilization of the storage nodes

on the average response time of COSBench workloads. We

observe that in the case of high imbalance in CPU utilization

among the storage nodes, the performance of COSBench

workloads is largely unaffected. In the case of imbalance

in network utilization, read-heavy workload A experienced a

large performance degradation (6X increase in average read

response time). However, the remaining workloads were not

affected. This is due to the presence of significant amount of

write operations in workload B, C and D. Since every single

write operation involves writing on all the OSD replicas across

the network, workloads B, C and D already cause high network

utilization among Ceph OSDs and suffer from large network

latency even when there is no network interference from

background jobs. Hence, the presence of additional network

interference does not have much impact on performance. In

the case I/O interference from background jobs, we found that

even a small amount of imbalance, in term of %iowait, among

the storage nodes cause significant performance degradation

for all of the COSBench workloads.

C. Delayed Effect of System Adaptation

One of the key challenges of system adaptation is that

sometimes the positive effects of an applied strategy may

not be immediately visible. To demonstrate this phenomenon,

we measured the impact changing the OSD weights on the

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

)

Sampling Interval (30 sec)

w/o OSD reweight
with OSD reweight

Fig. 4: Delayed effect of OSD reweight on the performance of

COSBench workload in the presence of I/O interference on a

subset of storage nodes. OSD reweight is applied at sampling

interval 2.

performance of COSBench workload in the presence of I/O in-

terference from background jobs. In this experiment, starting at

the second sampling interval (time 60 seconds), we reduced the

OSD weights of the two storage nodes where the background

jobs were running. As shown in Figure 4, the average read

response time of COSBench workload A initially increases

due to the data movement caused by OSD reweight. However,

the performance improves significantly starting at sampling

interval 5. This is because data migration from the two low-

performing OSDs to the remaining OSDs, divert majority of

the subsequent read requests to the well-performing OSDs.

These results motivate the need to incorporate such delayed

effects in designing effective system adaptation techniques.

V. REINFORCEMENT LEARNING BASED ADAPTIVE LOAD

BALANCING AND DATA MIGRATION

A. A Case for Reinforcement Learning

In this paper, we use reinforcement learning to adaptively

determine how the primary affinity and weights of Ceph OSDs

should be adjusted for mitigating performance hotspots in the

storage cluster. Reinforcement learning (RL) is a process by

which a machine or an agent can learn to achieve desired goal

by interacting with the environment. This autonomous agent

has the capability to sense the state of environment and take

actions leading to other states. As agent transitions from one

state to another, it only receives a numerical reward signal. At

the start of training, agent is unaware of the best actions, but

with interactions it discovers and learns which actions yield the

most reward in specific situations or state of the environment.

We choose RL based system adaptation approach for the

following reasons:

• Unlike supervised machine learning techniques, RL algo-

rithms do not require labelled training data. In a dynamic

cloud environment with ever changing workloads, obtain-

ing the training dataset is difficult and time consuming.

• RL can generate policies optimizing a long-term goal of

maximizing cumulative rewards instead of focusing only

on immediate outcomes. This property can be utilized to

incorporate delayed effects of system adaptation in the

learning algorithm.

38

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 16,2020 at 19:16:44 UTC from IEEE Xplore. Restrictions apply.

• RL’s model-free approach is application-agnostic in its

design, and hence is applicable to any type of workloads.

B. Problem Formulation

RL problems can be formulated as a Markov decision

process (MDP), which consists of a set of states and several

actions for each state. Every state in MDP satisfies “Markov”

property, which refers to the fact that the future only depends

on the current state and not the history. Hence, the current

state contains enough information to choose optimal actions

to maximize future rewards. RL algorithms assume that the

problems to be learned are (at least approximately) Markov

decision processes.
Consider a set of states S and a set of actions A. The MDP

is defined by the transition probability, P (s′|s, a) = P (st+1 =
s′|st = s, at = a) and expected reward function, R(s, a) =
E[rt+1|st = s, at = a]. At each step t, the agent perceives its
current state st ∈ S, takes an action a ∈ A, transits to the next
state st+1 and receives an immediate reward rt+1 from the
environment. The goal of the RL agent is to develop the policy
of choosing actions π(s, a) = P (a|s), which can maximize
the cumulative rewards through iterative interactions with the
environment. If the sequence of rewards received after time
step t until the end of an episode is rt+1, rt+2, rt+3, . . . , rT
then the objective of learning is to maximize the expected
discounted return. The discounted return GT

t is of the form:

G
T

t = rt+1+γrt+2+γ
2
rt+3+ · · ·+γ

T−t−1
rT =

T−t−1∑

k=0

γ
k
rt+k+1

(1)

Here, γ is called the discount factor whose value ranges

between 0 and 1. γ = 0 will make the learning agent short

sighted and it will consider only immediate rewards; γ → 1
will make it look into long term future rewards.

We describe the State-action-reward configurations of our

problem as follows.

States: We define state s at time step t by the following

tuple st = (iowait, rtps, wtps, net)t, where each element is

a vector that denotes the %iowait value, disk read requests per

second, disk write requests per second, and network utilization

respectively on each storage node. The %iowait and network

usage data helps the agent determine the resource bottleneck.

Similarly, rtps and wtps help in determining the proportion of

read and write operations associated with a given workload.

These metrics also help the learning agent to figure out

whether the workload has small object size or large object

size. Workloads with small object sizes typically cause more

reads and writes per second than workloads with large object

sizes.

Actions: We define five possible actions A to choose for

every state. The actions are 1) I/O-based affinity control, 2)

I/O-based OSD reweight, 3) network-based affinity control, 4)

network-based OSD reweight or 5) take no action (no-op). The

policy maps a state to a probability function over the actions.

The RL problem only focuses on which action should be taken

under different workload conditions. To determine how much

of an action should be taken, we apply a system adaptation

heuristic for increasing or decreasing the primary affinity and

weights of an OSD in proportion to the difference between

the OSD’s system-level performance metrics, and the average

value measured among all OSDs. Let iowaiti be the %iowait

and neti be the network utilization measured at OSD i. We

update the primary affinity of OSD i by subtracting a value 2∗
δi, where δi = (1− iowaitavg/iowaiti) for I/O-based affinity

control and δi = (1−netavg/neti) for network-based affinity

control. On the other hand, we update the OSD weight less

aggressively by subtracting δi value. This is to avoid excessive

data movement among the OSDs due to change in weights.

Rewards: Finally, we define the rewards according to

the workload type. As the state observations provide disk

read and write statistics, we can detect whether the run-

ning workload is read-heavy or write-heavy. We use the

reciprocal of the average read (GET request) response time

and the reciprocal of average write (PUT request) response

time of COSBench as a performance score for ready-

heavy and write-heavy workloads respectively. For read-write

balanced workloads, we calculate the performance score as

2/(read response time+ write response time).

C. RL Solution

We use a stochastic policy gradient method [1, 22] to solve

the RL problem. A stochastic policy determines the probability

of taking a certain action at given state. Such policy allows

our agent to explore the state space without always taking the

same action for a given state. As a consequence, it handles

the exploration/exploitation trade off without hard coding it.

In contrast to deterministic or quasi-deterministic approaches

such as Q-learning [25], stochastic policy gradient method

is very effective in overcoming the problem of perceptual

aliasing [10], where different states appear to be the same but

require different actions. This property is useful in learning

good policies in a partially observable domain such as a

complex cloud storage system where the observed state may

be insufficient in fully describing the system.

Policy gradient methods aim to optimize the policies di-

rectly by running a policy for a while, observing what actions

led to high rewards, and increasing the probability of those

actions. The policy πθ(st, at) is represented as a parameterized

function with respect to θ. We use a simple feed-forward neu-

ral network with two hidden layers to approximate the policy

function. Each time the agent interacts with the environment,

the parameters θ of the neural network are tweaked so that

“good” actions will more likely be sampled in the future and

vice versa. This process is repeated until the policy network

converges to the optimal policy π∗.

Formally, the main objective of Policy Gradients is to

maximize the total future expected rewards E[G∞

t], where

G∞

t represents the sum of all future discounted rewards. The

parameters θ of the policy network is iteratively tweaked so

that E[G∞

t] is maximized. This is achieved by calculating the

gradient of E[G∞

t] which can be formalized as follows:

∇θE[G∞

t] = E[G∞

t ∇θlogP (a)] (2)

39

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 16,2020 at 19:16:44 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 REINFORCE Algorithm

1: function REINFORCE

2: Initialize θ arbitrarily

3: for each mini-batch of K episodes do

4: Run every episode of the mini-batch

5: for each episode

6: {s1, a1, r2, . . . , sT−1, aT−1, rT } ∼ πθ do

7: for t = 1 to T − 1 do

8: θ ← θ + α∇θ log πθ(st, at)(G
T
t − b)

9: end for

10: end for

11: end for

12: return θ
13: end function

Intuitively, G∞

t is the scaling factor which dictates how the

probability P (a) of taking action a should change in order

to maximize the expected future rewards. Eventually, good

actions will have an increased likelihood to get sampled in

future iterations. The derivation of Equation 2 can be found

in [1].

As shown in Algorithm 1, the sequence of (state, action,

reward) values < st, at, rt+1 > sampled from the environment

at each training episode. After each mini-batch of K = 6
episodes, the data samples are used to estimate the gradient

of E[G∞

t]. An extension of gradient ascent technique called

Adam [16] optimization is applied to maximize E[G∞

t] by

updating the parameters θ of the policy network. In this REIN-

FORCE algorithm, α is the learning rate that determines how

aggressively the policy parameters θ are updated. πθ(st, at) is

the policy (which maps state to action probabilities), and GT
t

is the expected discounted reward after time step t. Here, GT
t

is an approximation of G∞

t on each episode.

Algorithm 1 differs from vanilla REINFORCE algorithm

in two major ways. (1) We apply a widely used variation of

REINFORCE that subtracts a baseline value b from the return

GT
t to reduce the variance of gradient estimation while keeping

the bias unchanged and facilitate faster convergence. Here,

b is the performance score measured from the environment

at the beginning of each training episode when the OSD

weights and affinities are reset to Ceph’s default values. This

ensures that the agent gets a negative reward when its actions

reduces the performance from the baseline, and such actions

are discouraged. Although measuring the baseline performance

in the beginning of each episode may result in sub-optimal

performance for one sampling interval, the benefit of faster

convergence outweighs the overhead. One possible improve-

ment (in future work) is to measure the baseline performance

only when a change in workload is detected. (2) Policy

network update is delayed until the end of a mini-batch. In the

face of performance variability of cloud environment, change

in workloads, and the variability introduced by stochastic

policy, this approach avoids unnecessary fluctuations in policy

after every episode, thereby facilitating faster convergence.

Fig. 5: System Architecture

D. Hyperparameter Tuning

We now present the methodology for tuning various hyper-

parameters used in Algorithm 1. The initial learning rate α is

set to 0.001, which is a default value for Adam optimization.

As the training progresses, the learning rate is adapted accord-

ing to the Adam optimization technique. In contrast to classical

stochastic gradient ascent (descent) that maintains a single and

static learning rate for all parameters of the policy network,

Adam computes individual adaptive learning rates for different

parameters from estimates of first and second moments of the

gradients. This method is well suited for problems with large

number of parameters and noisy gradients.

The length of a training episode and the sampling interval

within each episode are heuristically chosen to be 300 seconds

and 30 seconds respectively. If the sampling interval is too

small, then the observed data can become noisy and if the

interval is too large, then the RL agent will be too slow in

reacting to the changes in the environment. Similarly, if the

training episode is very long, then it will take longer time

to collect the discounted return GT
t needed for updating the

policy network, thus slowing down the entire training process.

On the other hand, if the episode is too short then the RL agent

cannot sufficiently explore the various states and actions for a

given episode.

VI. IMPLEMENTATION

A. System Architecture

In this section, we present the implementation details of our

RL based Adaptive Resource Management (ARM) system. As

shown in Figure 5, ARM mainly consists of three modules:

the Performance Monitor, ARM agent and Action Controller.

The performance monitor periodically measures the system

level performance metrics of the Ceph OSDs, and the response

time of Ceph workloads. These metrics are sent to the ARM

agent as the state information (st) and reward information

(rt) respectively. The ARM agent applies stochastic policy

gradient method to periodically update the policy network

as shown in Algorithm 1. Furthermore, it selects one of the

five possible actions describe in Section V-B based on their

probabilities. Finally, the Action Controller applies the system

adaption action suggested by the ARM agent.

40

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 16,2020 at 19:16:44 UTC from IEEE Xplore. Restrictions apply.

 0.25

 1

 4

 16

 64

 256

0 5 10 15 19

Workload C Workload DA
vg

. R
ea

d
R

es
po

ns
e

T
im

e
(s

ec
)

Sampling Interval (30 sec)

Default
ARM

(a) Read Response Time

 0.25

 1

 4

 16

 64

 256

0 5 10 15 19

Workload C Workload DA
vg

. W
rit

e
R

es
po

ns
e

T
im

e
(s

ec
)

Sampling Interval (30 sec)

Default
ARM

(b) Write Response Time

 0

 0.5

 1

 1.5

0 5 10 15 19

C D

O
S

D
 A

ffi
ni

ty

OSD0
OSD1

OSD2
OSD3

OSD4
OSD5

OSD6

 0

 0.5

 1

 1.5

0 5 10 15 19

C D

O
S

D
 W

ei
gh

t

Sampling Interval (30 sec)

OSD0
OSD1

OSD2
OSD3

OSD4
OSD5

OSD6

(c) Actions

Fig. 6: Performance of COSBench workloads, and the corresponding system adaptation actions taken by ARM in the presence

of I/O interference on a subset of storage nodes. The workload mix changes from workload C to D at sampling interval 10.

 0

 5

 10

 15

 20

 0 1 2 3 4 5 6 7 8 9

Workload A

A
vg

. R
ea

d
R

T
 (

s)

Default ARM

 0

 5

 10

 15

 20

 0 1 2 3 4 5 6 7 8 9

Workload B

A
vg

. W
rit

e
R

T
 (

s)

Sampling Interval (30 sec)

Default ARM

(a) Response Time

 0

 0.5

 1

 1.5

 0 1 2 3 4 5 6 7 8 9

O
S

D
 A

ffi
ni

ty

OSD0
OSD1

OSD2
OSD3

OSD4
OSD5

OSD6

 0

 0.5

 1

 1.5

 0 1 2 3 4 5 6 7 8 9

O
S

D
 W

ei
gh

t

Sampling Interval (30 sec)

OSD0
OSD1

OSD2
OSD3

OSD4
OSD5

OSD6

(b) Actions for Workload A

 0

 0.5

 1

 1.5

 0 1 2 3 4 5 6 7 8 9

O
S

D
 A

ffi
ni

ty

OSD0
OSD1

OSD2
OSD3

OSD4
OSD5

OSD6

 0

 0.5

 1

 1.5

 0 1 2 3 4 5 6 7 8 9

O
S

D
 W

ei
gh

t

Sampling Interval (30 sec)

OSD0
OSD1

OSD2
OSD3

OSD4
OSD5

OSD6

(c) Actions for Workload B

Fig. 7: Performance of COSBench workloads, and the corresponding system adaptation actions taken by ARM in the presence

of network interference on a subset of storage nodes.

B. Performance Monitor

The performance monitor fetches the system data from

the Ceph OSDs at 30 second intervals by using the Linux

SAR (System Activity Report) [5] utility. For the I/O data,

it collects the %iowait value from each storage node. To

measure the network utilization, it collects rxkb/s and txkb/s,

which is the amount of network data (kilobytes) received and

transmitted from a storage node, and divides these values by

the overall network bandwidth to get the network utilization.

It also collects rtps and wtps, which is the number of read

and write requests to the disk. Together these metrics provide

the state information for the ARM agent. For the reward data,

the performance monitor measures the average read response

time and write response time of COSBench’s GET and PUT

requests respectively.

C. ARM Agent

The ARM Agent is responsible for learning optimal policies

that maximize the total future expected rewards. We used

TensorFlow (version 1.1.0) to implement a neural network

with two hidden layers as the policy function approximator.

The hidden layers of the neural network uses ReLU activation

function. For any given state, the output layer uses a Softmax

function to calculate the probability distribution over the five

actions described in Section V-B. The ARM agent initializes

the policy network parameters θ randomly, and updates them

after mini-batches of six episodes as shown in Algorithm 1.

D. Action Controller

According to the decision made by the ARM agent about

which type of adaption needs to be applied on the storage

cluster, the Action Controller takes the appropriate action as

described in V-B. The Action Controller invokes the Ceph

monitor to update the OSDmap of the Ceph cluster so that

the new adaptation parameters such as OSD weights and

primary affinity take effect. Ceph monitors are responsible for

maintaining the cluster map, which includes information on

the cluster topology, a list of OSDs, pools, placement groups,

and mapping of placement groups to OSDs.

VII. EVALUATION

A. TestBed

For the experiments, we setup an 8-node Ceph cluster with

Ceph version 9.2.1 (Infernalis-stable) on the NSF Cloud’s

Chameleon testbed. One of the nodes is configured as Ceph

Admin and Ceph monitor. The remaining seven nodes are

configured with one OSD per node. Two storage containers

each with 512 placement groups are setup in the Ceph cluster.

Each of the node in the cluster is equipped with 2.3 GHz

Intel Xeon E5-2650 v3 “Haswell” processors. The nodes run

41

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 16,2020 at 19:16:44 UTC from IEEE Xplore. Restrictions apply.

 0

 0.5

 1

 1.5

A C D

N
or

m
al

iz
ed

 R
ea

d
R

es
po

ns
e

T
im

e

Workload

Default
DLR
ARM

(a) Read Response Time

 0

 0.5

 1

 1.5

B C D

N
or

m
al

iz
ed

 W
rit

e
R

es
po

ns
e

T
im

e

Workload

Default
DLR
ARM

(b) Write Response Time

Fig. 8: Performance Comparison among Default Ceph, DLR

and ARM in the presence of I/O Interference on a subset of

storage nodes.

Ubuntu Linux 14.04.1 LTS with kernel 3.13.0 and each has

80GB of hard disk space and 16GB of memory.

B. Benchmarks

For measuring the cloud storage performance, we setup Intel

Cloud Object Storage Benchmark (COSBench) [30] version

0.4.2 in our Ceph cluster. The benchmark has provision for

running workloads with different read-write ratio and object

sizes. We ran 4 workloads with different read-write ratio and

object sizes. The workload profiles are provided in Table I. For

the I/O background jobs, we ran Flexible I/O tester (fio) [2].

We setup fio version 2.1.3 with the following configurations:

libaio ioengine, iodepth of 16 and blocksize of 4kB. We ran 4

simultaneous random read jobs of size of 2GB each. We used

iperf [3] version 3.1.3 in the cluster nodes as the background

jobs that create network interference. We setup iperf with

window size of 8MB in the server and client nodes where

50 client threads ran in parallel with the server.

C. Experimental Results

We compared the performance of our ARM system with

the Ceph default performance, where no system adaptation

actions are taken, and with the performance of dynamic load

rebalancing technique, DLR [18]. In our experiments, we

only used the background jobs that create I/O and network

interference, since motivational case study in section IV show

that cpu resource usage does not have much impact on the

performance of COSBench workloads. We ran our ARM agent

for a total of 1000 episodes with each episode having a

 0

 0.5

 1

 1.5

A C D

N
or

m
al

iz
ed

 R
ea

d
R

es
po

ns
e

T
im

e

Workload

Default
DLR
ARM

(a) Read Response Time

 0

 0.5

 1

 1.5

B C D

N
or

m
al

iz
ed

 W
rit

e
R

es
po

ns
e

T
im

e

Workload

Default
DLR
ARM

(b) Write Response Time

Fig. 9: Performance Comparison among Default Ceph, DLR

and ARM in the presence of network interference on a subset

of storage nodes.

duration of 300 seconds. The final 200 episodes were used for

evaluation. Each episode ran a particular COSBench workload

which was selected randomly from the workload mix shown

in Table I. The duration of the workloads coincided with

the episode length. The background jobs were run on two

randomly selected nodes in the Ceph storage cluster. After

each episode all the benchmarks were stopped and the OS

cache was cleared to remove any caching effect.

Figures 6 (a), (b) and (c) show the average read and write

response times of randomly selected representative episodes

running COSBench workloads C, D and the corresponding

actions taken by ARM in the presence of I/O interference on

two of the Ceph nodes. We observe that ARM is able to de-

crease the response time of each workload after a few sampling

intervals, and gain significant performance improvement over

the Ceph default case. As shown in Figure 6 (c), the primary-

affinity and weights of the Ceph OSDs are updated according

to the system adaptation heuristic by ARM. The updates are

mostly done in the earlier stages of the workloads but the

effects of the adaptations can be seen in the later stages of the

workloads due to the delayed effect of the adaptations. Figures

7 (a), (b) and (c) show the average response times of randomly

selected representative episodes running workload A, B and

the corresponding actions taken by ARM in the presence

of network interference on two of the Ceph nodes. For the

read-heavy workload A, we observe that the read response

time initially increases but decreases significantly after few

sampling intervals. However, the write response time of the

write-heavy workload B remains almost the same in both Ceph

42

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 16,2020 at 19:16:44 UTC from IEEE Xplore. Restrictions apply.

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400 450

A
ve

ra
ge

 R
et

ur
n

Episodes

ARM
Baseline

Fig. 10: Convergence of ARM’s policy gradient algorithm.

default and ARM case. This is because, as shown in Figure 7

(c), ARM does not take any action for workload B in this case.

Since there was not much degradation in write performance

due to network interference in the first place, adapting the

system unnecessarily may actually degrade the performance

owing to the associated overheads of system adaptation.

Figure 8 and 9 compare the performance among the Ceph

default, DLR and ARM in the I/O and network interference

cases respectively. The results presented here are an average of

the final 200 episodes. The response times of the COSBench

workloads are normalized with respect to their response times

in the Ceph default case. In the I/O interference experiments,

ARM outperforms Ceph default and DLR for all the workloads

A, C and D. The read response time of workload C improved

the most by up to 50% and 43% compared to the Ceph default

and DLR respectively. The write response time improved the

most for workload D, where the improvement were 33% and

36% compared to Ceph default and DLR respectively. DLR

did not perform well in these experiments since it uses fixed

threshold values for triggering system adaptation irrespective

of the different workload types.

In case of network interference, the performance of ARM

is almost similar to the Ceph default case except for workload

A. Since only the performance of read-heavy workload A gets

degraded by the background network tasks, as explained in

section IV, ARM takes the necessary actions to improve the

read response time of workload A by up to 42% and 44%

compared to Ceph default and DLR respectively.

VIII. CONVERGENCE AND OVERHEAD ANALYSIS

Figure 10 shows the average return over episodes during

the training of ARM agent. It also shows the average reward

over episodes for baseline, which is computed based on the

performance of Ceph default case. Initially, ARM’s average

return is small since the actions taken by the ARM agent are

mostly exploratory. However as the agent learns to take more

meaningful actions from episode 250 onward, the average

return increases significantly until it converges to a stable value

around episode 400. The convergence of ARM’s policy gradi-

ent algorithm is facilitated by the use of baseline comparison

and mini-batch update techniques described in Algorithm 1.

The ARM implementation incurs minimal overhead. Its

Performance Monitor module gathers system utilization data

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

7 14 28 56 128

R
un

tim
e

(s
ec

on
ds

)

Number of OSDs

Forward Pass
Backward Pass

Fig. 11: Overhead of Tensorflow

of the storage nodes in parallel, similar to the approach used

in [18]. Furthermore, our Tensorflow based implementation

of the ARM agent’s policy network is highly scalable. For

scalability analysis, we simulated state observations of large

scale storage clusters and fed the data to equivalently sized

policy networks with large number of inputs. The ARM

agent was deployed in the admin node of the Ceph cluster

and its hardware configuration is described in Section VII-A.

Figure 11 shows the average time taken by forward pass and

backward pass operations through the policy network with

increasing number of OSDs in the Ceph cluster. Although the

size of policy network grows rapidly with the increasing num-

ber of OSDs, the runtime overhead of using the policy network

increases marginally. Furthermore, the overhead is negligible

compared to ARM’s sampling interval of 30 seconds.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a machine learning based

adaptive resource management technique which enables a

cloud storage system to manage itself, and provide superior

performance in the presence of diverse workloads and resource

bottlenecks. We applied a stochastic policy gradient based

reinforcement learning technique to detect performance issues

in cloud storage and take necessary actions in the form of load

balancing and data migration to improve storage performance.

We implemented our technique in Ceph, a software defined

storage solution and evaluated the performance in NSF Cloud’s

Chameleon testbed using Cloud Object Storage Benchmark.

Experimental results show that, our approach improves storage

read and write performance by up to 50% and 33% respec-

tively comparing to the default case and up to 43% and 36%

comparing to a state-of-the-art load redistribution technique.

In future, we will evaluate our approach in a larger scale

dynamic storage cluster, and will investigate the scalability of

our approach. We also plan to apply diverse workloads with

dynamic I/O traffic and compare our approach with other RL

techniques, e.g. actor-critic, DQN, etc.

ACKNOWLEDGMENT

Results presented in this paper were obtained using the

Chameleon testbed supported by the National Science Foun-

dation. We thank the anonymous reviewers for their many

suggestions for improving this paper. In particular we thank

our shepherd, Mike Spreitzer.

43

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 16,2020 at 19:16:44 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Deep reinforcement learning: Pong from pixels. http:

//karpathy.github.io/2016/05/31/rl/.

[2] fio(1) – linux man page. https://linux.die.net/man/1/fio.

[3] iperf(1) – linux man page. https://linux.die.net/man/1/

iperf.

[4] Openstack swift. http://docs.openstack.org/developer/

swift.

[5] Sar tool. https://linux.die.net/man/1/sar.

[6] A. Anwar, Y. Cheng, A. Gupta, and A. R. Butt. Mos:

Workload-aware elasticity for cloud object stores. In

Proc. of the 25th ACM International Symposium on High-

Performance Parallel and Distributed Computing, HPDC

’16, 2016.

[7] I. Cano, S. Aiyar, V. Arora, M. Bhattacharyya, A. Cha-

ganti, C. Cheah, B. N. Chun, K. Gupta, V. Khot, and

A. Krishnamurthy. Curator: Self-managing storage for

enterprise clusters. In NSDI, pages 51–66, 2017.

[8] R. C. Chang and H. H. Huang. Tracon: Interference-

aware scheduling for data-intensive applications in vir-

tualized environments. In Proc. Int’l Conference for

High Performance Computing, Networking, Storage and

Analysis (SC), 2011.

[9] Y. Cheng, M. S. Iqbal, A. Gupta, and A. R. Butt. Cast:

Tiering storage for data analytics in the cloud. In Proc. of

the 24th International Symposium on High-Performance

Parallel and Distributed Computing (HPDC), 2015.

[10] L. Chrisman. Reinforcement learning with perceptual

aliasing: The perceptual distinctions approach. In AAAI,

volume 1992, pages 183–188. Citeseer, 1992.

[11] S. Das, D. Agrawal, and A. El Abbadi. Elastras: An elas-

tic, scalable, and self-managing transactional database for

the cloud. ACM Trans. Database Syst., 38(1), Apr. 2013.

[12] C. Delimitrou and C. Kozyrakis. Paragon: Qos-aware

scheduling for heterogeneous datacenters. In Proc. Int’l

Conference on Architecture Support for Programming

Language and Operating System (ASPLOS), 2013.

[13] X. Dutreilh, S. Kirgizov, O. Melekhova, J. Malenfant,

N. Rivierre, and I. Truck. Using reinforcement learning

for autonomic resource allocation in clouds: towards a

fully automated workflow. In ICAS 2011, The Seventh

International Conference on Autonomic and Autonomous

Systems, pages 67–74, 2011.

[14] S. Govindan, J. Liu, A. Kansal, and A. Sivasubramaniam.

Cuanta: Quantifying effects of shared on-chip resource

interference for consolidated virtual machines. In Proc.

ACM Symposium on Cloud Computing (SoCC), 2011.

[15] D. Gudu, M. Hardt, and A. Streit. Evaluating the per-

formance and scalability of the ceph distributed storage

system. In Proc. of the IEEE International Conference

on Big Data, 2014.

[16] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv: Computing Research Repository,

1412.6980, 2014.

[17] A. Kopytov. Sysbench manual. MySQL AB, 2012.

[18] R. R. Noel and P. Lama. Taming performance hotspots

in cloud storage with dynamic load redistribution. In

2017 IEEE 10th International Conference on Cloud

Computing (CLOUD), pages 42–49. IEEE, 2017.

[19] D. Novaković, N. Vasić, S. Novaković, D. Kostić, and

R. Bianchini. Deepdive: Transparently identifying and

managing performance interference in virtualized envi-

ronments. In Proc. of the 2013 USENIX Conference on

Annual Technical Conference, 2013.

[20] K. Oh, A. Chandra, and J. Weissman. Wiera: To-

wards flexible multi-tiered geo-distributed cloud storage

instances. In Proc. of the 25th ACM International Sym-

posium on High-Performance Parallel and Distributed

Computing, HPDC ’16, 2016.

[21] L. Suresh, M. Canini, S. Schmid, and A. Feldmann. C3:

Cutting tail latency in cloud data stores via adaptive

replica selection. In USENIX Symposium on Networked

Systems Design and Implementation (NSDI), 2015.

[22] R. Sutton and A. Barto. ReinforcementLearning: An

Introduction. MITPress, 1998.

[23] B. Trushkowsky, P. Bodı́k, A. Fox, M. J. Franklin, M. I.

Jordan, and D. A. Patterson. The scads director: Scaling

a distributed storage system under stringent performance

requirements. In Proc. of the 9th USENIX Conference

on File and Stroage Technologies, FAST’11, 2011.

[24] F. Wang, M. Nelson, S. Oral, S. Atchley, S. Weil, B. W.

Settlemyer, B. Caldwell, and J. Hill. Performance and

scalability evaluation of the ceph parallel file system. In

Proceedings of the 8th Parallel Data Storage Workshop,

pages 14–19. ACM, 2013.

[25] C. J. C. H. Watkins and P. Dayan. Q-learning. In Machine

Learning, pages 279–292, 1992.

[26] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long,

and C. Maltzahn. Ceph: A scalable, high-performance

distributed file system. In Proc. of the 7th USENIX sym-

posium on Operating systems design and implementation

(OSDI), 2006.

[27] Z. Wu, C. Yu, and H. V. Madhyastha. Costlo: Cost-

effective redundancy for lower latency variance on cloud

storage services. In Proc. of USENIX Symposium on

Networked Systems Design and Implementation (NSDI),

2015.

[28] C.-Z. Xu, J. Rao, and X. Bu. Url: A unified reinforce-

ment learning approach for autonomic cloud manage-

ment. Journal of Parallel and Distributed Computing,

72(2):95–105, 2012.

[29] N. J. Yadwadkar, G. Ananthanarayanan, and R. Katz.

Wrangler: Predictable and faster jobs using fewer re-

sources. In Proc. of the ACM Symposium on Cloud

Computing, pages 1–14. ACM, 2014.

[30] Q. Zheng, H. Chen, Y. Wang, J. Duan, and Z. Huang.

Cosbench: A benchmark tool for cloud object storage

services. In Cloud Computing (CLOUD), 2012 IEEE

5th International Conference on, pages 998–999. IEEE,

2012.

44

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 16,2020 at 19:16:44 UTC from IEEE Xplore. Restrictions apply.

