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Abstract—Large-scale web services are increasingly adopting
cloud-native principles of application design to better utilize
the advantages of cloud computing. This involves building
an application using many loosely coupled service-specific
components (microservices) that communicate via lightweight
APIs, and utilizing containerization technologies to deploy,
update, and scale these microservices quickly and indepen-
dently. However, managing the end-to-end tail latency of
requests flowing through the microservices is challenging in
the absence of accurate performance models that can capture
the complex interplay of microservice workflows with cloud-
induced performance variability and inter-service performance
dependencies. In this paper, we present performance char-
acterization and modeling of containerized microservices in
the cloud. Our modeling approach aims at enabling cloud
platforms to combine resource usage metrics collected from
multiple layers of the cloud environment, and apply machine
learning techniques to predict the end-to-end tail latency of
microservice workflows. We implemented and evaluated our
modeling approach on NSF Cloud’s Chameleon testbed using
KVM for virtualization, Docker Engine for containerization
and Kubernetes for container orchestration. Experimental re-
sults with an open-source microservices benchmark, Sock Shop,
show that our modeling approach achieves high prediction
accuracy even in the presence of multi-tenant performance
interference.

Keywords-microservices; containers; cloud computing; per-
formance modeling;

I. INTRODUCTION

Large-scale web services (e.g Netflix, Microsoft Bing,

Uber, Spotify etc.) are increasingly adopting cloud-native

principles and design patterns such as microservices and

containers to better utilize the advantages of the cloud

computing delivery model, which includes greater agility in

software deployment, automated scalability, and portability

across cloud environments [24, 30]. In a micro-services

architecture, an application is built using a combination of

loosely coupled and service-specific software containers that

communicate using APIs, instead of using a single, tightly

coupled monolith of code. This development methodol-

ogy combined with recent advancements in containerization

technologies makes an application easier to enhance, main-

tain, and scale. However, it is challenging to manage the end-

to-end tail latency (e.g 95th percentile latency) of requests

flowing through the microservice architecture, which could

result in poor user experiences and loss of revenue [32, 46].

Containerized microservices deployed in a public cloud

are scaled automatically based on user-specified static

thresholds for per-microservice resource utilization [1, 2, 6].

However, this places a significant burden on application

owners who are concerned about the end-to-end tail la-

tency (e.g 95th percentile latency) [28]. Setting appropriate

resource utilization thresholds on various microservices to

meet the end-to-end tail latency in such complex distributed

system is difficult and error-prone in the absence of accurate

performance models.

There are many challenges in modeling the end-to-end

tail latency of containerized microservices. First, a mi-

croservice architecture is characterized by complex request

execution paths spanning many microservices forming a

directed acyclic graph (DAG) with complex interactions

across the service topology [28, 29, 39]. Second, the tail

latency is highly sensitive to any variance in the system

which could be related to application, OS or hardware [32].

Third, in a cloud environment where microservices run as

containers hosted on a cluster of virtual machines (VMs),

application performance can degrade often in unpredictable

ways [18, 21, 24, 44].

Traditionally, analytical models based on queuing theory

have been widely applied for performance prediction and

resource provisioning of monolithic (3-tier) applications [40,

41]. However, such techniques can become intractable when

dealing with the scale and complexity of microservice ar-

chitecture, and the presence of cloud-induced performance

variability. Furthermore, analytical modeling is a white-box

approach that often requires intrusive instrumentation of ap-

plication code for workload profiling and expert knowledge

about the application structure and data flow between various

components [25]. Such approach can be impractical from

a cloud provider’s perspective since customer applications

appear with limited visibility to the cloud providers.

There are black-box modeling approaches that relate

observable resource usage metrics [36, 42] or resource

allocation metrics [43] with the performance of monolithic

applications hosted in virtualized computing environments.

More recent studies [19, 26] focused on runtime trace anal-
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ysis tools and simulation based approaches to analyze the

performance of microservice-based applications. However,

none of these works study the impact of cloud induced per-

formance interference on microservice-based applications,

and the resulting inaccuracies in performance modeling. In

this paper, we observe that the end-to-end tail latency of mi-

croservice workflows are highly sensitivity to performance

interference in the cloud. Furthermore, we show that the

tail latency of microservice workflows can be accurately

predicted even in the presence of performance interference,

with the help of machine learning and multi-layer data

collected from the cloud environment.

In particular, we make the following contributions.

1. We quantify the impact of resource utilization and per-

formance interference experienced by various microser-

vices on the end-to-end tail latency of various request

workflows in a web application. Since CPU is a major

bottleneck for most web applications, we use CPU uti-

lization as a resource metric in this paper, and focus on

the performance interference caused by the contention in

shared processor resources such as LLC (last level cache)

and memory bandwidth. However, our approach can be

easily extended to include other resource metrics.

2. We propose a modeling approach that combines multi-

layer data including container-level, VM level and a

hardware performance counter based metric, CPI (clock

cycles per instruction), to accurately predict end-to-end

tail latency in the presence of performance interference

in the cloud.

3. We apply several machine learning based modeling tech-

niques, and compare their accuracy in predicting the end-

to-end performance for containerized microservices.

4. We demonstrate the feasibility of utilizing the proposed

performance models in making efficient resource scaling

decisions. For this purpose, we formulate resource scaling

of microservices as a constrained nonlinear optimization

problem, and solve it to calculate appropriate resource

utilization thresholds on various microservices, so that

they can be scaled efficiently to meet a performance SLO

(service level objective) target.

5. We implement and evaluate the proposed techniques

using a representative microservices benchmark, Sock

Shop [14], using the NSF Chameleon cloud [3]

testbed. The Sock Shop benchmark is containerized with

Docker [35] and deployed in a cluster of VMs managed

by Kubernetes [8] an open-source container orchestration

engine.

The rest of this paper is organized as follows. Section II

provides the background on microservice archiecture. Re-

lated work are discussed in Section III. Section IV describes

the testbed setup and benchmarks used. Section V presents

the performance characterization of containerized microser-

vices. Section VI provides the performance modeling ap-

(a) Monolith. (b) Microservices.

Figure 1: Monolithic vs microservice architecture.

proach. Section VII discusses resource scaling optimization

based on the proposed models. Section VIII concludes the

paper.

II. BACKGROUND ON MICROSERVICE ARCHITECTURE

Microservice architecture aims to overcome various lim-

itations of traditional monolithic architecture for software

development [10, 22]. Figure 1 illustrates the difference

between multi-tier monolithic architecture and microservice

architecture in the context of an e-commerce application

that takes orders from customers, verifies product catalogue,

processes payment and ships orders. In monolithic archi-

tecture, the web application is divided into technology-

specific tiers such as a frontend web tier for serving web

contents, an application tier composed of numerous tightly

coupled components for implementing the entire business

logic, and a shared database tier for data persistence. A

monolithic application is often simple to design. However,

in order to update one component, the entire application

has to be redeployed. Furthermore, each component within

a tier cannot be scaled independently based on its resource

requirements. On the other hand, microservice architecture

splits the application into many smaller self-contained com-

ponents, called microservices, that serve specific business

functions and communicate with each other via lightweight

language-agnostic APIs. Each microservice has its own code

and database without any shared component with other

services. This facilitates flexibility in application deployment

and enhanced scalability since each component of an appli-

cation can be updated and scaled independently. In essence,

microservice architecture is a variant of the Service-Oriented

Architecture (SOA) that emphasizes fine-grained services

and lightweightness.

III. RELATED WORK

Performance modeling and dynamic resource provisioning

of Internet applications has been an important research topic

for many years [31, 36, 37, 40, 41, 43, 45]. There are

traditional analytical modeling approaches based on queue-

ing theory [40, 41], and hybrid approaches that combine

queueing theory with machine learning techniques [38, 45].
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Urgaonkar et al. [41] designed a dynamic server provision-

ing technique on multi-tier server clusters. The technique

decomposes the per-tier average delay targets to be certain

percentages of the end-to-end delay constraint. Singh et

al. [38] applied k-means clustering algorithm and a G/G/1
queuing model to predict the server capacity for a given

workload mix. Although these approaches were effective

for multi-tier monolithic applications, they can become in-

tractable when dealing with complex microservice architec-

ture in a cloud environment. The complexity introduced by

having many moving parts with complex interactions and the

presence of cloud-induced performance variability [21, 44]

pose significant challenges in modeling the system behavior,

identifying critical resource bottlenecks and managing them

effectively.

Blackbox modeling techniques have been widely adopted

in cluster resource allocation and management [31, 36,

42, 43]. Nguyen et al.[36] applied online profiling and

polynomial curve fitting to provide a black-box performance

model of the applications SLO violation rate for a given re-

source pressure. Wajahat et al. [42] presented an application-

agnostic, neural network based auto-scaler for minimizing

SLA violations of diverse applications. Wang et al. [43]

applied fuzzy model predictive control and Lama et al. [31]

proposed self-adaptive neural fuzzy control techniques for

dynamic resource management of monolithic cloud applica-

tions. However, these studies do not address the modeling

inaccuracies caused by the performance interference in the

cloud, and the complexity introduced by microservice archi-

tecture.

A few studies have focused on managing the end-to-end

performance objectives of large-scale web services and ana-

lyzing their complex performance behavior [27, 28, 39]. Guo

et al. [27] highlighted how the complex interactions between

various components of large-scale web services not only

lead to sharp degradation in performance, but also trigger

cascading behaviors that result in wide-spread application

outages. Jalaparti et al. [28] presented Kwiken, a framework

that decomposes the problem of minimizing latency over

a general processing DAG in a large web service into a

manageable optimization over individual stages. Suresh et

al. [28] presented Wisp, a resource management frame-

work that applies a combination of techniques, including

estimating local workload models based on measurements

of immediate neighborhoods, distributed rate control and

metadata propagation to achieve end-to-end throughput and

latency objectives in Service-Oriented architectures. These

approaches are complimentary to our work as they focus on

solutions that need to be adopted at the application layer in

the context of cloud computing stack, and requires expert

knowledge about the application. On the other hand, our

performance modeling approach does not require intrusive

instrumentation of application code for profiling or expert

knowledge about the data flow between various components.

Figure 2: Workflow DAGs.

IV. PLATFORM

A. Experimental Testbed

We set up a cloud prototype testbed, which closely resem-

bles real-world cloud platforms such as Google Kubernetes

Engine [6] and Amazon Elastic Container Services [2]. Our

testbed consists of a physical layer of bare metal servers, a

VM layer built on top of the physical layer and a container

layer built on top of VM layer.

Physical Servers. We used four bare metal servers leased

on NSF Chameleon Cloud[3] testbed. Each server was

equipped with dual socket Intel Xeon E5-2670 v3 Haswell

processors (each with 12 cores @ 2.3GHz) and 128 GiB of

RAM. Each server was connected to a Dell switch at 10Gbp,

with 40Gbps of bandwidth to the core network from each

switch.

VMs. We setup 16 VMs on top of the bare metal servers

by using KVM for server virtualization. Each VM was

configured with four vCPUs, 8GB Ram and 30GB disk

space.

Containers. We setup a 16 VM Kubernetes cluster for

container orchestration and management. Docker (version

18.03.1-ce) was used as the container run time engine on

each VM. Kubernetes pod networking was set up using

the Calico CNI (Container Network Interface) network plu-

gin [11]. We use the term pod and container interchangeably

in this paper, since we use a one-container-per-Pod model,

which is the most common Kubernetes use case.

B. Workloads

For performance characterization, we used Sock

Shop [14], an open-source microservices benchmark that

is particularly tailored for container platforms. Sock Shop

emulates an e-commerce website as shown in Figure 1 with

the specific aim of aiding the demonstration and testing

of existing microservice and cloud-native technologies.

A recent study suggests that Sock shop closely reflects

how typical microservices applications are currently being

developed and delivered into production, as reported

by practitioners and industry experts [17]. We used the

Locust tool [9] to generate user traffic for the Sock

Shop benchmark. The workload traffic is composed of a

number of concurrent clients that generate HTTP-based

REST API calls to Sock Shop. To create a controlled
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(a) CPU utilization of orders microservice. (b) CPU utilization of cart microservice. (c) CPU utilization of frontend microservice.

Figure 3: Impact of CPU utilization on the tail latency of various workflows.

(a) without interference. (b) with interference on cart. (c) with interference on frontend.

Figure 4: Parallel coordinates plot showing the impact of performance interference on the multivariate relationship between

CPU utilization and end-to-end tail latency of orders workflow.

interference workload for our experiments, we used the

STREAM Memory Bandwidth benchmark[33]. STREAM is

a synthetic benchmark program geared towards measuring

memory bandwidth (in MB/s) corresponding to computation

rate for simple vector kernels. We run the benchmark inside

a docker container and deploy it as a batch job in

Kubernetes.

V. PERFORMANCE CHARACTERIZATION

One of the challenges that complicate performance char-

acterization of a microservice architecture is that request

execution workflows can form directed acyclic graph (DAG)

structures spanning across many microservices. As a re-

sult, the end-to-end latency of a workflow is impacted by

the performance behavior of multiple microservices in a

complex way. We use the term workflow to represent an

application-specific group of requests that are associated

with a particular API endpoint, which is usually in the

form of an HTTP URI. For instance, in case of the Sock

Shop benchmark shown in Figure 1, the HTTP URIs for

workflows involved with processing orders are [ base url:

/ GET / Orders] and [ base url: / POST / Orders]. The

exact structure of the DAG for request workflows is often

unknown, since it depends on multiple factors such as the

APIs invoked at each encountered microservice, the supplied

arguments, the content of caches, as well as the use of

load balancing along the service graph [39]. We used a

visualization and monitoring tool, weavescope [16], to map

the DAG structure of orders and cart workflows as shown

in Figure 2.

A. End-to-end Tail Latency

First, we analyze the impact of CPU utilization of in-

dividual microservices on the end-to-end tail latency of

two different workflows viz. orders and cart in the Sock

Shop benchmark. For this purpose, we run experiments

with various workload intensities by varying the number

of concurrent clients in the workload generator from 5 to

50, while setting the total number of generated requests to

be 50000. We also vary the number of pods allocated to

cart, orders and frontend microservices to include various

combination of scaling configurations. The CPU utilization

of a particular microservice is measured as the average CPU

utilization of all the pods allocated to that microservice.

As shown in Figures 3 (a), (b) and (c) the end-to-end tail

latency of various workflows have a non-linear relationship

with the CPU utilization of individual microservices. We

observe that the 95th percentile latency of the two workflows
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(a) without interference. (b) with interference on cart. (c) with interference on frontend.

Figure 5: Parallel coordinates plot showing the impact of performance interference on multivariate relationship between CPU

utilization and end-to-end tail latency of cart workflow.

Figure 6: Impact of performance interference on the end-to-

end tail latency of various workflows.

increase significantly even at low CPU utilization values

of the orders and cart microservices. On the other hand,

only high CPU utilization values (>70%) of the frontend

microservice has significant impact on the 95th percentile

latency. For example, the tail latency of the orders workflow

reaches 200 ms at 49%, 57% and 106% CPU utilizations of

the orders, cart and frontend microservices respectively.

B. Impact of Performance Interference

Next, we analyze the impact of performance interference

in a cloud environment on the multivariate relationship

between CPU utilization of various microservices and the

end-to-end tail latency of particular request workflows. For

the sake of clarity, we present our analysis using top four mi-

croservices from the Sock Shop benchmark ranked accord-

ing to their CPU utilization values. To induce performance

interference, we colocate pods running the memory-intensive

STREAM [33] benchmark on the VMs that host the pods

running cart and frontend microservices respectively. The

intensity of interference is fixed by running four pods for

each interfering workload. The workload intensities and

the scaling configurations for orders, cart and frontend

microservices are varied similar to the previous experiment.

As shown in Figures 4 (a), (b) and (c), the end-to-end

tail latency of the orders workflow is influenced by the

CPU utilization of multiple microservices. However, their

multivariate relationship changes significantly depending on

the performance interference experienced by various mi-

croservices. For example, in the case of no interference,

the 95th percentile latency of orders workflow is greater

than 300 ms when the CPU utilization measured at cart,

frontend, orders and user microservices are 67%, 110%,

55% and 41% respectively. However, similar tail latency

of orders workflow was observed at much lower CPU

utilization values when one of the microservices experienced

performance interference. Similar results were obtained for

the cart workflow as shown in Figures 5 (a), (b) and (c). This

implies that the CPU utilization of microservices measured

at the pod level are insufficient in accurately predicting the

end-to-end tail latency of various workflows.

Figure 6 shows the distribution of the 95th percentile

latency of various workflows under three different scenarios,

i.e with interference on cart, interference on frontend and

without interference. The variation in the latency observed

within each case is mainly due to the varying workload

intensities in these experiments. On average the performance

degradation observed by orders and cart workflows due

to interference on cart microservice are 22% and 79%

respectively. On the other hand, the average performance

degradation of the two workflows due to interference on

frontend microservice are 6% and 18% respectively. These

results demonstrate the complex interplay between perfor-

mance interference, inter-service performance dependency

and the end-to-end tail latency of various workflows.

VI. PERFORMANCE MODELING WITH MACHINE

LEARNING

In this section, we present our approach to address the

challenges of predicting the end-to-end tail latency of com-

plex workflows in a microservice architecture in the face

of diverse performance interference patterns. Our approach
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combines the resource usage metrics at the container/pod

level with VM level resource usage and hardware perfor-

mance counter values to construct machine learning (ML)

based performance models for individual workflows. Our

modeling approach does not rely on any expert application

knowledge. Hence, it can be easily extended to fit the need

of diverse applications.

A. Data Collection

In this paper, we use CPU utilization as a resource metric

for the microservices since CPU is a major resource bottle-

neck in most web applications. We use docker stats [4] to

measure pod level CPU utilization. To capture the impact of

performance interference due to the contention of processor

resources, such as the last level cache (LLC) and memory

bandwidth, we utilize the CPU utilization and CPI metric

associated with the VMs that host the various microservices

as pods. We use the virt top [15] tool to measure VM level

CPU utilization. CPI is measured on a per cgroup basis by

using the perf event [23] tool and each cgroup is mapped to a

VM. For data collection, we conduct extensive experiments

on our cloud prototype testbed by varying the number of

concurrent clients, and the performance interference levels

experienced by different microservices in the Sock Shop

benchmark. We also vary the number of pods allocated to

the microservices. For each experiment, we measure the

end-to-end tail latency of various workflows as reported by

the Locust [9] tool. The collected data is used to train our

machine learning based performance models.

B. Machine Learning Models

We build performance models for predicting the end-to-

end tail latency of each microservice workflow by applying

various machine learning (ML) techniques including Linear

Regression (LR), Support Vector Regression (SVR), Deci-

sion Tree (DT), Random Forrest (RF) and a deep Neural

Network (NN) based regression (more specifically a multi-

layer perceptron with multiple hidden layers). The ML

models are built and trained by using scikit-learn [12], a

machine learning library in Python.

Feature Selection. The input features of our ML mod-

els include the number of concurrent clients, pod-level

resource metrics and VM-level resource metrics. The pod-

level metrics include the average CPU utilization of load-

balanced pods for each microservice. The VM-level metrics

include the CPU utilization or the CPI of VMs that host the

pods. To reduce our feature space and avoid potential over-

fitting issues, we apply a popular feature selection technique

called stability selection [34]. In particular, we use scikit-

learn [12] library’s randomized lasso technique, which works

by subsampling the training data and computing a Lasso

estimate where the penalty of a random subset of coefficients

has been scaled. By performing this operation several times,

the method assigns high scores to features that are repeatedly

(a) Mean absolute percentage error.

(b) R2 Score.

Figure 7: Prediction accuracy of various ML models for

orders.

(a) Mean absolute percentage error.

(b) R2 Score.

Figure 8: Prediction accuracy of various ML models for cart.

selected across randomizations. The features selected for the

orders workflow are the number of concurrent clients, pod-

level CPU utilization of the microservices including front-

end, orders, users, shipping, payment, cart, users-db, orders-

db, cart-db, and the CPU utilization or CPI of the VMs

that host these microservices. Similarly, the features selected

for the cart workflow are the number of concurrent clients,
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(a) Linear regression with Pod CPU.(b) Linear regression with Pod CPU
and VM CPI.

(c) Neural network with Pod CPU. (d) Neural network with Pod CPU
and VM CPI.

Figure 9: Cross-validated predictions of tail latency in orders workflow.

Table I: Optimal number of neurons in the three hidden

layers of NN models for orders and cart workflow.

Input Feature

Workflow
orders cart

Pod CPU (6,3,5) (8,5,6)

Pod CPU+VM CPU (4,6,3) (3,6,8)

Pod CPU+VM CPI (9,6,4) (5,7,5)

the pod-level CPU utilization of the microservices including

front-end, orders, cart, cart-db, and the CPU utilization or

CPI of the VMs that host these microservices.

Hyper-parameters. The hyper-parameters of each model

is set to the default values provided by scikit-learn. We

observe that the prediction accuracy of the deep NN model

is highly sensitive to the number of hidden layers and the

size (number of neurons) in each hidden layer. Hence, we

tuned these parameters through an exhaustive search for

various combinations of input feature space and the targeted

workflow for the prediction of end-to-end tail latency. The

optimal number of hidden layers for our NN model is three,

and the optimal number of neurons in these three hidden

layers is summarized in Table I.

C. Prediction Accuracy

In this section, we evaluate the prediction accuracy of

various ML models (LR, SVR, DT, RF, NN) and three

modeling approaches. First, the Pod CPU approach includes

pod-level CPU utilization metrics in the input feature space.

Second, the Pod CPU+VM CPU approach includes both

pod-level and VM-level CPU utilization metrics. Third, the

Pod CPU+VM CPI approach includes pod-level CPU uti-

lization and VM-level CPI metrics in the input feature space.

The models are evaluated with 10-fold cross validation on

the collected dataset. As a result, 90% of data is used for

training, 10% of data is used for testing in each of the

10 iterations of cross-validation. We utilize commonly used

metrics such as the mean absolute percentage error (MAPE)

and the coefficient of determination, R2. MAPE is calculated

as 1

n

∑n

i=1

∣∣∣y−ŷ
y

∣∣∣ where y and ŷ are the measured and

predicted values of the end-to-end tail latency respectively.

R2 is a statistical measure of how well the regression

predictions approximate the real data points. An R2 of 1

indicates that the regression predictions perfectly fit the data.

Figures 7 (a) and (b) show that, compared to the

Pod CPU based modeling approach, Pod CPU+VM CPU

and Pod CPU+VM CPI approaches achieve significant im-

provement in the prediction accuracy of each ML model

for the orders workflow. This is because VM-level CPU

utilization can capture inter-pod CPU contention within a

VM. Furthermore, VM-level CPI metric can capture the

contention of shared processor resources between multiple

pods within a VM as well as across VMs. Such inter-

VM resource contention may arise when the concerned

VMs are colocated in the same physical machine. The

improvement in the prediction accuracy in terms of MAPE

due to Pod CPU+VM CPU and Pod CPU+VM CPI ap-

proaches are up to 36% and 38% respectively. The largest

improvement is observed in case of the NN model. We also

observe that the NN model outperforms all other models in

prediction accuracy since the Neural Network is a universal

function approximator. On the other hand, the LR model

shows the worst prediction accuracy. This is because a linear

regression model can not capture the non-linearity of tail

latency. Overall, we observed similar results in the latency

prediction of cart workflow as shown in Figure 8.

Figure 9 plots the cross-validated predictions vs. the

measured values of end-to-end tail latency of the orders

workflow in order to graphically illustrate the different R2

values for the LR and NN models. Theoretically, if a model

could explain 100% of the variance in the observed data, the

predicted values would always equal the measured values

and, therefore, all the data points would fall on the fitted

regression line. The more variance that is accounted for

by the regression model the closer the data points will

fall to the fitted regression line. The proportion of variance

accounted for by the LR model with Pod CPU , LR model

with Pod CPU+VM CPI, NN model with Pod CPU and

NN model with Pod CPU+VM CPI approaches are 42%,

66%, 71% and 89% respectively.

VII. OPTIMIZATION FOR RESOURCE SCALING

Although existing cloud platforms [1, 2, 5, 6] provide
mechanisms for auto-scaling microservices, they expect ap-
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Table II: Notation used in Resource Scaling Optimization

Problem

Symbol Description

Sj Set of microservices relevant to workflow j

SLO
target

j
Tail latency target of workflow j

xi Average pod-level CPU utilization in microservice i
x A vector of average pod-level CPU utilizations of various

microservices relevant to the target workflow
rj(x) Predicted tail latency of workflow j

plication owners to specify thresholds for various microser-
vice load metrics to enable auto-scaling features. For exam-
ple, the auto-scaling feature [7] in Kubernetes determines
the allocation of containers/pods to a microservice by using
the formula:

desiredReplicas =

⌈
currentReplicas∗

currentMetricV alue

desiredMetricV alue

⌉

(1)

If the desiredMetricValue (threshold) is specified as an

average CPU utilization of 50% for a particular microser-

vice, and the current average CPU utilization is 100%, then

the number of pods allocated to that microservice will be

doubled. Furthermore, any scaling is performed only if the

ratio of currentMetricValue and desiredMetricValue drops

below 0.9 or increases above 1.1 (10% tolerance by default).

It is challenging and burdensome for application owners

to determine the resource utilization thresholds for various

microservices in order to meet the application’s end-to-end

performance target. Setting inappropriate thresholds may

lead to overprovisioning or underprovisioning of resources.

We propose that cloud platforms should automatically deter-

mine these thresholds based on user-provided performance

SLO targets. For this purpose, we study the feasibility of

utilizing the proposed performance models in making effi-

cient resource scaling decisions by formulating a constrained

nonlinear optimization problem.

A) Problem Formulation. Consider that the performance

SLO target in terms of the end-to-end tail latency for a work-

flow is specified. For a given workload condition, we aim

to find the highest resource utilization values of the relevant

microservices, at which the given SLO targets will not be

violated. These optimal utilization values can be calculated

periodically and set as the thresholds (desiredMetricValue)

for making resource scaling decisions. These thresholds will

help in determining which microservices should be scaled,

and how many pods should be allocated to each microservice

based on Equation 1. This approach aims to avoid resource

overprovisioning while providing performance guarantee to

the given workflow.

We formulate the optimization problem as follows:

max
∑

i∈Sj

xi (2)

s.t. rj(x) ≤ SLOtarget
j (3)

x = (xi)i∈Sj
(4)

where, the symbol notations are described in Table II. The

objective function in Equation 2 aims to maximize the pod-

level resource usage i.e the sum of average CPU utilization

in the set of microservices that are relevant to the target

workflow. The relevance of a microservice to a workflow

can be determined either by analyzing the workflow DAG,

or through machine learning based feature selection as

described in Section VI-B. Consider that rj(x) is the tail

latency predicted by machine learning model for workflow

j. The inequality constraint in Equation 3 ensures that

the SLO target of workflow j will not be violated. The

optimization problem is nonlinear since the workflow tail

latency rj(x) included in the constraint Equation 3 has a

nonlinear relationship with the average CPU utilization of

various microservices.

In the formulation of the optimization problem,

application-layer metrics (e.g number of concurrent clients),

VM-level CPU utilization and CPI metrics are not included

as variables, although the tail latency prediction rj(x) de-

pends on these metrics as well. Instead, the values of these

metrics are fixed according to their observed values at the

time of solving the optimization problem, and are treated

as constants for that instance of optimization. As a result,

the solutions to the optimization problem will only include

pod-level CPU utilization values, which can be directly used

as thresholds for making resource scaling decisions. This

allows the resource scaling mechanism to be practical and

simple to implement.

B) Solution. We apply a non-linear optimization tech-

nique, trust-region interior point method [13, 20], to solve

this problem. This optimization technique provides two main

benefits. First, it is efficient for large scale problems. Second,

the gradient of the constraint function which is required for

optimization, can be approximated through finite difference

methods in this optimization technique [13]. This property

is desirable since the machine learning models for workflow

tail latency are blackbox functions, whose gradient can not

be directly calculated.

C) Feasibility Study. As a case study, we apply the

optimization technique to calculate the desired CPU utiliza-

tion (thresholds) for various relevant microservices, when a

workload of 30 concurrent clients is applied to the SockShop

benchmark, and a performance SLO target of 240 ms is spec-

ified for the 95th percentile latency of orders workflow. For

this optimization, we utilize our Neural Network model for

orders workflow with pod-level CPU utilization, VM-level

CPI metrics and the number of concurrent clients as the input
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(a) Current vs desired average CPU utilization
of various microservices. Here, one pod is
allocated to each microservice.

(b) Tail latency of orders workflow for various
resource scaling configurations. The configu-
ration suggested by the optimization of CPU
utilization thresholds is (1,1,2) i.e one pod for
cart, one pod for orders and two pods for fron-
tend. All other microservices are provisioned
with one pod.

Figure 10: Optimization of CPU utilization thresholds for

efficient resource scaling with a workload of 30 concurrent

clients, and SLO target 240 ms for 95th percentile latency

of orders workflow.

features. Figure 10 (a) compares the current (measured) CPU

utilization of the microservices relevant to orders workflow

and their desired CPU utilization values, when only one pod

is allocated to each microservice. Based on Equation 1, the

optimal resource scaling option is to allocate an additional

pod to the frontend microservice. As shown in Figure 10 (b),

we validate the optimality of this resource scaling option by

comparing the tail latency of orders workflow for various

possible resource scaling configurations. We observe that the

resource scaling configuration suggested by our optimization

technique is able to meet the performance SLO target while

allocating minimum number of pods in total.

VIII. CONCLUSIONS AND FUTURE WORK

We present the performance characterization and model-

ing of containerized microservices in the cloud. Our mod-

eling approach utilizes machine learning and multi-layer

data collected from the cloud environment to predict the

end-to-end tail latency of microservice workflows even in

the presence cloud induced performance interference. We

also demonstrate the feasibility of utilizing the proposed

models in making efficient resource scaling decisions. We

envision that our performance modeling and resource scaling

optimization approach can enable cloud platforms to au-

tomatically scale microservice-based applications based on

user-provided performance SLO targets. This will remove

the burden of determining resource utilization thresholds

for numerous microservices from the cloud users, which

is prevalent in existing cloud platforms. In future, we will

extend our work to include diverse microservice-based ap-

plications with different resource bottlenecks. We will also

evaluate the effectiveness of the proposed resource scaling

system in the face of dynamic workloads.
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