
V-Cache: Towards Flexible Resource Provisioning
for Multi-tier Applications in IaaS Clouds

Yanfei Guo, Palden Lama, Jia Rao and Xiaobo Zhou
Department of Computer Science

University of Colorado, Colorado Springs, USA
Email addresses: {yguo, plama, jrao, xzhou}@uccs.edu

Abstract—Although the resource elasticity offered by
Infrastructure-as-a-Service (IaaS) clouds opens up opportunities
for elastic application performance, it also poses challenges to
application management. Cluster applications, such as multi-
tier websites, further complicates the management requiring not
only accurate capacity planning but also proper partitioning
of the resources into a number of virtual machines. Instead
of burdening cloud users with complex management, we move
the task of determining the optimal resource configuration for
cluster applications to cloud providers. We find that a structural
reorganization of multi-tier websites, by adding a caching tier
which runs on resources debited from the original resource
budget, significantly boosts application performance and reduces
resource usage. We propose V-Cache, a machine learning based
approach to flexible provisioning of resources for multi-tier
applications in clouds. V-Cache transparently places a caching
proxy in front of the application. It uses a genetic algorithm to
identify the incoming requests that benefit most from caching
and dynamically resizes the cache space to accommodate these
requests. We develop a reinforcement learning algorithm to
optimally allocate the remaining capacity to other tiers. We have
implemented V-Cache on a VMware-based cloud testbed. Exper-
iment results with the RUBiS and WikiBench benchmarks show
that V-Cache outperforms a representative capacity management
scheme and a cloud-cache based resource provisioning approach
by at least 15% in performance, and achieves at least 11% and
21% savings on CPU and memory resources, respectively.

I. INTRODUCTION

As an important cloud offering, the Infrastructure-as-a-
Service (IaaS) cloud provides users with bundles of hardware
resources in the form of virtual machines (VMs). Although
users have the flexibility in deciding how much resource
to rent, it is often difficult for them to translate their per-
formance and cost goals into the corresponding resource
requirements [18]. Cluster applications, such as multi-tier web-
sites and data analytics, place an additional burden on users
requiring not only accurate capacity planning but also proper
partitioning of the resources into a number of VMs [17].

While the choice in resource partitioning (e.g., the cluster
size and the type of resources) under a certain resource budget
is critical to the performance of user applications, it is also
important to cloud providers. Mis-configured user clusters may
incur excessive access (usually from a subset of the VMs)
to the cloud hardware, such as processors and I/O devices,
creating significant interferences to the co-running applica-
tions. Besides the impact on the overall Quality-of-Service the
cloud infrastructure provides, improperly configured virtual

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Throughput CPU usage Memory usage

N
o

rm
a
liz

e
d

 m
e

tr
ic

Original deployment
V-Cache

Figure 1. Resource re-partitioning by V-Cache improves application-level
performance and reduces resource usage.

clusters also increase the complexity of cloud management and
reduce the utilization of data center hardware. For example,
cloud providers may need to employ more complex algorithms
consolidating such clusters onto physical machines and are
likely to be conservative when over-commit cloud resources.

We believe that even users explicitly request a certain
amount of cloud resources, cloud providers should still be able
to flexibly provision these resources as long as the alternative
provisioning also meets users’ performance goals. With flexi-
ble provisioning, providers can arrange the resource allocation
in a way that is most suitable for the cloud platform and co-
running applications. As a result, performance interferences
might be mitigated avoiding expensive cross-machine migra-
tions and the consolidation ratio could be increased. There
is existing work focusing on dynamic provisioning of cloud
resources according to varying application demands [27],
[28], [29]. However, such dynamic provisioning requires new
cloud mechanisms for fine-grained resource metering and
charging [3]. A viable approach under the current cloud
pricing scheme (i.e., fixed rate charged on a hourly basis)
is to re-organize the resources a client requests for possible
optimizations, while keeping the total amount of resources
allocated to this client unchanged.

We show that a proper partitioning of multi-tier application
resources benefits both cloud users and providers. Figure 1
draws the performance and resource consumptions of the RU-
BiS benchmark when a total capacity of 4 GHz CPU and 4 GB
memory resources were partitioned into tiers differently. The
original deployment refers to the typical three-tier deployment
of RUBiS (i.e., includes a web server, application server, and
database server). We carefully adjusted the resources allocated

on each tier to maximize the throughput. Alternatively, in V-
Cache, we created a cache VM using part of the total resources
and placed it in front of the web tier for storing the recently
accessed web content. The rest of the capacity were used to
host other three tiers. Figure 1 shows that the re-partitioning of
resources, especially the use of the caching tier, significantly
boosted application performance by 29.5%, and reduced CPU
and memory usage by 26.1% and 28.2%, respectively.

The motivational example suggests that a structural reorga-
nization of multi-tier applications may considerably optimize
performance and resource usage, even compared with the
finely-tuned provisioning scheme. Caching has been widely
used in multi-tier websites for reducing network bandwidth
and access latency [10], [12], [22], [30]. If properly configured,
such cache servers can be made transparent to clients and
require no modifications to the multi-tier website. Therefore,
cloud providers can take advantage of such flexibility to trans-
parently integrate a caching tier into the multi-tier application
and to add, remove, and resize the tier for better performance
and resource efficiency.

However, the determination of the optimal resource allo-
cation for each tier, in particular the caching tier, is not
trivial. First, the workload of multi-tier websites does not
always benefit from the caching tier. While requests for static
content get most speedup, the ones for dynamic content can
hardly get help from caching. This requires a mechanism that
analyses request processing cost and redirects the requests with
potential speedups to the cache. Second, placing a caching
tier in front of a multi-tier website significantly changes the
intensity and pattern of the traffic at each tier, making the
modeling of tiers difficult. Finally, the time-varying Internet
traffic requires that the provisioning of multi-tier websites be
dynamically adjusted to match the actual application demands.

These challenges motivated us to develop an automated and
adaptive approach to partitioning and allocating resources for
multi-tier applications in clouds. In this paper, we present V-
Cache, a machine learning based approach that flexibly man-
ages the resources of multi-tier websites to improve application
performance and reduce resource usage. More specifically, we
make the following contributions:

1) Transparent request interception and clustering.
We transparently intercept the requests coming to the
multi-tier website and use an adaptive fuzzification-
based approach to cluster the requests into groups. We
characterize each request cluster by its request type,
processing cost, and cache hit rate, and then use the in-
formation to determine which groups of requests should
be serviced by the caching tier.

2) Cost-aware selective caching and dynamic cache re-
sizing. Based on the request clusters and their associated
costs for in and out of cache request processing, we
identify the requests that benefit most from caching. We
develop a heuristic-based genetic algorithm to accelerate
the request selection process and propose a method
to predict the required cache size according to current
traffic flow.

3) Self-adaptive tier capacity management We develop
a reinforcement learning approach to optimally allocate
the remaining capacity to all the tiers taking into con-
sideration of the multi-tier application performance.

4) Design and implementation of V-Cache. We design
and implement a prototype of V-Cache in our university
cloud testbed. Experimental results on two representa-
tive multi-tier benchmarks show that V-Cache achieved
significant performance improvement and resource sav-
ings compared with a typical 3-tier deployment without
caching. It also outperformed a recently proposed virtual
cache management scheme in both static and dynamic
workloads [11]. We further show that additional resource
savings could be achieved by sharing a unified caching
tier among multiple websites.

The rest of this paper is organized as follows. Section II
discusses the request processing of multi-tier applications and
gives motivational examples on the use of caching. Section III
and Section IV elaborate the key designs and implementation
of V-Cache, respectively. Section V gives experimental results.
Related work is presented in Section VI. We conclude this
paper and discuss future works in Section VII.

II. BACKGROUND AND MOTIVATION

We first discuss the architecture of multi-tier applications
and how a caching tier boosts performance and reduces
resource usage. Then, we show that the characteristic of the
workload affects the effectiveness of caching and give the
motivation for the cost-aware request caching.

In general, multi-tier applications consist of three tiers,
including the web tier, the application tier, and the data tier.
More specifically, in a multi-tier website, the web server (e.g.,
Apache httpd) presents page contents in a web-based inter-
face to client browsers; the application server (e.g., Tomcat)
implements the business logic and functionalities; the database
server (e.g., MySQL) maintains information pertaining to the
web service. The content delivered by multi-tier websites
includes both static and dynamic contents. The static content
is the information that can be viewed and shared by all users,
such as cascading style sheets (CSS), javascripts, and images.
The dynamic content is the user-specific information generated
at the time users request the page including user profiles,
member-only pages and database-driven HTML content.

Caching is a widely used approach to accelerating content
delivery. There are multiple places that cache servers can be
deployed in the three-tier architecture. A HTTP reverse proxy
(e.g., Varnish) can sit in front of the web tier to cache complete
page contents. Alternatively, an in-memory key-value store
(e.g., memcached) can be deployed between the application
and database tiers to cache only database query results. If
properly configured, both approaches offload client requests
from the website and provide lower response times. Since the
integration of an in-memory data store into multi-tier websites
requires necessary modifications to the application logic, it can
hardly be made transparent to the owner of the website. In
contrast, a reverse proxy is able to transparently serve clients

Table I
REQUEST PROCESSING COST WITH DIFFERENT RESOURCE ALLOCATION.

Request URI Access Request Processing cost Processing cost on application Miss ratefrequency type on cache Balanced Optimized
/index.html 0.35 Static 43ms 221ms 46ms 4%
/logo.jpg 0.30 Static 21ms 140ms 22ms 5%
/BrowseRegions.php 0.10 Dynamic 40ms 583ms 543ms 14%
/SearchItemByRegions.php 0.12 Dynamic 74ms 2676ms 2458ms 51%
/ViewItems.php 0.13 Dynamic 58ms 620ms 586ms 19%

on behalf of the multi-tier website through traffic interception.
Therefore, adding a reverse proxy is a viable approach to
restructuring multi-tier applications in clouds.

However, the determination of the optimal cache server con-
figuration is not trivial and is dependent on the characteristic of
workloads. To study the effectiveness of caching in different
scenarios, we created a controlled testing environment. We
deployed the RUBiS benchmark in four VMware VMs. The
VMs hosted the Varnish proxy, Apache web server, Tomcat
application server, and MySQL database server, respectively.
The total resource budget for running the benchmark was 4
GHz CPU and 4 GB memory shared by all VMs. We exercised
the benchmark with 2000 concurrent clients.

Table I lists the individual request types of the RUBiS
benchmark and their associated processing costs (latency)
when served from a cache server or directly from the multi-tier
application. When measuring the individual cost, we issued
the corresponding request at a speed matching its access
frequency in RUBiS. As such, we measured the cost for each
request type assuming an infinite cache. For the measurement
on the multi-tier application, we show the process costs of
two schemes. Balanced refers to the configuration suitable for
typical workloads. Optimized refers to the resource allocation
for tuned for a specific request. For instance, we allocated
sufficient resources to the web tier for request index.html
and put more resources on the application and database tiers
for request BrowseRegions.php.

We make three important observations in Table I. First,
the use of a cache server can significantly accelerate request
processing. Second, caching is mostly effective for static
content with an average miss rate less than 5%. In contrast,
cached dynamic contents incur high miss rate due to the
expirations of their time-to-live (TTL) values, after which
cached requests are invalidated. Finally, although caching is
effective for static content, it is possible to achieve similar
performance by carefully configuring the multi-tier website.
For dynamic content, the improvement due to caching could be
an order of magnitude over the best possible multi-tier settings.

Next, we study the impact of cache size and caching
policy on application performance and the combined resource
usage of all tiers. We measured the effective throughput (see
Section III-F for definition), CPU, and memory consumption
of the multi-tier website under RUBiS browsing workload.
Note that the overall resource usage includes resources con-

sumed by the caching tier and all other three tiers. Since the
browsing workload contains read-mostly requests and largely
static content, we set to cache static content whenever possible
and cache dynamic content only if there is available space
in the cache. Figure 2 shows the performance and resource
usage of RUBiS with different cache sizes. In Figure 2, we
can see that caching significantly boosts the application effec-
tive throughput compared with the no-cache setting. As the
size of the cache increases, application throughput increases
accordingly until the improvement slows down at the cache
size of 16 MB.

Figure 2(b) and Figure 2(c) show that caching effectively
offloads requests from the multi-tier website resulting in re-
duced overall resource consumption. However, when applica-
tion throughput stagnates, further increments in the cache size
incur steep increments in both CPU and memory usages. An
examination of the cache log reveals that when the cache size
increased, the cache server began to cache dynamic content.
Since such dynamic contents have short TTLs, the resource
required to handle these requests were mostly wasted due to
high cache miss rates.

In the last test, we fixed the cache size at 16 MB and
compared four caching policies. Static first and Dynamic first
prioritize static content and dynamic content at the time of
caching, respectively. Least frequently used (LFU) and Least
frequently and costly used (LFCU K) [5] uniformly cache
both static and dynamic contents and evict the least frequently
used request. LFCU K also considers the miss penalty (i.e.,
the processing cost on the application) and selects the least
costly content for eviction. Figure 3 shows that Static first
achieves the best performance and the least resource usage
among the four policies because the workload contains a large
amount of static content. LFU does not take the processing
cost into consideration. Both Dynamic first and LFCU K favor
requests with high miss penalties but fail to consider the high
miss rate of dynamic content. Another issue with caching
policies based on replacement algorithms is that such policies
are only effective when the cache is full and do not handle
request expirations.

In summary, the determination of the optimal cache con-
figuration for multi-tier websites has unique requirements.
(1) Requests should be selectively served in the cache tier
considering the processing cost of individual requests and
the coordination with the other tiers. (2) The cache tier size

 0

 500

 1000

 1500

 2000

No cache 8M 16M 32M 64M

T
h

ro
u

g
h

p
u

t
(R

e
q

/s
e

c
)

Cache size (MB)

(a) Effective throughput

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

No cache 8M 16M 32M 64M

C
P

U
 u

s
a

g
e

 (
G

H
z
)

Cache size (MB)

(b) CPU usage

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

No cache 8M 16M 32M 64M

M
e

m
o

ry
 u

s
a

g
e

 (
G

B
)

Cache size (MB)

(c) Memory usage

Figure 2. The impact of cache size on (a) application effective throughput, (b) CPU usage, and (c) memory usage.

 1500

 1600

 1700

 1800

 1900

 2000

Static first Dynamic first LFU LFCU_K

T
h

ro
u

g
h

p
u

t
(R

e
q

/s
e

c
)

Request caching policy

(a) Effective throughput

 1.5

 2

 2.5

 3

 3.5

 4

Static first Dynamic first LFU LFCU_K

C
P

U
 u

s
a

g
e

 (
G

H
z
)

Request caching policy

(b) CPU usage

 1.5

 1.8

 2.1

 2.4

 2.7

 3

Static first Dynamic first LFU LFCU_K

M
e

m
o

ry
 u

s
a

g
e

 (
G

B
)

Request caching policy

(c) Memory usage

Figure 3. The impact of caching policy on (a) application effective throughput, (b) CPU usage, and (c) memory usage.

should be properly configured. Under-provisioned or over-
provisioned cache spaces result in either performance penalties
or excessive resource consumptions. (3) To achieve the min-
imum resource usage and the maximum cache performance,
selective caching is more desirable than selective eviction as
the latter inevitably incurs performance penalties and resource
wastes for short-lived requests. These challenges motivated
us to develop V-Cache, an automated approach to cost-aware
selective caching, dynamic cache resizing, and coordinated tier
capacity management.

III. THE DESIGN OF V-CACHE

A. Overview

We design V-Cache as a set of standalone daemons residing
in a management VM. Figure 4 shows the architecture of V-
Cache.

The workload analyser transparently intercepts the incom-
ing traffic and performs clustering of the requests based on
their request types, content sizes, and the processing costs.
Besides clustering the requests, the workload analyser also
maintains the statistics of completed requests, such as the
response time and the cache hit rate. Such statistics are used
by the policy generator and the request redirector to determine
and apply selective caching.

The core of V-Cache is the design of the policy generator,
which identifies the set of requests that benefit most from
caching. The policy generator takes the request clusters as
input and outputs a request redirection map to the request
redirector. Based on the selected requests for caching, the
policy generator also determines the minimum size of the
cache to accommodate these requests.

Figure 4. The architecture of V-Cache.

The request redirector is essentially a web proxy server
intercepting all incoming traffic. Based on the redirection
map provided by the policy generator, the request redirector
examines the URI and Host fields of a request’s HTTP
header. If the request falls in the cluster that is mapped to the
cache server, the request redirector forwards it to the caching
tier. Otherwise, the request is sent to the web tier of the multi-
tier website bypassing the caching tier.

Once the request redirection map and the cache size are
determined, the resources used by the caching tier are debited
from the total resource budget. The resource manager allocates
the remaining resources to all the tiers considering the overall
performance of the multi-tier website. Note that the memory
size of the caching tier is determined by the policy generator,
but the CPU allocation is managed by the resource manager.

In the following, we elaborate the design of each part of

V-Cache.

B. Request Clustering

Request clustering identifies requests that are essentially
similar in their processing costs in and out of cache. Since
requests for static content and dynamic content have distinct
characteristics, we perform clustering for such requests sepa-
rately. The request analyser classifies the requests into two
groups, static and dynamic, according to their URIs. This
ensures that static content and dynamic content are treated
differently when deciding the caching policy. We perform the
clustering of requests based on size of the requested content.

We use an adaptive fuzzification based clustering approach,
which is derived from the structure learning in neural fuzzy
control [20]. Unlike clustering algorithms like k-means, it does
not need a specified total number of clusters. This avoids the
misleading of the total number of clusters. In the clustering, we
use Gaussian function (Eq. (1)) to define different clusters. The
Gaussian function can recognize a range of requested content
size, which is determined by the mean mi and the standard
deviation σi. When a new request comes in, the algorithm
checks its requested content size s with all existing clusters.
If the content size of a request is recognized by an cluster,
the request will be added to that cluster. If the content size of
the request is not recognized by the any cluster, a new cluster
will be added. We assign the mean of new cluster mnew

i to
request content size si and the standard deviation σnew

i to a
predefined value.

ui = exp (− (s−mi)
2

σ2
i

) (1)

The newly generated cluster could be similar to an existing
one. To eliminate it, we perform a similarity check before
adopting the cluster as a part of neural network. The similarity
measurement method was originally proposed in [23]. Suppose
uA(x) and uB(x) are two Gaussian functions and their means
and standard deviations are mA, mB , σA, σB , respectively.
The similarity of two Gaussian functions are measured as:

E(A,B) =
|A ∩B|

σA
√
π + σB

√
π − |A ∩B|

.

Assuming mA ≥ mB ,

|A ∩B| = 1

2

h2(mB −mA +
√
π(σA + σB))√

π(σA + σB)

+
1

2

h2(mB −mA +
√
π(σA − σB))√

π(σB − σA)

+
1

2

h2(mB −mA −
√
π(σA − σB))√

π(σA − σB)

where h(x) = max(0, x). In the case of scenario σA = σB ,

(|A
⋂
B|) = 1

2

h2(mB −mA +
√
π(σA + σB))√

π(σA + σB)
. (2)

Only when the measured similarity is greater than a pre-
defined threshold, the new cluster is added to the clusters.

Then the request analyser samples a small portion of re-
quests from each cluster. From these samples, the analyser
obtains the request processing costs of each cluster in and out
of cache.

C. The Optimal Caching Policy

The optimal caching policy is the mapping of requests to
the cache or to the multi-tier application that incurs the least
total processing cost for all requests. For n request clusters,
each of which can be either processed in or out of the cache,
there are 2n possible request mappings. For example, suppose
the workload has n request clusters. A request mapping M
redirects request cluster 1 to p to the cache and sends request
cluster p + 1 to n directly to the application. We define the
cost of the request mapping M as

y =

p∑
i=1

[cinihi + aini(1− hi)] +
n∑

j=p+1

ajnj (3)

where ci and ai are the processing costs of request cluster
i on cache and application, respectively. ni is the number
of requests in cluster i. hi is the hit rate of cluster i. By
enumerating all 2n possible mappings, one is able to find the
optimal request mapping that has the least overall processing
cost.

D. Policy Generation: A Genetic Algorithm-based Approach

As the number of request clusters increases, the time
required to compute the optimal caching policy grows expo-
nentially. It is prohibitively expensive to enumerate all the
request mappings, especially when the policy needs to be
computed online. Genetic algorithms are a set of methods
that are used to accelerate the process of optimization and
searching. Such algorithms rely on a search heuristic to find
near-optimal solutions. We formulate the search of the optimal
caching policy as a genetic algorithm.

More specifically, we represent one request mapping strat-
egy set as a chromosome. The structure of the chromosome
for n request clusters is represented by a chromosome as x

x : {l1, l2, · · · , ln}

where each segment li represents whether this request cluster
will be forwarded to the cache or to the application.

The V-Cache randomly generates N chromosomes to form
the initial population P1. The population evolves by forming
a child population Pt+1 from the parent population Pt. This
emulates the natural evolution process and assumes that some
of the new populations could be better than the old ones.
Chromosomes are selected to form new solutions by their
fitness - those chromosomes with higher fitness values have
higher chance to be selected. The evolution process is done
by iteratively creating child populations based on the current
parent population Pt. The child population Qt is created
through two steps: crossover and mutation.

The genetic algorithm first picks two chromosomes x and y
from Pt based on their fitness values. The crossover procedure

is to generate offsprings by swapping the codes of x and y at
random locus k (point in chromosome) as shown in Eq. (4).
The child chromosomes x′ and y′ are added to the child
population Qt.

x : {l1, l2, · · · , ln}
y : {m1,m2, · · · ,mn}

}
crossover−−−−−−→

{
x′ : {l1, l2, · · · ,mk,mk+1, · · · ,mn}
y′ : {m1,m2, · · · , lk, lk+1, · · · , ln}

(4)

For each chromosome x′ ∈ Qt, the algorithm randomly
changes the code at one locus (highlighted in Eq. (5) and
creates a mutated chromosome x′′. The x′ is randomly picked
from Qt with mutation rate φ.

x′ : {l1, l2, · · · ,mk,mk+1, · · · ,mn}
mutate−−−−−→ x′′ : {l1, l2, · · · ,mk,m

′
k+1, · · · ,mn}

(5)

After the new chromosomes are generated, the algorithm
calculates the fitness of each chromosome. The fitness of a
chromosome is the indicator of how good the given solution
(represented as the chromosome) is to the optimization prob-
lem. The objective of the policy generation is to minimize the
overall processing cost. The definition of the cost function is
given in Eq. (3).

The algorithm will then select chromosomes from Qt to
build the parent population Pt+1 for the next iteration. How-
ever, due to the randomness of crossover and the mutation, the
child chromosomes in child population Qt are not guaranteed
to be better (i.e. have lower cost) than their parents. We
use the tournament selection algorithm [25] for the building
of Pt+1. The tournament algorithm creates a comparing set
C by randomly picking M chromosomes from the parent
population Pt. Each child chromosome in Qt is compared with
the chromosomes in the comparing set C. Only those child
chromosomes that have lower cost than all the competitors in
C will be put in Pt+1. This drives the genetic algorithm to
improve the fitness during each evolution.

By iterating this evolution process, we can find a near-
optimal solution for the policy generation problem.

E. Cache Size Determination

In V-Cache, each cached request occupies one cache block
and the block size is set to the size of the largest content.
Therefore, the cache size is determined by the content sizes
and the number of requests stored in cache. Based on the
request mapping, we determine the number of requests going
to the cache server. We obtain the requested content sizes of
different requests from the workload analyser. Then the cache
size is calculated as

scache = max(Si)

p∑
i=i

di

where Di is the number of requested contents and Si is the
size of requested content in request cluster i, respectively. The
size of the cache is determined by the maximum size of the
contents times the number of contents.

F. Self-adaptive Tier Capacity Management

The self-adaptive tier capacity management controls the
allocation of the remaining resources to all tier VMs. As
discussed in [28], it is hard to obtain an accurate system
model for resource allocation due to the dynamics workload
and the complexity introduced by caching. The reinforcement
learning is a process of learning through interactions with
an external environment. It does not assume any knowledge
of the system it works in and thus does not require any
model of the underlying system. The tier capacity management
problem of application’s VMs can be formulated as a finite
Markov decision process. It consists of a set of states and
several actions for each state. During the transition of each
state, the learning agent perceives the reward defined by a
reward function r(s, a). The goal of the reinforcement learning
agent is to develop the policy π : S → A, which can
maximize the cumulative rewards through iterative trial-and-
error interactions.

In the resource allocation of the application’s VMs, we
define the state space S as the set of possible resource
allocations for each VM. For an application that has n VMs,
the state space (S) is represented as a collection of state vectors
(s):

s = [r11, r12, · · · , rni].

The elements in the state vector are resource allocations, in
which i is the number of the resource types. In V-Cache, we
only control the CPU and the memory resources.

The action for each state element is represented as a vector.
We define three actions for each state element: keep, increase,
and decrease. Hence, an action vector can be (1, 0, 0), (0, 1, 0),
or (0, 0, 1). For example, (1, 0, 0) means to keep the current
value of one state element. The action set (A) is represented
as a collection of action vectors (a):

a = [ar11 , ar12 , · · · , arni
].

We use a Q-Learning agent to control the effective system
throughput. The Q-Learning agent uses a Q-Table to determine
the action choice on each state. The Q-Table stores the Q-
Value for each state-action pair. The learning process will
continuously update the Q-Values based on the reward it
receives. The key to the design of a RL algorithm is to define
the reward signal that reflects the high-level objective. We use
the effective throughput to measure the goodness of a start-
action pair. The effective throughput is defined as the number
of requests that meet the Service-Level Objectives (SLOs)
of the application response time [15]. The reward function
of an action a on state s in kth time slot is defined using
the effective throughput (ET) and the normalized effective
throughput (NET):

r(sk, ak) = β|ETsk,ak
− ETsk−1,ak−1

| (6)

where β = NETsk,ak
−NETsk−1,ak−1

. It uses the change in
normalized effective throughput β as the correction factor. For
example, if the effective throughput has increased significantly

and the normalized effective throughput has almost no change,
it implies that the change in the effective throughput could be
just due to the variance of the number of incoming requests.
This phenomenon indicates that the resource allocation of the
application’s VMs is favorable for the present workload and
no significant update should be applied to the reinforcement
learning. With the reward function, the Q-Value of an action
a on state vector s in kth time slot is updated as Q(sk, ak).
It is refined by

Q(sk, ak) = Q(sk, ak) + ε[r(sk, ak)−Q(sk, ak)

+ γQ(sk+1, ak+1)]
(7)

where ε is the learning rate and γ is the discount rate to
guarantee that the accumulated reward converges in continuing
tasks. We apply a variable learning rate for fast convergence.
The learning rate for different state-action pair is defined as

ε =
µ

N(s, a)
(8)

where µ is a given constant and N(s, a) is the number of
times that state-action pair (s,a) has been visited. The future
action ak+1 is determined using greedy policy.

IV. IMPLEMENTATION

We built a testbed in a university prototype data center,
which consists of five Dell PowerEdge R610 servers and two
Dell PowerEdge R810 servers. Totally, they have 10 Intel 6-
core Xeon X5650 CPUs, 8 Intel 6-core E7540 CPUs, and 704
GB memory. The servers are connected with 10 Gbps Ethernet.
VMware vSphere 5.0 is used for server virtualization.

As many others [8], [15], [21], [28], [32], [34], we use RU-
BiS [6] as the benchmark application in conducting the experi-
ments. RUBiS is an open source multi-tier Internet benchmark
application. It emulates three different categories of workload
at different concurrency levels. It provides flexibility allowing
us to evaluate V-Cache under different workloads and conduct
sensitivity analysis. We also use WikiBench [2], [31], a multi-
tier benchmark application based on the real data and workload
trace of Wikipedia.

For a multi-tier application, we allocate three VMs to host
the Apache web server, PHP application server, and MySQL
database server, respectively. The maximum capacity of each
VM is up to 2 GHz CPU and 2 GB memory. V-Cache uses a
dedicated VM. It debits resources from the application’s VMs
by coordinated cache and application resizing. All VMs use
Ubuntu server 10.04 with Linux kernel 2.6.35.

V-Cache deploys Varnish Cache 3.0.1, an open-source web
cache application [1]. Its request redirector intercepts all
incoming requests and recognizes each request based on its
URI field and Host field in the HTTP header. The request is
forwarded to the cache or the application based on the request
mapping generated by V-Cache’s policy generator.

V. PERFORMANCE EVALUATION

Using the RUBiS benchmark application, we first present
the application performance improvement and resource uti-
lization efficiency due to V-Cache. We then demonstrate the

impact of employing a shared V-Cache for multiple multi-tier
applications. We further study the performance impact of the
cost-aware request redirection. In addition, we evaluate the
performance of V-Cache with the WikeBench application that
uses real data and workload trace of Wikipedia.

A. Performance of V-Cache

1) Impact on the Effective Throughput: For performance
comparison, we implemented a representative cache-based re-
source provisioning approach. Elastic cloud cache (ECC) [11]
is a distributed cache system designed for cloud environments.
It provides an elastic cache by scaling up and down the
number of cache nodes to deal with workload variations.
We implemented it for cache VM resizing. As ECC does
not consider resizing application VMs, we tailored it with a
reinforcement learning based application VM resizing.

We also implemented a finely-tuned resource provisioning
approach, VCONF [28], which is a reinforcement learning
based approach for automated configuration of VMs. VCONF
does not consider using a cache tier.

The application performance metric is the effective system
throughput [15]. The soft time bound and the hard time bound
is set to 1000ms and 1500ms, respectively. We apply one
stationary workload that emulates 6000 concurrent users. We
also apply a bursty workload with 6000 concurrent users, using
the approach proposed by Mi et al. [24] that changes the think
time of each user.

Figures 5(a) and 5(b) show the effective throughput due to
the three different approaches under the stationary workload
and the bursty workload, respectively. Note that in the experi-
ment, three approaches use the same total amount of CPU and
memory resources.

Figure 5(a) shows that V-Cache and ECC outperform
VCONF by 3 times and 2.6 times in the effective throughput
under the stationary workload. This is due to the use of an
elastic cache VM. Due to the request clustering and cost-
aware request redirection, V-Cache also achieves 15.4% higher
effective throughput than ECC does.

Under the bursty workload, we normalize the effective
throughput by the number of incoming requests. Figure 5(b)
shows that V-Cache and ECC achieve higher normalized effec-
tive throughput than VCONF, but also more stable application
performance. These results demonstrate that V-Cache is able to
significantly improve the processing capability of a multi-tier
application with the same overall resource capacity.

2) Impact on the Resource Utilization Efficiency: We com-
pare the resource utilization efficiency of V-Cache, ECC and
VCONF under a stationary workload scenario. The RUBiS
workload was set to emulate 2000 concurrent users, each with
a mean think time of 7 seconds. This is a relatively light work-
load according to the overall resource availability. V-Cache,
ECC and VCONF all obtain very close effective throughput.
However, they consume different amount of resources.

Figure 6 shows the average resource allocation due to the
three different approaches. We observe that V-Cache uses 27%
less CPU and 38% less memory resources than VCONF does.

 0

 2000

 4000

 6000

 0 10 20 30 40 50 60

Time interval (30-sec)

V-Cache

 0

 2000

 4000

 6000

 0 10 20 30 40 50 60

Time interval (30-sec)

ECC

 0

 2000

 4000

 6000

 0 10 20 30 40 50 60

E
ff

e
c
ti
v
e

 T
h
ro

u
g

h
p

u
t

Time interval (30-sec)

VCONF

(a) Stationary workload.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

Time interval (30-sec)

V-Cache

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

Time interval (30-sec)

ECC

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

N
o

rm
a

liz
e

d
 E

ff
e

c
ti
v
e

 T
h

ro
u
g

h
p

u
t

Time interval (30-sec)

VCONF

(b) Bursty workload.

Figure 5. Performance of a multi-tier application using V-Cache, ECC, and VCONF.

Compared to ECC that is also based on a dedicated cache VM,
V-Cache uses 11% less CPU and 21% less memory resources.
The results demonstrate that V-Cache is able to significantly
improve the resource utilization efficiency.

 0

 2

 4

 6

Stationary Bursty

A
v
g
.

C
P

U
 A

llo
c
a

ti
o
n

 (
G

H
z
)

V-Cache
ECC

VCONF

 0

 2048

 4096

 6144

Stationary Bursty

A
v
g

.
M

e
m

o
ry

 A
llo

c
a

ti
o
n

 (
M

B
)

V-Cache
ECC

VCONF

Figure 6. Resource allocation under a light workload.

We further study the resource utilization efficiency of the
three approaches under a highly dynamic workload. We in-
strumented the workload generator of RUBiS to change the
number of concurrent users at the runtime. Figure 7 plots the
normalized effective throughput in a 60-minute period with
a 30-second sampling interval. The dynamic workload starts
with 2000 concurrent users. The number of concurrent users is
changed at the 10th, 30th, 50th, 70th, 90th, and 110th intervals
to 3000, 4000, 5000, 3500, 1000, 2000, respectively. We
observe that V-Cache achieves the highest effective through-

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 20 40 60 80 100 120

E
ff

e
c
ti
v
e

 T
h

ro
u

g
h

p
u

t

Time interval (30-sec)

V-Cache
ECC

VCONF

Figure 7. Performance comparison of V-Cache, ECC, and VCONF under a
highly dynamic workload.

put. This is due to the advantages of using a flexible cache
VM with request clustering. Further, the cost-aware request
redirection technique enables V-Cache to utilize resources in
a most efficient way. VCONF is of significant performance
degradation when the workload increases. Without an elastic
cache VM, the application’s VMs are easily overwhelmed by
the significantly increased workload.

To better understand the resource allocation of the three
approaches under the dynamic workload, we illustrate the CPU
and memory allocation of VMs at individual tiers due to each
approach in Figure 8. Results show that all three approaches
are able to dynamically change the VM resource allocations
to meet the workload variations.

Compared with ECC, V-Cache not only achieves better
performance but also reduces overall resource consumption.
Figure 8(a) and Figure 8(b) show that ECC allocates more
CPU resource to the cache VM. It implies that the cache VM
in ECC processes more requests than the cache VM in V-
Cache. Instead, V-Cache allocates more CPU resource to the

 0

 2

 4

 6

 8

 0 20 40 60 80 100 120

T
o

ta
l
C

P
U

 A
llo

c
a

ti
o

n
 (

G
h

z
)

Time interval (30-sec)

Cache
Web
App
DB

(a) CPU Allocation with V-Cache.

 0

 2

 4

 6

 8

 0 20 40 60 80 100 120

T
o

ta
l
C

P
U

 A
llo

c
a

ti
o

n
 (

G
h

z
)

Time interval (30-sec)

Cache
Web
App
DB

(b) CPU Allocation with ECC.

 0

 2

 4

 6

 8

 0 20 40 60 80 100 120

T
o

ta
l
C

P
U

 A
llo

c
a

ti
o

n
 (

G
h

z
)

Time interval (30-sec)

Web
App
DB

(c) CPU Allocation with VCONF.

 0

 1024

 2048

 3072

 4096

 5120

 6144

 7168

 0 20 40 60 80 100 120

T
o

ta
l
M

e
m

o
ry

 A
llo

c
a

ti
o

n
 (

M
B

)

Time interval (30-sec)

Cache
Web
App
DB

(d) Memory Allocation with V-Cache.

 0

 1024

 2048

 3072

 4096

 5120

 6144

 7168

 0 20 40 60 80 100 120

T
o

ta
l
M

e
m

o
ry

 A
llo

c
a

ti
o

n
 (

M
B

)

Time interval (30-sec)

Cache
Web
App
DB

(e) Memory Allocation with ECC.

 0

 1024

 2048

 3072

 4096

 5120

 6144

 7168

 0 20 40 60 80 100 120

T
o

ta
l
M

e
m

o
ry

 A
llo

c
a

ti
o

n
 (

M
B

)

Time interval (30-sec)

Web
App
DB

(f) Memory Allocation with VCONF.

Figure 8. Traces of CPU and memory allocations using V-Cache, ECC, and VCONF.

web tier and less CPU resource to the application tier and the
database tier. This is due to the cost-aware request direction
of V-Cache. It is able to allow the application VMs to process
low-cost requests and save the cache VM’s capacity for high-
cost requests. It significantly reduces the resource allocation
to the cache VM, application VM, the database VM, and the
overall resource consumption in the system.

From Figure 8(d) and Figure 8(e), we observe similar trend
in the memory allocation as to the CPU allocation. Note that
there is a significant increase in the memory allocation to the
application VM and the database VM in ECC. This is due to
the increased number of requests for dynamic content, which
are merely speed up by caching. Due to the short expiration
time of dynamic contents, increasing cache size does not
necessarily lead to performance improvement.

Figure 8(c) shows that between the 30th and 70th intervals,
VCONF almost allocates all CPU resource to the web, applica-
tion and database VMs. Each VM is reaching its upper bound
of CPU allocation. Figure 8(f) shows that between the 30th and
70th intervals, VCONF allocates every byte of memory to the
web, application and database VMs. Referring to the results
in Figure 7, we observe that the performance degradation of
VCONF is due to the resource limitation. Even consuming
all available resources is not enough for the significantly
increased workload. In contrast, V-Cache and ECC are able
to adaptively resize the cache VM and the application’s VMs
for performance improvement.

Due to the request clustering and cost-aware request redi-
rection, V-Cache makes the most efficient use of the available
resources and yields the best resource utilization efficiency.
ECC tends to increase the cache VM capacity to store more
content when the workload increases. As the cache size
increases, more dynamic content will be cached. However, due

to the short expiration time, the requests for these dynamic
content can merely be speed up through caching. V-Cache
considers the processing cost in and out of the cache VM
for each request and only caches those requests that have
greater potentials to be speed up by caching. This cost-aware
request redirection makes the most effective capacity trade-off
between the cache VM and the application VMs.

B. V-Cache shared by Multiple Applications

We consider two scenarios, both with the same total amount
of CPU and memory resources. In one scenario, one multi-
tier application has a dedicated V-Cache system. In the other,
two multi-tier applications share one V-Cache system. For
each application, we emulate a light workload of 2000 users.
V-Cache, ECC and VCONF all obtain very close effective
throughput. But they consume different amount of resources.
We also compare the resource utilization efficiency by the
shared V-Cache and by the dedicated V-Cache.

Figure 9 shows the resource allocation of four different
approaches. The resource allocation of the shared V-Cache
is the lowest among all approaches. It consumes 22.2% and
36.1% less CPU resource than ECC and VCONF, respectively.
It also consumes 30.5% and 43.2% less memory resource than
ECC and VCONF, respectively.

Compared with the dedicated V-Cache, the shared V-Cache
consumes 16.3% and 17.6% less CPU and memory resources,
respectively. This is because the overhead of using V-Cache
can be amortized if it is shared by multiple applications.
Sharing one V-Cache with multiple RUBiS applications also
allows data sharing between correlated applications. This
further reduces the memory consumption of V-Cache. This
experiment demonstrates that such a V-Cache system is very
beneficial to the IaaS cloud.

 0

 2

 4

 6

 8

Stationary Workload Bursty Workload

A
v
g

.
C

P
U

 A
llo

c
a

ti
o

n
 (

G
H

z
)

Shared V-Cache
V-Cache

ECC
VCONF

 0

 2048

 4096

 6144

 8192

 10240

Stationary Workload Bursty Workload

A
v
g

.
M

e
m

o
ry

 A
llo

c
a

ti
o

n
 (

M
B

)

Figure 9. Resource allocation of approaches with two RUBiS applications.

C. Impact of Cost-aware Request Redirection

V-Cache uses the cache VM only for requests that have the
potential of being speed up by caching. This is due to the
cost-aware request redirection. We compare it with the least
frequently used (LFU) cache replacement algorithm and the
least frequently and costly used (LFCU K) cache replacement
algorithm [5]. LFU favors high-frequency accesses. It evicts
less frequently used contents. Caching high-frequency contents
can increase the cache hit rate and improve the cache perfor-
mance. LFCU K considers both the access frequency and the
miss penalty (i.e. the processing cost out of the cache). It evicts
least frequently used and least costly contents from the cache.

We use three different RUBiS workload mixes: browsing,
bidding, and selling. The differences in the dynamic content
ratio, content size distribution, and business logic can sig-
nificantly affect the cache performance. The workload is set
to emulate 4000 concurrent users that will not overload the
system. We evaluate the performance of different approaches
using a fixed-size cache of 512 MB.

Figure 10 shows that V-Cache outperforms LFU and
LFCU K under all three workload mixes. Under the browsing
workload mix, V-Cache outperforms LRU and LFCU K by
2.2% and 3%, respectively. The performance improvement is
not very significant due to the low dynamic content ratio of
the browsing workload, in which most of the requests are
retrieving static content. This is an ideal scenario for a cache
system because the static contents have longer expiration time
and higher potential of being speed up by caching. Thus, all
three approaches are able to achieve decent performance.

As the dynamic content ratio increases, the performance
differences among three approaches are becoming more sig-
nificant. V-Cache outperforms LFU by 11.1% and 9.6% under
the bidding and selling workload mixes, respectively. V-Cache
outperforms LFCU K by 8.4% and 12.3% under the bidding
and selling workload, respectively. Although LFCU K consid-

 0

 0.2

 0.4

 0.6

 0.8

 1

Browsing Bidding Selling

N
o

rm
a

liz
e

d
 E

ff
e

c
ti
v
e

 T
h

ro
u

g
h

p
u

t V-Cache
LFCU_K

LFU

Figure 10. Performance of different approaches with fixed cache size.

 0

 0.2

 0.4

 0.6

 0.8

 1

Browsing Bidding Selling

N
o

rm
a

liz
e

d
 C

P
U

 A
llo

c
a

ti
o

n

V-Cache
LFCU_K

LFU

 0

 0.2

 0.4

 0.6

 0.8

 1

Browsing Bidding Selling

N
o

rm
a

liz
e
d

 M
e

m
o

ry
 A

llo
c
a

ti
o
n

V-Cache
LFCU_K

LFU

Figure 11. Resource usage of different approaches with fixed cache size.

ers both the access frequency and the miss penalty, the cache
performance is still largely affected by the dynamic contents.
The access frequency and the miss penalty do not necessarily
represent the potential speedup by caching for a given request.
The results demonstrate that with fixed-size cache, using V-
Cache’s cost-aware request redirection can make the most
efficient use of the cache space.

Figure 11 shows the CPU and memory resource allocations
due to V-Cache, LFCU K and LFU. With the cost-aware
request redirection, V-Cache uses less CPU resource and
less memory resource than LFCU K or LFU does. Caching
dynamic content is not very helpful in reducing the workload
to the application’s VMs due to the short expiration time of the
cached dynamic content. Thus, In LFU and LFCU K, more
resources of CPU and memory are needed by the application’s
VMs, causing higher overall resource consumption.

D. V-Cache with WikiBench Application

We evaluate V-Cache’s performance with WikiBench [2],
[31]. The workload has low write ratio. Most of the requests
are read-only that are cachable. However, the workload still
has a high dynamic content ratio, which in turn provides the
opportunity of taking the advantage of V-Cache’s cost-aware
request redirection. We generate a dynamic workload. It starts

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50 60

E
ff
e

c
ti
v
e

 T
h

ro
u

g
h

p
u
t

Time interval (30-sec)

V-Cache
VCONF

Figure 12. Throughput of WikiBench using V-Cache and VCONF.

 0

 0.2

 0.4

 0.6

 0.8

 1

Average
Throughput

Average CPU
Consumption

Average Memory
Consumption

N
o

rm
a

liz
e

d
 M

e
tr

ic

V-Cache
VCONF

Figure 13. Normalized metrics of WikiBench using V-Cache and VCONF.

with 2000 users, changes to 3000 users at the 20th interval,
and changes back to 2000 users at the 40th interval.

Figure 12 shows the effective throughput due to V-Cache
and VCONF under the dynamic workload. The results show
that during the first 20 intervals and the last 20 intervals when
the workload is at 2000 users, two approaches achieve similar
performance in effective throughput. But when the workload
hikes between the 20th and 40th intervals, V-Cache achieves
19.2% higher effective throughput than VCONF does. This is
due to the fact that V-Cache is able to adaptively resizes the
cache VM and the application’s VMs to meet the workload
dynamics. On the other hand, VCONF can only adaptively
resizes the application’s VMs.

Figure 13 shows the normalized throughput, CPU consump-
tion and memory consumption due to V-Cache and VCONF
under the dynamic workload. The results are the average
values during the 60-interval experimental period. We observe
that V-Cache significantly improves both the performance and
the resource utilization efficiency.

VI. RELATED WORK

Autonomic resource allocation of multi-tier applications in
virtualized environments is an important research topic [19],
[26], [33]. There were studies on the performance model-
ing and analysis of multi-tier servers with queueing foun-
dations [7], dynamic server provisioning on multi-tier server
clusters for end-to-end delay guarantee [32], and percentile-
based delay guarantee in multi-tier service architecture [20].

There are recent studies that focus on improving user-
perceived performance by automated VM resizing [16], [27],

[28]. VCONF is a reinforcement learning based approach for
VM auto-configuration [28]. It identifies the performance in-
terference between different VMs and the sequence dependent
of VM performance as the major challenges. It improves
performance of TPC-W, TPC-C, and SPECjbb benchmark
applications. Han et al. proposed a lightweight resource
scaling approach for multi-tier applications hosted in cloud
environments [16]. It is able to improve the resource utiliza-
tion of the underlying hardwares. However, the improvement
on performance and resource utilization efficiency is limited
because of the upper bounded VM resources.

Web cache has been widely used in improving the per-
formance of web applications, especially when the workload
increase dramatically. The web cache stores page content and
speeds up web request processing. Previous studies focused
on cache architectures, cache placement and replacement
algorithms, cache prefetching mechanisms for different appli-
cations [4], [5], [9], [13], [14]. For many e-Commerce sites,
web pages are created dynamically based on the business
processes and databases. These dynamic pages usually are
marked as non-cachable. CachePortal introduces intelligent
dynamic page invalidation approach to enabling web caching
for dynamic pages [9].

There are two recent studies on web cache for search
engines, which incorporate the notion of the processing costs
into the caching policies. Gan et al. proposed interesting cache
policies that take the processing costs of search queries into
account [14]. The cost function essentially represents the disk
access cost of queries. It is estimated by computing the sum
of the lengths of the posting lists for the query terms. Ozcan
et al. proposed different approaches that calculate the cost
using CPU processing time obtained when a query has been
executed [5]. They used the cost and frequencies of queries
to decide the cache eviction. However, the studies focused on
the fixed-size cache and back-end servers. In the IaaS clouds,
the size of the cache and back-end servers can be elastic and
thus the costs of queries are variable. Our work proposes a
cost-aware request redirection technique that is integrated with
automated resource provisioning for IaaS clouds.

One recent study designed an elastic cloud cache (ECC) for
scientific applications in cloud environments [11]. It proposed
a distributed cache system for improving the performance of
applications under bursty workloads. It used an automated
scaling algorithm to adapt the number of cache nodes ac-
cording to the workload variations. The approach focuses on
improving the response time of the applications. It does not
address the resource utilization efficiency issue. It also does
not incorporate the cache scaling with the application resizing.
Applying a cache to an application will significantly change
the magnitude and characteristic of workload. Lacking of the
incorporation can result in resource utilization inefficiency. In
this paper, we integrate the cache resizing and application
resizing in an automated manner. We design new approaches
for request clustering and cost-aware selective caching that
improve performance and reduce resource usage.

VII. CONCLUSIONS

The resource elasticity offered by IaaS clouds opens up
opportunities for elastic application performance, but also
poses challenges to application management. In this paper,
we propose and design V-Cache, a machine learning based
approach to flexible provisioning of resources for multi-tier
applications in clouds. V-Cache transparently places a caching
proxy in front of the application. To achieve the optimal
performance and resource efficiency, V-Cache uses a genetic
algorithm to identify the incoming requests that benefit most
from caching and dynamically resizes the cache size to ac-
commodate these requests. We also develop a reinforcement
learning algorithm to optimally allocate the remaining capacity
to other tiers. We have implemented V-Cache on a VMware-
based cloud testbed. Experiment results on the RUBiS and
WikiBench benchmarks show that V-Cache outperforms a
representative capacity management scheme and a cloud-cache
based resource provisioning approach by at least 15% in
effective system throughput, and achieves at least 11% and
21% savings on CPU and memory resources, respectively. V-
Cache demonstrates that by flexibly provisioning the resources
owned by users, providers reduce the resource requirement
per application and increase the consolidation ratio while still
meeting users’ goals.

Our future work will be on extending V-Cache for het-
erogeneous applications and integrating admission control for
overload control and performance guarantee.

Acknowledgement
This research was supported in part by U.S. NSF CAREER

Award CNS-0844983 and research grant CNS-1217979.

REFERENCES

[1] Varnish Cache. https://www.varnish-cache.org/.
[2] WikiBench. http://www.wikibench.eu/.
[3] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir.

The resource-as-a-service (RaaS) cloud. In USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud ’12), 2012.

[4] S. Albers. New results on web caching with request reordering. In Proc.
of the sixteenth annual ACM symposium on Parallelism in algorithms
and architectures (SPAA), 2004.

[5] I. S. Altingovde, R. Ozcan, and O. Ulusoy. A cost-aware strategy
for query result caching in web search engines. In Proc. of the
31th European Conference on IR Research on Advances in Information
Retrieval (ECIR), 2009.

[6] C. Amza, A. Chanda, A. Cox, S. Elnikety, R. Gil, K. Rajamani,
W. Zwaenepoel, E. Cecchet, and J. Marguerite. Specification and
implementation of dynamic web site benchmarks. In Proc. IEEE Int’l
Workshop on Workload Characterization (WWC), pages 3 – 13, 2002.

[7] M. N. Bennani and D. A. Menascé. Resource allocation for autonomic
data centers using analytic performance models. In Proc. IEEE Int’l
Conference on Autonomic Computing (ICAC), 2005.

[8] X. Bu, J. Rao, and C.-Z. Xu. A reinforcement learning approach to
online web system auto-configuration. In Proc. IEEE Int’l Conference
on Distributed Computing Systems (ICDCS), 2009.

[9] K. S. Candan, W.-S. Li, Q. Luo, W.-P. Hsiung, and D. Agrawal. Enabling
dynamic content caching for database-driven web sites. In Proc. ACM
SIGMOD, 2001.

[10] J. R. Challenger, P. Dantzig, A. Iyengar, M. S. Squillante, and
L. Zhang. Efficiently serving dynamic data at highly accessed web
sites. IEEE/ACM Trans. on Netwworking (TON), 12(2):233–246, 2004.

[11] D. Chiu, A. Shetty, and G. Agrawal. Elastic cloud caches for accelerating
service-oriented computations. In Proc. of Int’l Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2010.

[12] L. Degenaro, A. Iyengar, I. Lipkind, and I. Rouvellou. A middleware
system which intelligently caches query results. In Proc. of IFIP/ACM
Int’l Conference on Distributed systems platforms (Middleware), 2000.

[13] T. Feder, R. Motwani, R. Panigrahy, and A. Zhu. Web caching with
request reordering. In Proc. of 13th ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2002.

[14] Q. Gan and T. Suel. Improved techniques for result caching in web
search engines. In Proc. of the 18th Int’l Conference on World Wide
Web (WWW), 2009.

[15] Y. Guo, P. Lama, and X. Zhou. Automated and agile server parameter
tuning with learning and control. In Proc. of IEEE Int’l Parallel and
Distributed Processing Symposium (IPDPS), 2012.

[16] R. Han, L. Guo, M. M. Ghanem, and Y. Guo. Lightweight resource
scaling for cloud applications. In Proc. IEEE/ACM Int’l Symposium on
Cluster Computing and the Grid, 2012.

[17] H. Herodotou, F. Dong, and S. Babu. No one (cluster) size fits all:
automatic cluster sizing for data-intensive analytics. In Proc. of the 2nd
ACM Symposium on Cloud Computing (SOCC), 2011.

[18] V. Jalaparti, H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron.
Bridging the Tenant-Provider Gap in Cloud Services. In Proc. of the
3rd ACM Symposium on Cloud Computing (SoCC), 2012.

[19] M. Korupolu, A. Singh, and B. Bamba. Coupled placement in modern
data centers. In Proc. of IEEE Int’l Parallel and Distributed Processing
Symposium (IPDPS), 2009.

[20] P. Lama and X. Zhou. Autonomic provisioning with self-adaptive neural
fuzzy control for end-to-end delay guarantee. In Proc. IEEE/ACM Int’l
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), pages 151–160, 2010.

[21] P. Lama and X. Zhou. Ninepin: Non-invasive and energy efficient perfor-
mance isolation in virtualized servers. In Proc. IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), 2012.

[22] W.-S. Li, O. Po, W.-P. Hsiung, K. S. Candan, and D. Agrawal. En-
gineering and hosting adaptive freshness-sensitive web applications on
data centers. In Proc. of the 12th Int’l Conference on World Wide Web
(WWW), 2003.

[23] C. Lin and C. S. G. Lee. Real-time supervised structure/parameter
learning for fuzzy neural network. In Proc. IEEE Int’l Conference on
Fuzzy Systems, pages 1283–1291, 1992.

[24] N. Mi, G. Casale, L. Cherkasova, and E. Smirni. Injecting realistic
burstiness to a traditional client-server benchmark. In Proc. IEEE Int’
Conference on Autonomic Computing (ICAC), 2009.

[25] B. L. Miller, B. L. Miller, D. E. Goldberg, and D. E. Goldberg. Genetic
algorithms, tournament selection, and the effects of noise. Complex
Systems, 9:193–212, 1995.

[26] J. Moses, R. Iyer, R. Illikkal, S. Srinivasan, and K. Aisopos. Shared
resource monitoring and throughput optimization in cloud-computing
datacenters. In Proc. of IEEE Int’l Symposium on Parallel and Dis-
tributed Processing (IPDPS), 2011.

[27] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
and A. Merchant. Automated control of multiple virtualized resources.
In Proc. of the EuroSys Conference (EuroSys), pages 13–26, 2009.

[28] J. Rao, X. Bu, C. Xu, L. Wang, and G. Yin. Vconf: A reinforcement
learning approach to virtual machines auto-conguration. In Proc. IEEE
Int’l Conference on Autonomic Computing Systems (ICAC), 2009.

[29] J. Rao, X. Bu, C.-Z. Xu, and K. Wang. A distributed self-learning
approach for elastic provisioning of virtualized cloud resources. In Proc.
IEEE/ACM Int’l Symposium on Modeling, Analysis and Simulation of
Computer Telecommunications Systems (MASCOTS), 2011.

[30] M.-C. Roşu and D. Roşu. An evaluation of tcp splice benefits in web
proxy servers. In Proc. of the 11th Int’l Conference on World Wide Web
(WWW), 2002.

[31] G. Urdaneta, G. Pierre, and M. van Steen. Wikipedia workload analysis
for decentralized hosting. Computer Networks, 53(11):1830–1845, 2009.

[32] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood. Agile
dynamic provisioning of multi-tier Internet applications. ACM Trans.
on Autonomous and Adaptive Systems, 3(1):1–39, 2008.

[33] Q. Wang, S. Malkowski, D. Jayasinghe, P. Xiong, C. Pu, Y. Kanemasa,
M. Kawaba, and L. Harada. The impact of software resource allocation
on n-tier application scalability. In Proc. of IEEE Int’l Parallel and
Distributed Processing Symposium (IPDPS), 2011.

[34] B. J. Watson, M. Marwah, D. Gmach, Y. Chen, M. Arlitt, and Z. Wang.
Probabilistic performance modeling of virtualized resource allocation.
In Proc. IEEE Int’l Conference on Autonomic computing (ICAC), 2010.

