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Abstract—Data-intensive applications often suffer from per-
formance variability and degradation in the cloud due to in-
trinsically complex problem of performance interference that
arises from multi-tenancy. Although application-level approach
of straggler mitigation for scale-out data processing frameworks

such as MapReduce and Spark, address the issue to some extent,
they incur extra resource and often react after tasks have already
slowed down. In this paper, we present PerfCloud, a novel
system software that utilizes system level performance metrics
for early detection of performance interference in a multi-tenant
cloud, and provides non-invasive performance isolation through
fine-grained resource control. Unlike existing works, PerfCloud
does not require time-consuming workload profiling, or intrusive
modification of the application framework and the operating
system. We implemented PerfCloud on NSF Cloud’s Chameleon
testbed using KVM for virtualization, and OpenStack for cloud
management. Experimental results with Hadoop MapReduce
and Spark benchmarks show that PerfCloud effectively reduces
their job completion time, decreases performance variability,
and improves resource utilization efficiency while minimizing the
performance degradation of other colocated VMs.
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I. INTRODUCTION

Cloud applications often suffer from interferences from

other applications and cannot fully leverage the on-demand re-

source elasticity in the cloud, leaving the abundant parallelism

and potential scalability unexploited. In particular, scale-out

data processing frameworks (e.g. MapReduce, Spark, etc.)

hosted in the cloud are vulnerable to stragglers which occur

due to a variety of reasons including performance interfer-

ence [1], [2] and hardware heterogeneity [3], [4], [5]. Despite

existing mitigation techniques, stragglers can be up to 6-8x

slower than the median task in job on a production cluster,

leading to high job completion time and inefficient resource

utilization [6]. Furthermore, stragglers especially affect small

jobs, i.e., jobs that consist of a few tasks, and have stringent

requirement for low latencies.

Existing efforts on resource management and scheduling for

performance isolation in multi-tenant systems often require

expensive, time-consuming workload profiling [7], [8], [2],

[9], [10], [11], [12], [13], or intrusive instrumentation and

modification of application framework [14], [15], [16], and

guest operating system [17]. Hence, adoption of existing

techniques for large scale applications in a real cloud platform

faces a significant and practical barrier. At the application

level, parallel data-processing frameworks attempt to mitigate

these issues by marking slow running tasks as stragglers,

relaunching multiple copies of them, and picking the earliest

copy that finishes [5]. Such wait-and-speculate mechanisms

are inefficient because a task is allowed to run for a significant

amount of time before it can be identified as a straggler [18].

Furthermore, a speculative copy of a task has a direct impact

on the resources available for other jobs, and the killed tasks

lead to significant resource waste [19]. A recent study [20]

found that in Facebook’s Hadoop cluster, speculative tasks

alone account for 25% of all tasks and 21% of resource usage.

There are other replication based approaches [6] that avoid

waiting and speculation altogether, and mitigate stragglers

through full cloning of small jobs. However, such approach

still incurs extra resources.

There are several challenges in enabling system support for

performance isolation of data-intensive scale-out applications

in a multi-tenant Cloud. First, it is difficult to shift the

performance optimization efforts from application-level to the

system software. This is due to the fact that cloud applications

hosted on VMs appear as black boxes to the system software.

Hence, system-level performance isolation mechanism needs

to identify and address performance issues in a non-invasive

manner with minimal interaction with the application. Second,

quick detection and mitigation of performance interference is

crucial for improving the performance of short jobs. Previous

study [6] on Hadoop production cluster at Facebook shows

that over 80% of the Hadoop jobs run for a short duration with

fewer than ten tasks. Achieving low latencies for these small

interactive jobs is of prime concern to datacenter operators.

We present, PerfCloud, a novel system software that utilizes

system-level performance metrics for early detection of per-

formance interference experienced by data-intensive scale-out

applications, and provides non-invasive performance isolation

through fine-grained resource control. PerfCloud is designed

to work at cloud scale, and is composed of lightweight

and decentralized agents that monitor individual physical

servers in a cloud datacenter. PerfCloud utilizes the disk

I/O related performance metrics, blkio.io_wait_time

and blkio.io_serviced, to detect I/O contention and

the CPI (clock cycles per instruction) metric collected from
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(a) MapReduce performance isolation with
static I/O control.
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(b) Spark performance isolation with static
I/O control.
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(c) Performance degradation in the absence of I/O
control.

Fig. 1: Performance degradation due to colocated I/O intensive workload.

hardware performance counters to detect the contention of

processor resources, such as the last level cache (LLC) and

memory bandwidth. Hence, it is able to detect performance

issues more quickly than application-level approaches such as

speculative execution. It accurately identifies the antagonistic

VMs based on online cross-correlation analysis between the

resource usage pattern of colocated VMs.

To achieve performance isolation, PerfCloud applies a dy-

namic resource control algorithm that adjusts the CPU and

disk I/O bandwidth of antagonistic VMs based on a TCP

congestion control (CUBIC)-inspired technique [21]. We as-

sume that a cloud administrator may set different priorities

to various cloud instances/VMs possibly based on the cost

of reserving the specific instance types. PerfCloud aims to

achieve performance isolation of high-priority data-intensive

workloads, while minimizing the performance degradation of

low-priority antagonistic VMs. By mapping the problem of

shared resource contention in a multi-tenant cloud to the

problem of flow control in networks, PerfCloud achieves a

stable control behavior guaranteed by the CUBIC congestion

control technique, while avoiding time-consuming workload

profiling and error-prone performance modeling.

We implemented PerfCloud on NSF Cloud’s Chameleon

testbed using KVM for virtualization, and OpenStack for cloud

management. Experiments results show that PerfCloud out-

performs state-of-the-art techniques LATE [5] and Dolly [6]

in achieving performance isolation and resource utilization

efficiency of representative applications from Purdue MapRe-

duce Benchmark Suite (PUMA) [22] and SparkBench [23].

The rest of this paper is organized as follows. Section II

presents our motivational case study. Section III elaborates

PerfCloud’s key design and implementation details. Section IV

gives the testbed setup and experimental results. Related work

is presented in Section V. Conclusion is in Section VI.

II. MOTIVATION

We present motivating examples to demonstrate the need

and challenges of system level support for performance isola-

tion in a multi-tenant cloud. We set up a Hadoop cluster of 6

VMs, where each VM is configured with 2-vcpu, 8GB RAM,

and hosted on NSF Chameleon Cloud’s Dell PowerEdge
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Fig. 2: Performance degradation due to colocated memory

intensive workload.

R630 bare-metal server. The Hadoop cluster is configured

to run MapReduce and Spark workloads from the Purdue

MapReduce Benchmark (PUMA) [22] and SparkBench [23]

suite respectively. Here, terasort, wordcount, and inverted-

index benchmarks belong to PUMA, while page-rank, logistic

regression, and svm benchmarks belong to SparkBench.

A. Performance Interference

To analyze multi-tenant interference, we co-locate a VM

that runs an I/O intensive random read benchmark using the

Flexible I/O Tester (fio) tool. All the VMs were configured

with caching option set to ‘none’, in order to avoid perfor-

mance variability introduced by disk page caching on the host

machine. The results presented are the average of five runs,

where each VM’s page cache is cleared before each run. We

measure the job completion time of MapReduce, and Spark

workloads normalized with respect to their respective job

completion times when the antagonistic VM is not colocated

with the Hadoop VMs. We also measure the I/O operations

per sec (IOPS) of fio random read benchmark normalized

with respect to its IOPS when it is running alone. As shown

in Figures 1 (c), the interference caused by fio random read

benchmark degrades the performance of MapReduce Terasort,

and Spark Logistic Regression by 72% and 44% respectively.

Next, we apply the linux block I/O subsystem’s throttling

policy to set various limits on the total (read and write) I/O

throughput (bytes-per-sec) of the colocated VM. For example,

an I/O cap of 50% limits the total I/O throughput of fio random
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(a) MapReduce Terasort
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(b) Spark Logistic Regression
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(c) Various Benchmarks

Fig. 3: Standard deviation of block iowait ratio across Hadoop VMs with and without disk I/O contention.

read benchmark to 50% of its throughput obtained when it is

running alone. MapReduce, and Spark performance improves

as the I/O cap on the antagonistic VM decreases.

B. Challenges of Resource Throttling

Although resource throttling based performance isolation

seems intuitive, it is challenging due to the following reasons.

First, aggressive resource throttling comes at the cost of

performance degradation of the colocated VMs. As shown in

Figures 1 (a) and (b), the performance of fio random read

benchmark decreases significantly as we lower the I/O cap

on its VM. A naive strategy of applying I/O caps on all

colocated VMs may lead to their unwarranted performance

degradation. Second, it is difficult to determine how much I/O

throttling is effective in achieving performance isolation, since

the extent of performance interference varies across various

colocated workloads as shown in Figure 1 (c). Furthermore,

I/O throttling of antagonistic VMs beyond a certain level

may not provide much performance gain in some workloads.

For example, Figure 1 (b) shows that decreasing the I/O

cap on the antagonistic VM beyond 20% shows very little

improvement on the Spark application performance, while

it degrades the performance of the colocated random read

benchmark significantly. This is because disk I/O is no longer

a bottleneck for the Spark workload in this case.

C. Contention of Shared Processor Resources

Performance interference may also arise from the contention

of other prominent shared resources such as the last level cache

(LLC) and memory bandwidth [24]. To measure the impact

of contention in shared processor resources, we co-locate

a VM running memory-intensive STREAM benchmark [25]

on the physical server hosting Hadoop VMs. As shown in

Figure 2, both MapReduce and Spark benchmarks suffer from

significant performance degradation due to interference caused

by the colocated memory-intensive workload.

III. PERFCLOUD DESIGN AND IMPLEMENTATION

A. Non-invasive Detection of Performance Interference

1) I/O Contention: We now describe how PerfCloud de-

tects I/O contention experienced by data-intensive scale-out

applications by utilizing system-level performance metrics
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Fig. 4: Interference detection with CPI metric.

at run time. The key insight behind the technique is that

since scale-out applications such as MapReduce and Spark

are designed to distribute the work evenly across multiple

worker nodes, the deviation in I/O behavior among the worker

nodes can indicate I/O contention related issues. Our study

shows that the standard deviation of the ratio of blkio.io wait

time and blkio.io serviced across the various VMs running

a data-intensive application on a physical server can serve

as an early indicator of the underlying performance issues.

blkio.io wait time reports the total time I/O operations by

a cgroup spent waiting for service in the scheduler queues,

and blkio.io serviced reports the number of I/O operations

performed by a cgroup. Each cgroup is mapped to a VM.

These metrics are easily obtainable from the Block I/O (blkio)

subsystem, a linux kernel module, that controls and monitors

access to I/O on block devices by tasks in cgroups.

As a case study, we measure the standard deviation of

block iowait ratio across the Hadoop VMs at fixed time

intervals when a MapReduce Terasort job with 10 map and

10 reduce tasks was executed. We collect this metric when the

MapReduce job is running alone, and when the Hadoop VMs

are colocated with another VM running an I/O intensive fio

benchmark. All the VMs are hosted on a single physical server.

As shown in Figure 3 (a), the disk I/O contention caused by

fio random read benchmark significantly increases the stan-

dard deviation of blkio.io wait time/blkio.io serviced across

Hadoop VMs. On average, the peak standard deviation of

block iowait ratio increases by a factor of 8.2 due to disk

I/O contention. Correspondingly, MapReduce job performance
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(c) Correlation between deviation of block iowait
ratio and colocated VM’s I/O throughput.

Fig. 5: Antagonist identification based on the correlation of Block I/O wait and I/O throughput between colocated VMs.

degrades by a factor of 1.7. As shown in Figure 3 (b), we

observe similar results when the VMs are configured to run the

Spark Logistic Regression benchmark, while being colocated

with a VM running fio random read benchmark. Futhermore,

Figure 3 (c) shows that the standard deviation of block iowait

ratio shows a similar pattern for various MapReduce and Spark

benchmarks, when they are colocated with fio random read

benchmark. We also observe that this metric does not exceed a

threshold of 10 when the MapReduce and Spark workloads are

running alone. An important aspect of the proposed approach

is that it is able to identify performance interference within

a few seconds. This is in sharp contrast to application-level

speculative execution approaches, which need the tasks to run

for a significant amount of time for straggler detection.

2) Contention of Shared Processor Resources: In order to

detect contention of shared processor resources, PerfCloud uti-

lizes a hardware performance counter based metric, CPI (clock

cycles per instructions). Our study shows that the standard

deviation of CPI measured across the various VMs running

a data-intensive application on a physical server increases

significantly, when a memory-intensive VM is colocated. As

shown in Figure 4, the peak deviation in CPI does not exceed

a threshold of 1 when the MapReduce and Spark work-

loads are running alone. However, with a colocated memory-

intensive STREAM benchmark, the peak deviation is much

higher than 1 for various MapReduce and Spark benchmarks.

From Figures 2 and 4, we observe that the deviation in CPI

is correlated with the amount of performance degradation

caused by the STREAM benchmark. Furthermore, compared

to MapReduce, the Spark benchmarks experience a larger

impact of contention in shared processor resources in terms

of performance degradation. Spark jobs are more sensitive

to LLC miss rates and memory bandwidth contention as it

frequently reuses intermediate results residing in memory.

B. Identifying Antagonists

PerfCloud performs online cross-correlation analysis to

quickly determine which colocated VMs are the likely cause

of performance interference with data-intensive scale-out ap-

plications hosted in a multi-tenant system. In particular, it

identifies the antagonists by looking for correlations between

the system-level performance metrics of victim VMs and the

colocated VMs. A good correlation means that the suspect

is highly likely to be a real antagonist. PerfCloud uses the

Pearson Correlation Coefficient for this purpose.

To identify antagonists responsible for I/O contention, Per-

fCloud calculates the correlation between a time series of

standard deviation of block iowait ratio among the data-

intensive application VMs, and a time series of I/O throughput

of a colocated VM respectively. As a case study, we co-

locate VMs running the MapReduce Terasort benchmark, with

VMs running fio random read, sysbench oltp, and sysbench

cpu benchmarks on the same physical server. The sysbench

oltp benchmark is run for 120 seconds with eight threads to

perform read-only test on a MySQL database table of size

10000000. The sysbench cpu benchmark is run with four

threads each to calculate prime numbers with a maximum

value of 12000000. Figure 5 (a) shows the standard deviation

of block iowait ratio among the Hadoop VMs, normalized

by the peak deviation. Figure 5 (b) shows the total I/O

throughput (bytes-per-sec) measured from other colocated

VMs, normalized by the peak throughput observed across

the VMs over the duration of the experiment. Figure 5 (c)

compares the correlation results obtained with various sizes

of dataset collected from our experiment. There is a strong

correlation between the I/O metrics of Hadoop VMs, and VM

running the fio benchmark. PerfCloud is able to identify an

antagonistic VM with dataset size as small as three, which

can be obtained quickly within three measurement intervals.

To identify antagonists responsible for contention of pro-

cessor resources, PerfCloud calculates the correlation between

a time series of standard deviation of CPI among the data-

intensive application VMs, and a time series of LLC miss rates

of a colocated VM respectively. VMs showing high LLC miss

rates are more likely to put pressure on the shared last level

cache and memory bandwidth [24]. As a case study, we co-

locate VMs running the Spark Logistic Regression benchmark,

with two VMs each running a memory-intensive STREAM

benchmark, and remaining two VMs running sysbench oltp,

and sysbench cpu benchmarks. Each STREAM benchmark is

run with only eight threads and an array size of 2 billion

elements to create a situation where a group of antagonists
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Fig. 6: Antagonist identification based on the correlation of CPI and LLC miss rates between colocated VMs.
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Fig. 7: Cubic function for dynamic resource capping.

together cause significant performance interference, but which

individually do not have much effect. In our testbed, a

STREAM benchmark with 16 threads is sufficient to cause

significant performance interference. Figures 6 (a) and (b)

show the normalized standard deviation of CPI among the

Hadoop VMs, and the normalized LLC miss rates of colocated

VMs respectively. The LLC miss rates are not counted when

the VMs are not running any workload. In such cases, Perf-

Cloud treats missing values in time series vectors as 0 (rather

than omitting them, as is typically done when computing

the Pearson correlation). As a result, PerfCloud is able to

avoid over-emphasizing similarities computed over little data.

As shown in Figure 6 (c), the standard deviation of CPI

among Hadoop VMs, and the LLC miss rates of the two VMs

running the STREAM benchmarks are highly correlated, with

a correlation coefficient value greater than 0.8.

C. Mitigating Performance Interference

PerfCloud utilizes the disk I/O throttling policy of Block

I/O subsystem and CPU hard-capping [26] to reduce the

I/O throughput and CPU usage of low-priority antagonistic

VMs for achieving performance isolation of high-priority data-

intensive applications. While disk I/O throttling and CPU

hard-capping are effective in mitigating the contention of disk

I/O and shared processor resources respectively, an important

question is how much resource capping is required to achieve

performance isolation, while avoiding unwarranted perfor-

mance degradation of antagonistic VMs. A naive approach

may apply ad-hoc resource capping on antagonists, whenever

resource contention is detected. However, such ad-hoc policies

may lead to oscillatory and unstable system behavior [27]. To

address this challenge, PerfCloud uses a control mechanism

shown to exhibit the stable behavior of CUBIC congestion

control [21]. Here, we map the problem of shared resource

contention among colocated VMs to the problem of flow

control in networks. In principle, resource contention experi-

enced by high-priority data-intensive applications is analogous

to TCP network congestion, and allocating disk I/O and

CPU bandwidth to colocated VMs while avoiding significant

resource contention is similar to congestion control. PerfCloud

initiates its dynamic resource control algorithm according to

Equation 1, whenever I/O or processor resource contention is

detected, and one or more antagonistic VMs are identified on

a physical server. The rationale for using CUBIC congestion

control-inspired technique is that it provides good control

stability without requiring time-consuming workload profiling

and performance modeling, which is often prone to inaccuracy.

ci(t + 1) =

{

(1−β ) · ci(t), if I(t)> I

γ · (Ti −
3

√

Cmax
i ·β

γ )3 +Cmax
i , otherwise

(1)

Here ci(t) denotes the resource (CPU or I/O) cap applied on

antagonistic VM i at sampling interval t, I(t) is the standard de-

viation of block iowait ratio or CPI among the VMs belonging

to a high-priority application, I is the threshold parameter for

I(t), Ti is the elapsed time (number of intervals) since the last

resource cap-decrease event on VM i, Cmax
i is the resource cap

at the time of the last cap-decrease event, and γ ∈ [0,1] is a

scaling constant. The resource cap, ci(t), for each antagonistic

VM, at t = 1, is initialized to be equal to the VM’s observed

CPU usage or I/O throughput. Whenever I(t) > I implying

disk I/O or processor resource contention, PerfCloud decreases

the CPU or I/O cap on the antagonistic VMs multiplicatively

by a factor of β . When the performance interference subsides

and I(t) < I , PerfCloud raises the resource caps according

to the cubic function given by Equation 1.

After a reduction in resource cap of an antagonistic VM, the

cubic increase function operates in three regions as shown in

Figure 7. (1) Initial growth region: the resource cap increases
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steeply, as long as I(t) < I , and the cap is smaller than

Cmax
i . This allows the antagonistic VMs to quickly get a fair

allocation of CPU or I/O bandwidth as long as the performance

of high-priority application is not affected. Here, fairness is

measured among low-priority VMs only, since high-priority

VMs always get higher preference. The motivation here is to

penalize low-priority VMs only when they are misbehaving.

(2) Plateau region: As the resource cap gets closer to Cmax
i , it

slows down its growth and increases very conservatively. As a

result, a high-priority application that has a temporary drop in

resource demand followed by a demand surge will not suffer

from resource contention. The length of the plateau region

is determined by the scaling factor γ . (3) Probing region: If

no resource contention is detected after spending time in the

plateau region, the resource cap will increase aggressively to

probe for more CPU or I/O bandwidth.

The design parameters, β and γ , used in Equation 1 are

tuned to achieve good performance isolation in a timely man-

ner, while avoiding unwarranted performance degradation of

antagonists. We empirically set β to 0.8, γ to 0.005. Based on

our observation in section III-A, we set the threshold parameter

I to 10 for detecting I/O contention, and 1 for detecting

processor resource contention. The threshold is determined by

the peak standard deviation of block iowait ratio, and CPI that

are observed when there is no resource contention.

D. Putting It All Together

Figure 8 shows the architecture of PerfCloud. It is composed

of lightweight and decentralized agents that run on individual

physical servers in a cloud datacenter. Each agent, called the

node manager is responsible for the performance isolation of

high priority data-intensive applications hosted on a physical

server. Without loss of generality, this paper implements the

proposed ideas on a prototype cloud system, using KVM for

virtualization, and running the node manager as a daemon

process on the host machine.

1) Performance Monitor: The performance monitor period-

ically measures the blkio.io wait time, blkio.io serviced, and

CPI metrics for each VM belonging to a high-priority data-

intensive application hosted on the physical server. It also mea-

sures the I/O throughput in terms of blkio.io service bytes,

LLC miss rate, and CPU usage for each low-priority VM

colocated on the same server. The Libvirt API is used to

Algorithm 1 Dynamic Resource Control Algorithm.

1: Variables: H: list of VMs belonging to high-priority

application; L: list of low-priority VMs; A: list of antag-

onistic VMs; θ : list of I/O throughput (MB/s) (for I/O

control) and CPU usage scaled to [0,1] (for CPU control)

of antagonistic VMs;

2:

3: while true do

4: H,L = getvmin f o()
5: calculate I(t): the standard deviation of CPI (for CPU

control) and iowait (for I/O control).

6: if t%τ == 0 then

7: A,θ = identi f yAntagonists()
8: end if

9: if I(t)> I then

10: for θi in θ do

11: if t == 1 then

12: resource cap ci(t) = θi

13: end if

14: ci(t + 1) = (1−β ) · ci(t)
15: apply resource cap ci(t + 1) on VM ai

16: end for

17: else

18: for ai in A do

19: ci(t + 1) = γ · (Ti −
3

√

Cmax
i ·β

γ )3 +Cmax
i

20: apply resource cap ci(t + 1) on VM ai

21: end for

22: end if

23: t = t + 1

24: end while

collect the Block I/O metrics from the hypervisor. Since these

metrics provide cumulative values from the time the VMs

were booted, we calculate the delta values between consecutive

measurement intervals. CPI and LLC miss rates are measured

on a per cgroup basis by using the perf event [28] tool.

The performance monitor applies an exponentially weighted

moving average (EWMA) technique to smooth out short-term

variations in the data collected over 5 second intervals.

2) Node Manager: As shown in Algorithm 1, the node

manager periodically contacts the cloud manager to fetch

relevant information about the VMs hosted on the physical

server, including VM priority (high/low), and a list of VMs

that belong to the same high-priority application. As a result,

it is aware of possible changes in VM placement caused by

arrival of new VMs, VM migration, etc. We use an open-

source cloud management software, OpenStack, to build a

cloud environment in our testbed. The node manager uses

OpenStack Nova API to interact with the cloud manager. Next,

it calculates the standard deviations of the block iowait ratio

and CPI among the high-priority application VMs based on

the data collected by the performance monitor. It periodically

identifies the antagonistic VMs. As described in Section III-B,

the low-priority VMs that have a correlation of 0.8 or more are
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(c) Performance Isolation.

Fig. 9: Performance isolation of spark workload colocated with I/O intensive and memory intensive workloads.
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Fig. 10: PerfCloud’s dynamic resource control on antagonistic VMs.

considered to be the antagonists. The node manager runs both

CPU control and I/O control modules to calculate the resource

caps, ci(t), to be set on the antagonistic VMs according to

Equation 1. It uses the Libvirt API to apply the CPU caps

through vcpu quota, and the I/O caps through block I/O

subsystem’s throttling policy.

IV. EVALUATION

A. Testbed Setup

We have implemented and evaluated PerfCloud on the NSF

Cloud’s Chameleon testbed, using Dell PowerEdge R630 bare-

metal servers equipped with 2.3 GHz 48 core Intel Xeon

processor and 125 GB memory. We built a cloud environment

by using KVM for server virtualization, and OpenStack for

cloud management. Experiments were conducted both at a

small scale with a 12-node virtual Hadoop cluster running

on a single bare-metal server, and at a large scale with a

152-node virtual Hadoop cluster running on 15 bare-metal

servers. Each node was configured with 2 VCPU and 8

GB memory. Two nodes were configured as the NameNode

and JobTracker/Spark Master, respectively. The rest

of the nodes ran as slave nodes for HDFS storage and

MapReduce/Spark task execution. We set the HDFS block size

to its default value 64 MB.

For performance evaluation, we used the workloads derived

from the Purdue MapReduce Benchmark Suite (PUMA) [22]

and SparkBench [23] suite as representative data-intensive

scale-out applications. In the PUMA suite, we used various

MapReduce benchmarks with real-world test inputs from

Wikipedia as well as data generated by the TeraGen tool. In

the SparkBench suite, we used various Spark benchmarks with

data generated from SparkBench’s synthetic data generator.

B. Impact of Dynamic Resource Control

First, we evaluate the effectiveness of PerfCloud’s dynamic

resource control technique in achieving performance isolation

of a Spark Logistic Regression benchmark with at most

40 tasks per stage running on a 12-node virtual Hadoop

cluster. To create performance interference, we co-locate two

VMs running the I/O intensive fio random read benchmark

and memory-intensive STREAM benchmark respectively. In

addition, physical server also hosts VMs running sysbench

oltp and sysbench cpu benchmarks. Figures 9 (a) and (b) show

that compared to default system without resource capping,

PerfCloud significantly reduces the standard deviation of block

iowait ratio and CPI across Hadoop VMs. This result demon-

strates that PerfCloud is able to detect and reduce the resource

contention experienced by the Hadoop VMs. The relationship

between resource contention, block iowait ratio and CPI has

been established in Section III-A.

Figure 9 (c) compares the performance isolation effective-

ness of PerfCloud with the default system, and a static resource

capping policy that applies 20% I/O cap on the VM running fio

random read benchmark, and 20% CPU cap on the VM run-

ning STREAM benchmark. PerfCloud and the static resource

capping policy outperform the default system by 31% and 33%
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Fig. 11: Large-scale evaluation of LATE, Dolly, and PerfCloud.
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Fig. 12: Performance Variability

respectively in terms of the normalized job completion time of

the Spark application. This is because both schemes quickly

throttle the antagonistic VMs and mitigate the performance

interference issue. However, as shown in Figure 10 (c), Perf-

Cloud results in significantly less performance degradation of

antagonistic VMs than that caused by the static capping policy.

The normalized throughput of fio random read benchmark and

STREAM triad kernel are 4.8X and 2.8X higher respectively

in case of PerfCloud. This is due to PerfCloud’s dynamic

resource control algorithm, which throttles the colocated VMs

only when there is resource contention, and allows them to

quickly regain CPU and I/O bandwidth when there is no

contention. As shown in Figures 10 (a) and (b), PerfCloud

throttles fio random read and STREAM benchmarks during the

time 15 to 40 seconds, which correspond to the initial growth

and plateau region of CUBIC control. After time 40 seconds,

resource caps are allowed to increase rapidly (probing region).

In case of fio random read, another I/O throttling occurs at time

65 seconds due to a sudden increase in the standard deviation

of block iowait ratio as shown in Figure 9(a). The STREAM

benchmark finishes at different times under different schemes.

C. Large Scale Evaluation

We now present the results of large-scale experiments

conducted on a 152-node virtual Hadoop cluster, which is

distributed over 15 physical servers. We use two workload

mixes of 100 MapReduce and 100 Spark benchmarks derived

from the PUMA and SparkBench suite respectively. Similar

to the related work [6], 80% of the MapReduce jobs have less

than 10 map/reduce tasks, and 20% of the jobs have 10 to 50

tasks. In the Spark workload mix, 80% of the applications have

at most 10 tasks per stage, and 20% of the applications have at

most 50 tasks per stage. These workload mixes are generated

by using different sizes of input data for the MapReduce

and Spark benchmarks. On each job execution, we randomly

distribute antagonistic VMs running the I/O intensive fio, and

memory-intensive STREAM benchmarks.

For performance comparison, we use the state-of-the-art

techniques - LATE [5] scheduler and Dolly [6]. While LATE

applies speculative task execution for straggler mitigation,

Dolly relies on full cloning of jobs, avoiding waiting and

speculation altogether. Dolly launches multiple clones of a

job and uses the result of the first clone that finishes. This

paper uses Dolly’s job-level cloning feature instead of its

finer-grained task-level cloning alternative since the latter

requires significant modification of the MapReduce and Spark

frameworks. Since the effectiveness and resource efficiency of

Dolly depends on the number of clones, we evaluate Dolly

with various number of clones (Dolly-2, Dolly-4, Dolly-6).

Figures 11 (a) and (b) show the breakdown of MapReduce

and Spark job performance in case of LATE, Dolly, and Per-

fCloud respectively. We observe that PerfCloud outperforms

LATE and Dolly by limiting the performance degradation of

34% of the MapReduce jobs to be less than 10%, 31% of the

Spark jobs to be less than 10%, and that of 100% of all jobs

to be less than 30%. Dolly outperforms the LATE scheduler,

since its proactive job cloning approach does not have to wait

and observe a task before acting. With the increase in number

of clones, Dolly achieves better performance for more jobs.

However, as shown in Figure 11 (c), Dolly’s average resource

utilization efficiency decreases significantly as more clones are

used for straggler mitigation. We measure resource utilization

efficiency as the ratio of sum of successful task execution

times and the sum of all task execution times (including the

tasks that are killed). Using a large number of clones implies

that Dolly has to kill a large number of jobs, thus decreasing

its resource utilization efficiency. Compared to LATE and

Dolly, PerfCloud achieves consistently better performance for

all jobs without sacrificing resource utilization efficiency. This

is because PerfCloud addresses the root cause of performance

interference by throttling the antagonistic VMs on all physical

servers, and does not require any extra resource usage.



Finally, we evaluate PerfCloud’s ability to reduce the per-

formance variability of MapReduce and Spark workloads in a

multi-tenant environment. We run a MapReduce Terasort job

with 50 tasks, and a Spark Logistic Regression benchmark

with 50 tasks per stage, while randomly colocating antagonis-

tic VMs (fio and STREAM benchmarks) on the 15 physical

servers on each job execution. We repeat the experiment 30

times. As shown in Figures 12 (a) and (b), the median and the

spread of the normalized job completion time is much smaller

in case of PerfCloud, as compared to the cases with LATE and

Dolly. This is because unlike PerfCloud, LATE and Dolly’s

ability to mitigate performance interference depends on the

distribution of antagonistic VMs among the physical servers.

For instance, if antagonistic VMs run on most servers, most

duplicate copies of tasks or jobs will also face interference.

D. Discussion

1) Overhead Analysis. PerfCloud incurs minimal overhead

in achieving performance isolation. The use of Linux Block

I/O subsystem for I/O monitoring does not introduce any addi-

tional overhead, since this kernel module is enabled by default.

The overhead of measuring hardware performance counters is

minimal as the perf event tool is used in counting mode on a

per-cgroup basis. Our study conducted on Chameleon Cloud’s

Dell PowerEdge R630 bare-metal server does not show any

visible impact of perf event tool on application performance.

Furthermore, applying resource caps on a VM takes less than

30 ms. This overhead increases linearly with the number of

antagonists, and is limited since each node manager acts on a

single physical server only.

2) Future Work Due to its decentralized design, PerfCloud

does not take into account the hardware heterogeneity of phys-

ical servers. As a result, VMs running on slower machines may

still cause some tasks to straggle. In such cases, application-

level approaches such as speculative execution can comple-

ment PerfCloud in collectively improving the performance

of data-intensive applications. Furthermore, if multiple high-

priority applications are colocated on the same server, the

node manager can notify the cloud manager to address the

issue through complementary solutions such as VM migration.

We will evaluate PerfCloud on a heterogeneous server cluster

along with VM migration in future. Furthermore, we will study

the impact of other optimizations such as shared-memory com-

munication among Hadoop VMs, and NUMA architecture-

aware VM mapping on the effectiveness of PerfCloud.

V. RELATED WORK

Performance isolation of co-hosted applications has become

increasingly important as data centers tend to consolidate

more and more workloads on fewer machines for improving

server utilization, and reducing data center costs [10], [29],

[30], [31], [32], [33], [13], [34], [35]. Delimitrou et al. [10],

[29] developed a collaborative filtering technique to classify

an unknown, incoming workload with respect to how much

interference it will cause to co-scheduled applications and

how much interference it can tolerate. Lo et al. [33] applied

online monitoring and offline profiling information for latency-

critical jobs to identify shared resource saturation, and pro-

vided performance isolation through a hybrid of hardware and

software mechanisms. Chang et al. [2] proposed a statistical

machine learning based I/O interference prediction model, and

an interference-aware scheduler for data-intensive applications

in virtualized environments. However, these techniques suf-

fer from the overheads associated with data collection from

previously scheduled applications, offline model training and

profiling of incoming workloads. Furthermore, they rely on

the assumption that interference-free workload placement is

always possible. However, it is increasingly difficult to find

interference-free placement for all the VMs belonging to scale-

out applications, as the degree of parallelism grows.

There are application level approaches [3], [6], [36], [20],

[18], [5] that aim to achieve performance isolation of data-

parallel applications through straggler mitigation. Zaharia

et al. [5] proposed a scheduling algorithm that prioritizes

stragglers based on their expected time to finish, relaunches

multiple copies of them, and picks the earliest copy that

finishes. Ananthanarayanan et al. [36] proposed an algorithm

that carefully uses speculation to mitigate the impact of strag-

glers in approximation jobs in data analytics. Ren et al. [20]

presented a speculation-aware job scheduler that integrates

the tradeoffs associated with speculation into job scheduling

decisions. However, existing wait-and-speculate mechanisms

are inefficient due to lack of timely straggler detection.

In work [6], the authors avoided waiting and speculation

altogether by proposing full cloning of small jobs for strag-

gler mitigation. However, such approach still incurs extra

resources. Yadwadkar et al. [18] proposed a system that

predicts stragglers using a statistical modeling technique based

on cluster resource usage and uses these predictions to inform

scheduling decisions. However, such approach suffers from

large overheads involved with capturing training data per node

in a cluster, and training straggler prediction models across

workloads. Unlike exiting approaches, PerfCloud is signifi-

cantly more agile, does not incur extra resource, and avoids

the overheads of data collection and performance modeling.

Mace et al. [16] presented Retro, a resource management

framework that monitors per-tenant resource usage within a

shared distributed system, and exposes this information to

a centralized resource management policy for performance

isolation. Chen et al. [14] optimized MapReduce performance

by dynamically provisioning map tasks to match the distinct

machine capacity in a heterogeneous cluster. However, unlike

PerfCloud, these approaches requires intrusive instrumenta-

tion, and modification of existing data processing frameworks.

VI. CONCLUSIONS

Performance isolation of data-intensive scale-out applica-

tions in a multi-tenant cloud has been a challenging problem.

Application-level approaches of straggler mitigation alone are

ineffective due to the lack of timely straggler detection and in-

efficient due to the use of extra resources for task duplication.

In this paper, we designed and implemented PerfCloud, a novel



system software that utilizes system-level performance metrics

for early detection of performance interference in a multi-

tenant cloud, and provides non-invasive performance isolation

through fine-grained resource control. PerfCloud does not

require time-consuming workload profiling, or intrusive modi-

fication of the application framework and the operating system.

Experimental evaluation shows that PerfCloud outperforms

the state-of-the-art techniques, LATE and Dolly, in achieving

performance isolation and resource utilization efficiency of

representative MapReduce and Spark benchmarks.
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