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Abstract—In a data center, various components of Web ap-
plications co-located on virtualized servers exhibit complex time-
varying interactions and interference. It has a significant impact
on the user perceived performance and power consumption of
the underlying system. We propose and develop APPLEware, an
autonomic middleware for joint performance and power control
of co-located Web applications. It features a distributed control
structure that provides performance assurance and energy ef-
ficiency for large complex systems. It applies machine learning
based self-adaptive modeling to capture the complex and time-
varying relationship between the application performance and
allocation of resources to various application components, in the
presence of highly dynamic and bursty workloads and inter-
application performance interference. The distributed controllers
perform coordinated resource allocation to meet the service level
agreements of applications in an agile and energy-efficient man-
ner. Experimental results based on a testbed implementation with
benchmark applications demonstrate APPLEware’s effectiveness
and energy efficiency.

Keywords: Joint Performance and Power Control, Autonomic
Systems, Virtualized Servers, Distributed Fuzzy MIMO Control

I. INTRODUCTION

A modern data center utilizes virtualization technology to
consolidate multiple customer applications onto high density
servers for improving server utilization and reducing energy
consumption costs [2], [11], [24]. It also aims to satisfy the
Quality of Service (QoS) needs of hosted applications for
increasing data center revenue. There are growing interests
in reducing the degree of human involvement in the manage-
ment of these complex computing systems through autonomic
computing [8]. However, the increasing scale, heterogeneity
and complexity of the hosted applications and the contention
of shared virtualized infrastructure pose significant and multi-
faceted challenges in achieving the important goals of auto-
nomic performance and power management.

Today, popular Internet services have multi-tier architecture
in which various components invoke each other to process
web requests. Due to the complex inter-tier performance
dependencies and heterogeneity of application workloads, it is
difficult to determine how many and what type of computing
resources should be allocated to each application component to
achieve the performance assurance. Furthermore, the number
as well as complexity of the applications being managed,
have a significant impact on the agility and scalability of a
performance and power management system.
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Fig. 1. APPLEware: Autonomic Performance and Power Control.

There are important and challenging issues related to per-
formance management in virtualized computing environments.
A fundamental problem is that when different applications are
co-located on a shared server in the form of virtual machines
(VMs), they exhibit performance interference effects [21].
Such interference arises due to the contention of resources
such as the last level cache, memory bandwidth, etc, which
are shared by co-located VMs [1], [25], [35].

Recent studies observed highly dynamic and bursty work-
loads of Internet services that fluctuate over multiple time
scales [20], [26]. They have significant impact on the pro-
cessing and power demands imposed on data center servers.
Hence, joint performance and power management of modern
virtualized computing environments needs to be autonomic:
self-configuring and self-optimizing. It needs to configure itself
adaptively in the face of dynamic workloads to meet the
performance objectives of the hosted applications. At the same
time, it should optimize the allocation of resources to improve
the performance and energy efficiency of the virtualized server
system in the presence of complex interactions between co-
located Web applications.

In this paper, we propose and develop APPLEware, an
autonomic middleware for joint performance and power con-
trol of co-located Web applications in virtualized computing
environments. It dynamically allocates virtualized resources to
various components of the hosted applications to meet their
performance objectives in an agile and energy efficient man-
ner. We use the terms power consumption and energy usage
interchangeably since energy usage is measured over the same
time period for all applications. Figure 1 shows APPLEware
managing four multi-tier applications (Appl, App2, App3, and
App4) co-located on virtualized servers.



APPLEware’s core is a distributed model predictive control
framework that scales well in large virtualized server systems.
It applies machine learning based self-adaptive modeling of
application behavior based on the performance and power
measurements collected by sensors. The distributed controllers
exchange information and co-operate with each other to tackle
the important problem of performance interference between
co-located applications. Virtualized resources are allocated to
an application through the actuator.

We design and implement APPLEware as a lightweight
middleware solution, which is pluggable on existing virtualized
computing environments. APPLEware is easily deployable
as a virtual appliance on VMware infrastructure. The main
contributions of APPLEware are as follows:

e It provides performance guarantee of co-located Web
applications on virtualized servers.

o It is energy efficient. It reduces the energy consumption
of virtualized servers while achieving the performance
objectives.

o It is self-configuring. It adapts the system models to
tackle time-varying system behavior in the face of highly
dynamic and bursty workloads.

e It is self-optimizing. It optimizes the allocation of CPU
and memory resources to improve the performance and
energy efficiency of the virtualized server system.

e It is scalable to large systems. Its distributed Model
Predictive Control framework decomposes the global
performance and power management problem into local
subproblems, which are handled through localized coor-
dination among multiple controllers.

We evaluate APPLEware on a testbed of Dell PowerEdge
servers using VMware virtual machines that host multi-tier
Internet applications. As many others in [13], [15], [27],
we use RUBIS as the benchmark application in conducting
the experiments. RUBIS is commonly used as a multi-tier
benchmark application. Experimental results demonstrate the
effectiveness, and energy efficiency of APPLEware in the face
of highly dynamic and bursty workloads. For performance
comparison, we consider PERFUME [13], an example of
the traditional performance and power management approach,
which ignores the impact of performance interference between
co-located applications. APPLEware achieves the improve-
ment of 49% on average in terms of the relative deviation
of application performance from its target while reducing the
energy usage by 20%, compared to PERFUME [13].

Compared to a centralized control approach that considers
the effects of performance interference, APPLEware improves
the relative performance deviation and energy efficiency by
37% and 12% respectively. It is due to its control agility, the
ability to meet application performance targets and achieve the
energy-efficient system state within a short period of time.

In the following, Section II discusses related work. Sec-
tions III and IV present APPLEware architecture and design.
Section V presents the testbed implementation. Section VI
provides the experimental results and analysis. Section VII
concludes the paper with future work remarks.

II. RELATED WORK
Autonomic resource management for performance assur-
ance of Internet applications is an important and active research
topic. There are important studies in dynamic resource provi-
sioning for delay guarantee in multi-tier Internet services [12],

[14], [17], [23], [27], [31]. Urgaonkar et al. [27] proposed
a dynamic server provisioning approach based on queueing
models, which requires extensive application profiling for each
workload. An approach proposed in [31] models the probabil-
ity distributions of response time based on CPU allocations
on virtual machines. However, the performance model is not
adaptive online to dynamically changing workloads.

The multi-tier architecture forms server pipelines. Apply-
ing power management techniques such as Dynamic Volt-
age Scaling (DVS) independently to a particular tier will
lead to inefficient usage of power for assuring an end-to-
end delay guarantee due to the inter-tier dependency [7],
[29]. Furthermore, traditional power management techniques
are not easily applicable to virtualized environments where
physical processors are shared by multiple virtual machines.
For instance, changing the power state of a processor by DVS
will inadvertently affect the performance of multiple virtual
machines belonging to different applications [22], [30].

Recent studies have focused on jointly tacking the power
and performance management of virtualized multi-tier servers
for Cloud computing environments [3], [5], [10], [13], [16],
[18], [19], [28], [33]. Lim et al. [18] proposed a combination of
hardware-based and software-based power control techniques
to coordinate the power distribution among a large number
of VMs within given peak power capacity. Verma et al. [28]
combined automatic VM resizing and live migration tech-
niques to ensure that data centers can deal both with temporary
outages that reduce the available power budget or with surges
in workload.

The performance impact of shared resource contention in
multi-core servers has been explored [6], [21], [34]. There
are hardware and software resource partitioning based tech-
niques for performance isolation of applications running on
a multi-core server. Lama and Zhou proposed a non-invasive
performance isolation technique for virtualized servers in [15].
Such a centralized technique is not scalable to large systems
that host many complex multi-tier applications. It also has a
dependability concern since a centralized controller acts as a
single point of failure.

In this paper, we present a holistic middleware solution for
all of the multi-faceted challenges discussed above.

III. APPLEWARE ARCHITECTURE AND DESIGN
A. Design Goals and Motivations
APPLEware’s key design issues are:

1) Autonomic performance control: A self-managing middle-
ware for a complex virtualized server system requires an
automated method to monitor its operating environment;
to analyze and model the complex system behavior; to
plan a sequence of actions that achieve performance goals;
and to execute those actions. It is challenging to achieve
performance assurance in the face of highly dynamic and
bursty workloads, complex interactions between applica-
tion components, and performance interference between
co-located applications.

2) Energy efficiency: A common technique to reducing
server energy consumption is to dynamically transition
the hardware components from high power states to low-
power states. However, changing the power state of a
processor will affect the performance of multiple VMs
running different applications in a virtualized computing
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Fig. 2. APPLEware System Architecture.

environment. APPLEware achieves energy efficiency by
controlling the virtualized resource usage of each VM,
based on an accurate energy model.

3) Scalability: The computational complexity of an auto-
nomic middleware increases significantly with the number
as well as the complexity of the applications being
managed. There are significant performance overheads
in controlling a large system with many VMs spanning
multiple server nodes. It is important but challenging to
design a scalable middleware for autonomic performance
and power management of large systems.

B. The Architecture

Figure 2 presents the APPLEware architecture. The com-
puter system under control is a group of virtualized server
nodes hosting multiple customer applications. We assume that
each tier of a multi-tier application is deployed at a VM.
Furthermore, VMs belonging to an application may span server
nodes. An operator can specify the performance target and the
priority of each application managed by APPLEware.

APPLEware employs a distributed control framework that
decomposes the global performance and power management
problem of the entire system into local sub-problems for
scalability. Each controller executes a control loop on a sub-
system, which comprises of the VMs belonging to one appli-
cation. The control actions are the required adjustments in the
allocation of virtualized resources to meet the performance
target of an application. We observe that some sub-systems
are inherently coupled with each other mainly due to shared
resource contentions and performance interference in a virtual-
ized computing environment. APPLEware addresses this chal-
lenge through co-ordination among neighboring controllers for
effective performance assurance and energy efficiency.

An important feature of APPLEware is that increasing
the number of applications hosted in the system has little
impact on its scalability, because each local controller in its
distributed control framework is responsible for controlling one
application and coordinating with its neighbor controllers only.

APPLEware controls the power consumption by applying
CPU usage limits on VMs hosted on a cluster of blade servers.
It constrains the utilization of underlying physical processors
thereby regulates power consumption. It is feasible due the idle
power management of modern processors, which incorporate
sleep states (C-states) to achieve substantive power savings
when a processor is idle.

As an example, Figure 2 shows four distributed controllers.
Each controller is responsible for the performance and energy
efficiency of one application. Note that applications, appl and
app2, span three server nodes and share the underlying physical
resources. The controllers, C1 and C2, regulate the resource
allocation of VMs belonging to appl and app2 respectively. At

the same time, they co-ordinate with each other by exchanging
information about their control decisions. Such co-ordination
is important for the application performance assurance as well
as system stability. This is due to the fact that a control action
taken by C1 or C2 affects the performance of both appl and
app2. Similarly the controllers, C2 and C4, co-ordinate with
each other to control app3 and app4.

Each autonomic controller performs the MAPE-K [8] con-
trol loop as follows:

1) Monitor(M): The performance and power monitors peri-
odically measure the average end-to-end response time of
the managed application and the average energy usage of
the underlying multi-core server respectively. Our design
does not use any semantic information regarding the
performance metric. It treats the performance values as
raw data for modeling and control. Hence, APPLEware
is applicable to any performance metric.

2) Analyze(A): It constructs fuzzy models to analyze the
complex system behavior in terms of the non-linear
relationship between resource allocation and application’s
end-to-end response time as well as energy usage. It
also captures the coupling effects between neighboring
applications that share the underlying physical resources.

3) Plan(P): It plans a sequence of control actions that
regulate the allocation of virtualized resources for achiev-
ing the performance target and energy efficiency of the
managed application. The control decisions are guided by
Distributed Model Predictive Control theory. It involves
optimizing a cost function that expresses the local control
objectives and resource constraints over a time interval.
The current state of the local sub-system and the control
decisions made by neighboring controllers are taken into
account to perform the optimization. This iterative process
of optimization and communication with neighboring
controllers is designed to converge to local control actions
that lead to overall optimal performance.

4) Execute(E): The optimization performed in the planning
phase leads to a control action that brings the system
closer to its performance target. The actuator executes
the control actions in the form of adjustment in CPU and
memory resources assigned to the application VMs.

IV. APPLEWARE DESIGN

A. Global System Model

First, we consider a global system model that represents
the performance and power consumption behavior of multi-
tier applications spanning across a group of virtualized server
nodes. The inputs to the system are the resource allocation
in terms of CPU and memory usage limits at various tiers
of the hosted applications. The outputs of the system are
the measured performance and average energy usage of each
application. We obtain two separate models for power and
performance of the system, respectively. The global system
model is represented as follows:

Y(k+1)=F-Gk) +H-Uk) (1)

where U(k) is a vector of current resource allocations at
sampling interval k. H is a matrix that represents the impact of
current resource allocations on the system outputs, Y(k + 1),
at the next sampling interval. It also captures the coupling
among applications due to performance interference in a



shared virtualized environment. G(k) is a regression vector that
contains the performance and power consumption values of
each application in the current and previous sampling intervals.
F is a regression matrix that represents the impact of regression
vector on the system outputs.

Consider n applications in the system. The components
of the global system model are described by the following
equations:

Y(k) = [yl (k)a yQ(k)’ ) yn(k)]T 2

Uk) = [ul(k)v oy Uey (k)7 u01+1(k)ﬂ )
Ucy+co (k), Ucy+co+1 (k)7 <y Ucitcot..+cp (k)]T 3

ma1 M2 - McC
a1 72,2 - 1N2,C
1 Tn,2 n,C

Gk) = [y1(k), .., y1(k —my),y2(k), ..,
yQ(k - my)7yn(k)7yn(k - my)]T (4)

Ci1 G2 C1nxm,
G211 (2,2 C2,nxmy
Cn,l Cn,Q Cn,nxmy

In Eq. (2), each output term y; (k) represents the average
end-to-end response time of application ¢ at sampling interval
k. The output term for power modeling is the average energy
usage of an application. In Eq. (3), each input term u;(k)
represents the allocation of CPU and memory usage limits on
a particular VM component j in the virtualized server system.
A VM component provides the functionality of a particular tier
of a multi-tier application. The total number of components in
an application ¢ is denoted by c¢;. The total number of VM
components in the entire system is denoted by C' = Ez;l Ci.

In the matrix H, the term 7; ; represents the impact of
resource allocation on the application performance or power
consumption. 7; ; has a non-zero value if the resource alloca-
tion input u;(k) has an impact on application . In Eq. (4),
m,, specifies the order of regression, which is the number of
previous samples of output variable y; that will be used in
the system model. In the regression matrix F, the term (; ;
represents the impact of the system outputs measured at the
Jen, previous sampling interval on the performance and power
consumption of application %.

B. Problem Decomposition

Autonomic performance and power management of an
entire virtualized server system containing many complex
applications involves a large scale optimization and control
process. The computational complexity of the problem grows
significantly with the number of applications being managed.
To address this scalability issue, APPLEware decomposes the
global performance and power control problem into a set of
localized subproblems.

From a local controller’s perspective, the goal of de-
composition is to partition the set of system variables into

three subsets, including local variables associated with the
managed application, neighbor variables associated with other
applications that have an impact on the performance and
power consumption of the managed application, and all other
variables in the system. The subproblem only includes its local
and neighbor variables. The decomposition scheme reduces
the number of variables involved in the control problem to
improve system scalability. At the same time, it also captures
the coupling among applications so that local controllers can
achieve global system stability through coordination in their
neighborhood.

The local variables in a control subproblem include a
managed application’s performance, power consumption and
the amount of virtualized resources allocated. The neighbor
variables include the amount of resources allocated to the VM
components of other applications that have a coupling effect
on the local application due to shared resource contentions
and performance interference. Note that a local controller does
not control the neighbor variables. Instead, these variables
influence the control decisions on the local subsystem.

The local model obtained by decomposing the global
system model is described as:

yi(k +1) = G& (k) + niug(k) )

Here, the output variable y;(k) represents the performance or
power consumption of application 4. &;(k) and (; are subsets
of regression vector G(k) and regression parameter matrix F
respectively. They represent the current and previous outputs
of application ¢ and their impact on the application output
in the next control interval. u;(k) is a subset of vector U(k)
that represents the allocation of CPU and memory resources
on the VM components belonging to application ¢ and the
neighbor applications. 7); is a subset of matrix H that reflects
the impact of resource allocation on the application output.
As an example, a local controller C'; in Figure 2 uses a local
system model with the following parameters.

uy (k) = [Ul(k‘)yw(k‘)yu3(k‘)au4(/€)aUs(/f),uﬁ(/f%?l?(/f)]?@
n(k) = [1m1,1, 11,2, 11,3 1,45 M1,55 M1,65 M1,7) (7

From the controller C1’s perspective, [u1(k), ua(k), us(k)] are
a set of local variables, which represent three VMs of Appl.
[ug(k), us(k), ug(k), ur (k)] are the neighbor variables, which
represent four VMs of App2 as shown in Figure 1. The
local system model predicts the performance of Appl in the
presence of performance interference from App2.

C. Fuzzy Modeling To Capture System Non-linearity

The prediction accuracy of the system model has a signifi-
cant impact on the control performance. A linear model is often
inadequate to accurately represent the complex behavior of
inherently non-linear systems such as a multi-tier application
hosted in a virtualized computing environment. APPLEware
addresses this issue by constructing Fuzzy models that cap-
ture the performance and power consumption behavior of a
local subsystem. The models include the local and neighbor
variables of a subsystem according to APPLEware’s problem
decomposition approach. A key strength of fuzzy model is its
ability to represent highly complex and nonlinear systems by a
combination of inter-linked subsystems with simple functional
dependencies.



1) Model Formulation: A local sub-system is represented
by a fuzzy model as follows:

yilk +1) = R(&i(k),ui(k)). (®)

Similar to Eq. (5), y;(k) is the output variable. u;(k) consists
of the local and neighbor input variables. The regression vector
&;(k) includes current and previous outputs of application i.

&i(k) = [ys(k), ... yi(k — my)]" ©9)

where m,, specifies the order of regression.

R is a rule based fuzzy model consisting of K fuzzy rules.
Each fuzzy rule is described as follows:

Ry: If §i1(k) is Qpq and .. &o(k) is Q. and uq (k) is
Qy o41 and .. up (k) is Qp g then

yi(k +1) = G:&(k) +neui (k) + ¢ (10

Here, €2, is the antecedent fuzzy set of the 7, rule which
describes elements of regression vector &;(k) and the current
input vector u; (k) using fuzzy values such as ‘large’, ‘small’,
etc. ¢, and n, are vectors containing the consequent parameters
and ¢, is the offset vector. o denotes the number of elements in
the regression vector &; (k). The model output is calculated as
the weighted average of the linear consequents in the individual
rules. That is,

K
Er:l Br(grfz(k) + nrui(k) + ¢r)
K
ZTZI /6 s
where the degree of fulfillment for the ry, rule (5, is the
product of the membership degrees of the antecedent variables
in that rule. Membership degrees are determined by fuzzy

membership functions associated with the antecedent variables.
The model output is expressed in the form of

yilk +1) = (&i(k) + nyui(k) + o7 (12)

*

yi(k+1) = (1)

The aggregated parameters ¢, 0’ and ¢; are the weighted

sum of vectors (., - and ¢, respectively.

Cz* _ Zf:ll(ﬂ76r
> Br
= Zf%l(ﬂr-m.
2rm1 Br
g = LB b
' >y Br

2) Machine Learning Based Model Construction and Adap-
tation: APPLEware constructs initial fuzzy models by ap-
plying a subtractive clustering technique on performance and
energy usage data collected from the system. Each obtained
cluster represents a certain operating region of the system,
where input-output data values are highly concentrated. The
clustering process partitions the input-output space and deter-
mines the number of fuzzy rules and the shape of membership
functions. APPLEware applies an adaptive network based
fuzzy inference system (ANFIS) [9] to further tune the fuzzy
model parameters. It constructs an artificial neural network
to represent a fuzzy model and tunes its parameters using
a combination of back-propagation algorithm with a least
squares method. This adjustment allows the fuzzy system to
learn from the data it is modeling.

Dynamic and bursty Internet workloads have significantly
varying resource demands at multiple tiers of hosted applica-
tions. A static system model can not provide sufficient predic-
tion accuracy of power and performance for all possible varia-
tions in the workload. APPLEware applies a wRLS (weighted
Recursive Least Squares) method [13] to adapt the consequent
parameters of its fuzzy models as new measurements are
sampled from the system at runtime. It applies exponentially
decaying weights on the sampled data so that higher weights
are assigned to more recent observations.

D. Controller Design

Each local controller applies the distributed model pre-
dictive control principle to regulate a sub-system’s dynamic
behavior towards the performance targets while minimizing
the energy usage.

1) Control Formulation: A local control objective of con-
troller C; is given by the following cost function:

H H

Vi(k) = Z lri —yir (k +p)||p + Z lyia (K + p)II5)
p=1 p=1
H.—1
+ > [JAu(k+ o) (13)
c=0

Here, y;1(k) is the average end-to-end response time and
yi2(k) is the average power consumption of application 4
at control interval k. The controller predicts both power
and performance over H, control periods, called the pre-
diction horizon. It computes a sequence of control actions
Au;(k), Au;(k + 1),..,Au;(k + H. — 1) over H. control
periods, called the control horizon, to keep the predicted per-
formance close to its pre-defined targets ; while minimizing
the energy usage. The control action u;(k) is the change in
CPU and memory usage limits imposed on various tiers of the
multi-tier applications. P and () are the tracking error weights
that determine the trade-off between power and performance.
The third term in Eq. (13) represents the control penalty and
is weighted by R. This term penalizes big changes in control
action and contributes towards high system stability.

The control problem is subject to the constraint that the sum
of CPU and memory resources allocated to all VM components
in the same physical server node must be bounded by the total
CPU and memory capacity of the server.

For our experiments presented in Section VI, the value of
H,, was tuned to 20, which was sufficiently large for stable
control. The value of H,. was tuned to 5, which was able to
provide good control performance. Due to space limitation, we
did not include the sensitivity analysis.

2) Distributed Control Algorithm: APPLEware’s dis-
tributed control algorithm is shown in Algorithm 1.

3) Speeding Up Local Control: Although the decomposi-
tion of global system model into local subproblems reduces
the computational complexity to a large extent, solving each
local control problem still involves a non-convex and time-
consuming optimization as formulated in Eq. (13). APPLE-
ware addresses this issue by transforming each local control
problem into a standard quadratic programming problem. For
this transformation, it linearizes the fuzzy model at the current
operating point and represent it as a state-space linear time



Algorithm 1 Distributed Control Algorithm.

1: loop

2: A local controller C; measures the current state of the
sub-system in terms of local and neighbor variables.

3: It compares the measured values of performance and
power consumption of application 7 with the predictions
made by its Fuzzy models.

4: if A significant error in the prediction of performance
and power consumption is detected then

5: It updates the Fuzzy models using its online learning
algorithm.

6: end if

7:  repeat

8: C; executes Model Predictive Control algorithm to
solve local subproblem.

9: C; sends its control solutions to neighboring con-

trollers. In addition, it receives the control solutions
computed by its neighbors.
10:  until The control solutions converge to a steady value.
11: It executes the control actions in the form of adjustment
in CPU and memory resources assigned to the applica-
tion 7.
12: end loop

variant model in the following form:

zi(k+1) = Ak)zi(k)+ B(k)u;(k).
yi(k) = C(k)zi(k). (14)
The state vector for the state-space description is defined as
zi(k+1) = [¢ (k), 17 (15)

The matrices A(k),B(k) and C(k) are constructed by freezing
the parameters of the fuzzy model at a certain operating point
y; (k) and u;(k) as follows. First, we calculate the degree of
fulfillment (3, for the current inputs (i.e CPU and memory
usage limits) chosen for the application and compute the
aggregated parameters (*, n* and ¢*. Comparing Eq. (12) and
Eq. (14), the state matrices are computed as follows:

1 G o 91
A—| 1 0 0 0
0 1 0 0

M1 77?,2 Uf,m

g_| 0 .. 0
C=[1 0 . . . . 0]

where (7; and 7;; are the jt" element of aggregate parameter
vectors (* and n* respectively for application .

The MIMO control problem defined by Eq. (13) is trans-
formed to a quadratic program:

Minimize %Au(k)THAu(k) + ¢ Au(k) (16)

subject to constraint QAu(k) < w.
The matrices 2 and w are chosen to formulate the con-
straints on CPU and memory resource usage. Here, Au(k)
is a matrix containing the CPU and memory usage limits on

each virtual machine over the entire control horizon H.. In the
minimization formulation,

H = 2(R}, PRy, + R}, QRs, + R).
¢ = 2[R}, PT (R, Ax(k) —r) + R:, Q" Ry, Ax(K))". (17)

The matrices R;,, Ri, are associated with the performance
models of hosted applications and matrices Ro,, Ra, are
associated with the power model of the resource pool.

C
CA
Riu = .
CAI:Ip—l
CB 0 o 0

CAB CB . 0
Rix= . . .
CAH»—1p CcAH—1B CAH»—Hep

4) Computational Complexity Analysis: The computation
overhead of APPLEware is dominated by the quadratic pro-
gramming problem. We choose a widely used algorithm, the
interior point method, to solve this problem. The algorithm has
a computational complexity of O(/N) Newton iterations [32].
Here N is the number of decision variables that need to be
computed to solve the given problem. Since each Newton
iteration requires O(IN3) algebraic operations, the worst-case
computation complexity of the quadratic program solver is
cubic in the number of decision variables. APPLEware is able
to significantly reduce the computation overhead by decom-
posing the global control problem into local sub-problems. For
APPLEware, the value of NV depends on the number of local
and neighbor input variables only.

V. SYSTEM IMPLEMENTATION
A. Testbed

We built a testbed in a university prototype data center,
which consists of Dell PowerEdge R610 servers. Each server
has 2 Intel hexa-core Xeon X5650 CPUs and 32 GB memory.
The servers are connected with 10 Gbps Ethernet. The testbed
hosts multi-tier Web applications as shown in Figure 1. Each
tier of an application is implemented on a VMware virtual
machine with 1 VCPU, 1 GB RAM and 15 GB hard disk
space. All VMs use Ubuntu server 10.04 with Linux kernel
2.6.35. Each controller runs on a VM having 300 Mhz CPU
usage limit and 128 Mb memory usage limit. We focus on
using lightweight controllers that do not interfere with the
performance of the hosted applications and that leave a small
footprint on the energy usage of system.

For performance evaluation, we deploy the RUBIS bench-
mark as shown in Figure 1. RUBIS is an open source multi-
tier Internet benchmark application. It provides a web auction
application that is modeled in a similar way of ebay.com.
It characterizes the workload into three categories, seller,
visitor, and buyer. They have different combinations of selling,
browsing, and bidding requests. A multi-tier deployment of
RUBIS has a simple pipelined architecture consisting of web,
application and database servers. In our implementation, a tier
at the front end of the hosted application runs the Apache web
server. The application tier runs PHP servers, and the database
tier runs a MySQL server.
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B. APPLEware Components

We implemented the components of APPLEware as soft-
ware modules that interact with each other as shown in Fig-
ure 2. In this paper, APPLEware is deployed as a lightweight
virtual appliance, which is distributed over separate machines
on VMware infrastructure.

1) Power Monitor: The average energy usage of the vir-
tualized server is measured at the VM level by using
VMware ESX 4.1. VMware gathers such data through
its Intelligent Power Management Interface sensors. The
power monitor module uses vSphere API to collect the
energy usage data of a multi-tier application at each
control interval. Energy usage is measured in terms of
Kilo Joules (KJ).

2) Performance Monitor: APPLEware collects the applica-
tion response time values from the Web-tier access logs,
which are commonly available in typical e-commerce
applications. We inject an XML-RPC daemon program
that runs at the web tier to measure the average end-to-
end response time of requests. APPLEware’s performance
monitor module consists of an XML-RPC client that
communicates with RUBIS application to periodically
collect the performance statistics at each control interval.

3) Performance and Power modeling: We use MATLAB’s
Fuzzy Logic Toolbox to apply subtractive clustering and
ANFIS modeling technique on the data collected from the
server system. At runtime, the performance and power
models are updated according to new measurements col-
lected from the system using the wRLS algorithm.

4) Distributed Controller: Each controller module invokes a
quadratic programming solver, quadprog, in MATLAB to
compute the local control solution. We used MATLAB
Builder JA to create a Java class from the MATLAB
program invoking quadprog. This Java class is integrated
into APPLEware source code and deployed to each local
controller node. The distributed controllers communicate
with each other in a peer-to-peer manner using XML-RPC
protocol.

5) Actuator: It uses vSphere API to impose CPU and mem-
ory usage limits on the VMs. The vSphere module pro-
vides an interface to execute a method ReconfigVM_Task
to modify a VM’s resource usage limit.

The performance overhead of APPLEware’s distributed
controllers is mainly affected by three factors: (1) time taken
to collect performance statistics from the applications, (2) time
required to compute a control decision, (3) actuation time.
Figure 3 shows the average time taken for each of these factors
on our testbed hosting four applications. Note that control
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Fig. 4. APPLEware’s performance prediction (APP1) in the presence
of interference effects.
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overheads play an important role in determining the control
interval. Throughout the paper, we set the control interval of
APPLEware’s distributed controllers to be 10 seconds, which
is sufficiently large to overcome the control overheads and also
avoid measurement noise.

VI. PERFORMANCE EVALUATION
A. Model validation

The accuracy of the system model has a significant impact
on effective control of power and performance. We first vali-
date APPLEware’s system models using multi-tier applications
Appl and App2. Note that various tiers of App2 are co-located
with VMs belonging to Appl. The initial models are obtained
by using a training data set that consists of the average end-to-
end response time and energy usage measurements of the two
applications subject to randomly varying CPU and memory
usage limits. Each application faces a workload of a browsing
mix of 600 concurrent users. For model validation, we use a
different set of resource allocations that is not used for training
the system models.

In this experiment, we demonstrate APPLEware’s perfor-
mance prediction accuracy in the presence of interference
between co-located applications. Figure 4 shows the variations
in the average end-to-end response time of Appl due to the
interference caused by various resource allocations on App2.
Note the resources allocated to Appl remains fixed. APPLE-
ware is able to accurately predict application performance with
a small normalized root mean square error (NRMSE) of 9%.
NRMSE is a standard metric for deviation.

Figure 5 compares APPLEware’s performance and energy
usage prediction accuracy with the PERFUME [13] and a
representative modeling approach ARMA [4]. In contrast to
APPLEware, the modeling approach used in PERFUME does
not capture the performance interference effects between ap-
plications co-located on virtualized servers. On the other hand,
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the ARMA modeling approach performs a linear approxima-
tion of the inherently non-linear system.

APPLEware’s superior prediction accuracy is due to its
fuzzy modeling that captures the non-linear relationship of per-
formance and energy with multiple virtualized resources. Fur-
thermore, it considers the impact of performance interference
among co-located VMs. For instance, the prediction model for
Appl includes the resources allocated to co-located VMs as
predictor variables, in addition to the resources allocated to its
own VMs. We observe that our fuzzy models use 9 fuzzy rules
to represent the performance of a multi-tier application with
sufficient prediction accuracy.

B. Autonomic Performance Control and Energy Efficiency

1) Control Agility: We evaluate the effectiveness and
agility of APPLEware in assuring the performance and reduc-
ing the energy usage of co-located multi-tier applications. As
a performance metric, we use the average end-to-end response
time, which represents the user perceived performance of
interactive Internet applications. The SLA target for all the
applications is set to 1200 ms. We apply a stationary workload
of 600 concurrent users to each application. Figure 6(b) shows
that APPLEware is able to bring the average end-to-end
response time of each application close to their respective SLA
targets within 60 seconds. It is due to the agile and effective
adjustments in the CPU and memory resources of the multi-
tier applications by APPLEware’s distributed controllers. On
the other hand, Figure 6(a) shows that a centralized controller
takes around 100 seconds to meet the performance target.

For any system, a centralized controller at the fastest
sampling rate gives the best achievable performance. However,
implementing centralized controller at the fastest sampling
rate may not be feasible, due to operational constraints such
as the overheads involved in measuring the current system
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(b) Energy usage.

Performance and energy efficiency improvement due to APPLEware’s distributed control.

states and computing the control decisions. In such cases, a
distributed control approach presents an opportunity to obtain
superior control performance. In this experiment, we found
the worst-case control overhead of the centralized controller
to be seven seconds. As a result, its control interval needs
to be much larger than APPLEware’s control interval of 10
seconds. Hence, APPLEware provides better control agility
than a centralized controller. Furthermore, the control solutions
of APPLEware’s distributed controllers are able to converge
close to the optimal solutions obtained by the centralized
controller. Note that the convergence takes place within each
control interval.

To quantify the performance of APPLEware, we use the
relative deviation from a target as the metric. The relative
deviation for performance is |y(k) — r|/r, where y(k) is the
average end-to-end response time of an application at time
interval k and r is the SLA target for that application. Fig-
ures 7(a) and 7(b) show that APPLEware is able to improve the
relative performance deviation as well as the energy efficiency
of each application, compared to the centralized controller.
On average, the improvement in the relative deviation by
APPLEware is 37%. It is also 12% more energy efficient
than the centralized controller. The improvement in energy
efficiency is due to the fact that APPLEware drives the system
towards optimal operating conditions more quickly than the
centralized controller does.

2) Robustness under dynamic and bursty workloads: Next,
we evaluate the robustness of APPLEware under dynamic and
bursty workloads. As a case study, we apply a step-change
workload as shown in Figure 8(a) to Appl and App3. On
the other hand, we apply a bursty workload to App2 and
App4. We inject burstiness into the arrival process of RUBIiS
clients according to the index of dispersion. The dispersion
index modulates the think times of users between submission
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of consecutive requests. We set the index of dispersion to
4000 and the maximum number of concurrent users to 1000.
Figure 8(b) shows a bursty workload.

Figures 9(a) and 9(b) compare the performance assurance
capability of APPLEware with that of PERFUME in the face
of the dynamic and bursty workloads. In Figure 9(a), both
PERFUME and APPLEware show some fluctuations in the
average response times at the control intervals 17 to 21 and 34
to 38. It is due to the abrupt changes in the workload starting
at control interval 17 and 34. However, APPLEware is able to
able to adapt itself more effectively so that the average end-
to-end response time of App 1 converges to the SLA target
of 1000 ms within few control intervals. The fluctuations in
the average response time of App2 is more significant mainly
due to burstiness in the workload, which is more difficult to
handle. However, compared to PERFUME, APPLEware is able
to keep the response time closer to the SLA target. The robust-
ness of APPLEware under dynamic and bursty workloads is
attributed to its fast online learning algorithm, which updates
the performance model by observing dynamic system behavior.
Importantly, self-configuration of APPLEware is effective due
to its awareness of the performance interference effects.

Figures 10(a) and 10(b) show the average relative devia-
tions and the energy usage of various multi-tier applications
under the dynamic and bursty workloads. Compared with
PERFUME, there is the improvement of 49% on average
in terms of relative deviation by APPLEware. At the same
time, APPLEware improves the energy efficiency by 20%.
We observe that both relative deviation and energy usage of
App2 and App4 are larger than that of Appl and App3. It is
due to the fact that these applications face a bursty workload,
which demonstrate abrupt workload variations. However, AP-
PLEware still shows significant improvement in performance
and energy efficiency compared with PERFUME.
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VII. CONCLUSION

The user perceived performance of Internet applications
and the power consumption of hardware resources is the
result of a complex interaction of various workloads in a
very complex underlying system. The increasing scale and
complexity of virtualized server systems hosting co-located
multi-tier applications pose significant challenges to autonomic
performance and power management. APPLEware is an auto-
nomic middleware for joint performance and power control in
virtualized computing environments. It is easily deployable as
a lightweight virtual appliance on VMware infrastructure. As
demonstrated by modeling, analysis and experimental results
based on testbed implementation, its main contributions are
robust performance assurance and energy efficiency in the
presence of VM performance interference as well as highly
dynamic and bursty workloads.

The proposed and developed middleware solution is based
on a distributed MAPE-k control framework. It integrates the
strengths of machine learning based adaptive system modeling
and a distributed control algorithm to achieve self-configuring,
self-optimizing and self-scaling capabilities. Our future work
will extend APPLEware’s compatibility to XenServer.
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