
MPLEX: In-situ Big Data Processing with
Compute-Storage Multiplexing

Joy Rahman
Department of Computer Science

University of Texas at San Antonio

San Antonio, Texas 78258

Email: joy.rahman@utsa.edu

Palden Lama
Department of Computer Science

University of Texas at San Antonio

San Antonio, Texas 78258

Email: palden.lama@utsa.edu

Abstract—Cloud-based services are increasingly popular for
big data analytics due to the flexibility, scalability, and cost-
effectiveness of provisioning elastic resources on-demand. How-
ever, data analytics-as-a-service suffers from the overheads of
data movement between compute and storage clusters, due to
their decoupled architecture in existing cloud infrastructure. In
this work, we propose a novel approach of in-situ big data
processing on cloud storage by dynamically offloading data-
intensive jobs from compute cluster to storage cluster, and
improve job throughput. However, it is challenging to achieve this
goal since introducing additional workload on the storage cluster
can significantly impact interactive web requests that fetch cloud
storage data, with strict SLA (service-level agreement) for tail
latency. In this work, we present MPLEX, a system that augments
data analytics-as-a-service by efficiently multiplexing compute
and storage cluster to improve job throughput without violating
the SLA of cloud storage service in terms of tail response time.
It applies an SLA-aware opportunistic job scheduling technique
supported by a machine learning based prediction model to
exploit the dynamic workload conditions in the compute, and
storage cluster. Performance evaluations on an OpenStack Swift
cluster, and an OpenStack based virtual cluster of Hadoop VMs
built atop NSFCloud’s Chameleon testbed show that MPLEX
improves the Hadoop job throughput by up to 1.7X, while
maintaining the SLA for cloud storage service requests.

I. INTRODUCTION

Today cloud-based services are increasingly popular for

storing, and processing large-scale data, which is evident from

the rise of numerous analytics-as-a-service solutions [29]. Big

data analytics using parallel programming paradigms such as

Hadoop, Dyrad, Spark etc. largely benefit from the cloud’s

resource elasticity, and pay-per-usage model [16], [21], [28].

Existing data analytics-as-a-service solutions offered by major

cloud providers including Amazon Web Services, Google

Cloud, and Microsoft Azure [1], [2], [4] mainly involve

two decoupled service layers i.e, compute and storage. The

compute layer (e.g. Amazon EC2) provide virtual machines

(VMs) that run parallel frameworks like Hadoop MapReduce,

Apache Spark, etc. and the storage layer (e.g. Amazon S3)

hosts persistent data in object storage cluster due to its low

cost and horizontal scalability. Hence, the data to be processed

by the analytics engine needs to be copied from the object

storage to the compute cluster, and the results are copied back

for persistent storage. As a result, analytics-as-a-service suffers

from large overheads of data movement both before and after

data processing.

Cloud data centers consolidate physical machines in the

compute cluster by using server virtualization, and achieve

additional power savings by dynamically migrating VMs onto

fewer hosts, and powering off idle hosts. Such agility in

resource management has a significant impact on the total cost

of ownership (TCO), and power efficiency of data centers [23],

[26]. However, unlike compute clusters, cloud storage servers

can not be scaled down easily even when the load is minimal.

Cloud storage clusters use object-based storage technology

(e.g OpenStack Swift [8], Ceph [34], Amazon S3, etc.) to store

large-scale enterprise data in a cost-effective, and scalable

manner. These storage servers hosting persistent data typically

with a replication factor of 3, need to be up and running 24/7

to provide high availability and fault tolerance, irrespective of

changing workload conditions. This motivates us to explore

a novel approach of augmenting data analytics-as-a-service

through in-situ big data processing on cloud storage. Multi-

plexing cloud resources by dynamically offloading data analyt-

ics jobs from compute to storage clusters can improve the job

throughput by cutting down the data transfer overhead between

the compute and storage clusters, and also by reducing the

load on the compute cluster. We envision that such approach

will enable a cloud provider to offer more cost-effective, and

competitive data analytics service, which provides improved

job throughput at no additional cost or, optionally at a fraction

of a cost of provisioning more VMs.

Although compute-storage multiplexing approach seems

intuitive, there are important challenges that need to be ad-

dressed. First, cloud storage services are already associated

with high latency variance which is problematic when users are

fetching and storing content for interactive applications [32],

[35]. Hence, introducing additional workloads on the stor-

age cluster can significantly impact interactive web requests

that fetch cloud storage data, with strict SLA (service-level

agreement) requirements for tail latency (e.g. 95th percentile

response time). This is verified by our motivating examples

in Section II. Second, object-based cloud storage service

provides lower throughput than ephemeral (non-persistent)

storage, which are locally attached to the compute cluster

in the cloud [31], [21]. Hence, naively offloading too many
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jobs to the storage cluster can be counterproductive. Hence,

an important research challenge is to decide when to schedule

data analytics workload on the cloud storage so that the overall

job throughput can be improved without severely degrading

the performance of the cloud storage service.

We present MPLEX, a system that augments data analytics-

as-a-service by efficiently multiplexing compute and storage

cluster with the aim to improve job throughput without vi-

olating the performance SLA of cloud storage service. To

the best of our knowledge, this is the first study that pro-

vides a compute-storage multiplexing technique for in-situ big

data processing. We make the following key contributions in

MPLEX.

• MPLEX employs a supervised machine learning tech-

nique to train a logistic regression model that predicts

the probability of violating the tail (e.g 95th percentile)

response time target of storage service requests, if addi-

tional data analytics jobs are offloaded to the storage clus-

ter under current workload conditions. Such calibrated

probabilities can be interpreted as confidence in making

job scheduling decision.

• MPLEX continuously monitors the performance of the

compute and storage clusters, and ranks them based

on a scoring function to make effective job scheduling

decisions that prefer the cluster with less load, and better

performance.

• MPLEX applies an SLA-aware opportunistic job schedul-

ing algorithm to exploit the dynamic workload conditions

in the compute, and storage cluster.

• MPLEX is designed to interact with the compute, and

storage clusters through standard REST APIs of Hadoop,

and OpenStack Swift. It does not require any modification

of Hadoop, or Swift, and can be easily extended to work

on any data analytics-as-a-service platform.

We conduct extensive evaluations of MPLEX on NSF-

Cloud’s Chameleon testbed using data-analytics workload

derived from the PUMA benchmark [9] along with Facebook’s

Hadoop job request trace profile [20], and object storage

workload derived from the Intel COSBench (Cloud Object

Storage Benchmark) [38] along with real traffic profile of

Wikipedia. We demonstrate that MPLEX improves the Hadoop

job throughput by up to 1.7X, while maintaining the 95th

percentile response time target of the cloud storage service.

The rest of the paper is organized as follows. Section 2 de-

scribes the motivation for in-situ big data processing in cloud

storage, and the associated challenges. Section 3 presents the

design, and implementation details of MPLEX. Section 4

evaluates our approach through extensive experiments. Section

5 discusses the related work. Section 6 concludes the paper.

II. BACKGROUND AND MOTIVATION

To motivate our approach, we demonstrate that a simple

offloading of Hadoop jobs from the compute to storage cluster

can achieve significant improvement in job throughput. Then,

we discuss the challenging issue of performance SLA violation

for object storage workloads when Hadoop jobs are naively

Figure 1: Wikipedia 24 hour request access pattern

Figure 2: Facebook’s 24 hour Hadoop job submission pattern

offloaded to the storage cluster, without a dynamic scheduling

policy.

A. Opportunity for In-situ Big Data processing

In our case study, we setup an OpenStack-based cloud

environment hosting a virtual cluster of Hadoop VMs for

running data-analytics workload, and a separate OpenStack

Swift cluster for object storage. Both clusters were built on the

NSFCloud’s Chameleon testbed. The Hadoop cluster, which

was managed by the YARN [33] resource manager, ran data-

analytics workload derived from the PUMA benchmark [9]

along with Facebook’s Hadoop job request trace profile [20]

as shown in Figure 2. While the OpenStack Swift cluster ran

a representative cloud storage benchmark, Intel COSBench

(Cloud Object Storage Benchmark) [38], with real traffic

profile of Wikipedia. As shown in Figure 1, a typical 24-hour

web request pattern of Wikipedia website, generated from log

files dump [14] shows significant variations at different times

of the day, with a peak traffic for only 30% of the time.

In order to enable the execution of Hadoop jobs on top

of OpenStack Swift nodes, we started Hadoop’s daemon

processes on the Swift cluster, and setup the Swift proxy

server to adopt a dual role of object storage proxy, as well

as YARN resource manager. The Hadoop jobs running on the

Swift cluster can directly access the data objects via a Swift

adapter similar to the one used in [3]. We applied a simple

static multiplexing scheme to offload Hadoop jobs with a fixed

2:1 ratio between the compute, and storage clusters. Figure 3

shows that a simple static multiplexing approach can yield

about 40% improvement in the average job throughput, even

while ignoring the overhead of moving the input and output

data of Hadoop jobs between the compute, and storage cluster.
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Figure 3: Throughput improvement by compute-storage mul-

tiplexing

Figure 4: SLA challenge during multiplexing

B. Meeting Storage Performance SLA

Although offloading Hadoop jobs from the compute cluster

to the storage cluster improves the overall job throughput,

this additional workload can potentially deteriorate the ob-

ject storage workload’s response time, leading to SLA vi-

olations. Interactive web requests that fetch cloud storage

data often have strict SLA requirements for tail latency (e.g.

95th percentile response time). Figure 4 shows that the 95th

percentile response time of storage workloads derived from

COSBench degrades drastically by almost 5X (from 37 ms

to 180 ms) when Hadoop jobs are offloaded to the Swift

cluster. Hence, in-situ big data processing requires an SLA-

aware job scheduling technique that can multiplex compute,

and storage clusters without violating the performance SLA

of cloud storage service.

III. MPLEX DESIGN AND IMPLEMENTATION

We design, and implement MPLEX as a plugin module to

augment data analytics-as-a-service solution. Figure 5 shows

the overview of MPLEX architecture. It consists of four major

components: the performance monitor, machine learning based

prediction model, cluster score ranking module, and the SLA-

aware opportunistic job scheduler. The performance monitor

measures the current hadoop load, and job processing rate

of the compute and storage clusters. In addition, it monitors

the request response time, and current storage request load

in the object storage cluster. The machine learning model is

trained to predict the probability of violating the tail (e.g 95th

percentile) response time target of storage service requests,
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Figure 5: MPLEX Architecture

if additional data analytics jobs are offloaded to the storage

cluster under current workload conditions. The cluster score

ranking module calculates the performance scores of the

two clusters based on the measured hadoop load, and job

processing rates. The job scheduler is the central component

of MPLEX that dispatches incoming jobs on one of the

two clusters based on the cluster performance scores, while

avoiding SLA violation.

A. Performance Monitoring

A key feature of MPLEX is its ability to react to changing

workload conditions, and dynamic performance characteristics

of the compute, and storage clusters. MPLEX interacts with

the Hadoop YARN managers running on both clusters through

REST APIs [11] in order to monitor their current load, and job

performance. In particular, it uses Hadoop ResourceManager’s

REST API /ws/v1/cluster/metrics to measure the

current load in terms of the number of jobs running, and the

number of jobs currently waiting in the queue on each cluster.

It also collects job execution statistics including the total job

execution time, and the amount of data processed by each job,

using the /ws/v1/history/mapreduce/jobs API. To

keep track of the performance of object storage workloads,

MPLEX periodically queries the Swift proxy server via the

Recon API [5]. The time interval for statistics collection is set

to be one second, which is small enough to capture changing

workload conditions, and also coincides with Hadoop’s default

heartbeat interval. A Statsd[13] daemon is configured in a

separate host to collect the following metrics:

• proxy-server.object.GET.200.timing
• proxy-server.object.PUT.201.timing
• proxy-server.object.GET.200.xfer
• proxy-server.object.PUT.201.xfer

B. Machine Learning Based Prediction Model

MPLEX uses a logistic regression (LR) model to pre-

dict the probability of performance SLA violation, if more

Hadoop jobs are offloaded to the OpenStack Swift cluster,

under current workload condition. Logistic regression (LR)

is a widely used technique that models the probabilities of
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Table I: CONFUSION MATRIX

Predicted
SLA violation No-violation

Actual
SLA violation 2454 45
No-violation 120 784

dichotomous response variables such as 1 and 0, or true and

false as a function of some explanatory variables. Unlike other

classifiers, LR has the advantage of providing a quantified

value for the strength of prediction, i.e. probability of an

outcome, as opposed to only predicting the outcome. LR

involves fitting the response variable using an equation of the

form:

Logit(p) = ln(p/(1 − p))

= C0 + C1X1 + C2X2 + · · +CnXn

(1)

where p is the probability that the response variable (Y)

is 1 (SLA violation occurs). C0 is the intercept, and

C1, C2, C3.., Cn are the coefficients, which measure the con-

tribution of explanatory variables (features) to the variations in

Y. In MPLEX, the features of the prediction model are chosen

to be the 95th percentile response time of Swift requests in the

previous sampling interval, the current swift request load 1, the

number of hadoop jobs running in the Swift cluster, and the

number of hadoop jobs waiting in the queue. These features

are selected by using a standard technique called Stability
selection using Randomized Lasso [10].

1) Collection of Training Data: We use the implementation

of logistic regression from scikit-learn, a machine learning

package for python. The training process is conducted on

the platform described in Section IV. Training data sets are

collected by submitting several small hadoop jobs to the Swift

cluster, while simultaneously running the COSBench workload

at various load intensities, and workload profiles. The data

corresponding to the explanatory variables is sampled at one

second interval using standard REST APIs of Hadoop, and

Swift. The binary response variable for the training data is

derived by evaluating whether the 95th percentile response

time of Swift requests exceed a given SLA target or not. Our

overall training data set has 3403 instances.

2) Evaluation of Logistic Regression Model: To verify the

effectiveness of our logistic regression model, we applied a

stratified 10-fold cross validation on the entire data set. It

shows 3238/3403 (or 95%) overall success rate. Table I gives

the confusion matrix.

C. Scoring Compute and Storage Clusters

MPLEX ranks the compute, and storage clusters based on a

scoring function to make job scheduling decisions that prefer

the cluster with less load, and better performance. The final

score of a cluster, Scorecluster is computed as the product

1average system load across swift object servers

(a) linear score (b) cubic score

Figure 6: Comparison between linear and cubic scoring func-

tions. For differing values of P, the difference in queue-size

estimates required for the scores of two clusters to be equal is

smaller for the cubic function (thus penalizing longer queues)

of cluster load based score, and performance based score, as

shown in Equation 2.

Scorecluster = Lcluster ∗ Pcluster (2)

Here, the job performance based score, Pcluster, is derived

from the average normalized execution time. First, for each

jobi, normalized execution time Pi is calculated by equation 3,

where Ti denotes the execution time of jobi and Si denotes

the input data size processed by the job.

Pi =
Ti

Si
(3)

To filter out the noise from the job performance based score,

we use the exponential moving average of Pi as shown in

Equation 4. Here, Pcurr is the current value of normalized

execution time, and Pprev is the value of normalized execution

time in the previous interval. More preference is given to the

recent values based on the predefined constant σ.

Pcluster = σ ∗ Pcurr + (1 − σ) ∗ Pprev (4)

As shown in Equation 5, the cluster load based score,

Lcluster, is calculated as a cubic function of the number of

Hadoop jobs waiting to be processed in the cluster, denoted by

α. As a result, Equations 2 gives more weight to α, in order to

punish longer job queues. This is in contrast to an alternative

linear scoring function that simply calculates a product of α,

and P . Similar to the approach used in [32], Figure 6, shows

that under a linear scoring scheme, for a queue-size estimate

of 4 at the slower server cluster, only a corresponding value of

16 at the faster cluster would cause the MPLEX job scheduler

to prefer the slower cluster. Under such condition, the faster

cluster may build up a very long queue of jobs. However, if the

relative performance of the cluster decreases due to change in

Swift workload intensity, all jobs in its queue will incur higher

waiting times. MPLEX uses cubic scoring function to address

this issue.

Lcluster = α3
cluster (5)
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Algorithm 1 Mplex Algorithm.

1: Variables: Swift SLA violation probability bound λ=0.5;

2: /* MONITOR+SCORE runs every � interval in back-

ground */

3: procedure MONITOR+SCORE

4: Collect Hadoop job specific cluster load, and perfor-

mance data from YARN Resource Managers.

5: Collect the 95th percentile response time, and average

swift request load from Swift Proxy.
6: Ls = Swift cluster load (Eq. 5)

7: Lh = HDFS cluster load (Eq. 5)

8: Ps = Swift performance score (Eq. 4)

9: Ph = HDFS performance score (Eq. 4)

10: Scores = Ls ∗ Ps

11: Scoreh = Lh ∗ Ph

12: end procedure

13: procedure SCHEDULE

14: while true do
15: get job from MPLEX queue

16: p = predict probability of SLA violation if one

more job is submitted to Swift cluster.
17: if Scores < Scoreh and p < λ then
18: submit job to Swift cluster

19: else
20: submit job to HDFS cluster

21: end if
22: end while
23: end procedure

Table II: Experiment Testbed

VM Core Mem Disk Net

Storage Proxy Server 2 8GB 100GB 1G
Storage Object Server 2 8GB 100GB 1G
Compute Master Node 4 8GB 30GB 1G
Compute Worker Node 4 8GB 30GB 1G

D. SLA-aware Opportunistic Job Scheduling

MPLEX uses an SLA-aware opportunistic job scheduling

algorithm to efficiently multiplex the compute and storage

clusters in the face of changing system dynamics. Algorithm 1

details the scheduling policy. The monitor+score procedure

(lines 3-12) is executed in background every � time interval

to collect Hadoop job specific cluster load, and performance

data from YARN Resource Managers, and the 95th percentile

response time, and average swift request load from the Swift

Proxy. It also computes the cluster scores given by Equation 2.

In our current implementation of MPLEX, � is set to one

second, which is small enough to reflect dynamic changes in

the compute, and storage clusters. The overhead of collecting

the cluster statistics is negligible since MPLEX only polls

information from the Swift proxy, and the YARN resource

Table III: Swift traffic profile

Swift Load % cluster load #workers

Low 0%-5% 8
Medium 10%-15% 16
High >15% 20

Table IV: Swift benchmark profile

Traffic profile %distribution total read total write

read-heavy r:w=90:10 45 GB 5GB
write-heavy r:w=50:50 25GB 25GB
r/w-balanced r:w=70:30 38GB 12GB

managers, and not from individual cluster nodes. In general,

we suggest setting � to a smaller value than the minimum

inter-job arrival times.

The schedule procedure (lines 13-23) dispatches incoming

Hadoop jobs on one of the two clusters based on their

scores, and the predicted probability of SLA violation. In

particular, the cluster with the lowest score is preferred for

job execution. Furthermore, the scheduler uses the logistic

regression model to predict the probability of violating the

95th percentile response time target of Swift storage requests,

if one more Hadoop job is submitted to the Swift cluster. A

job is submitted to the storage cluster, only if the predicted

probability of SLA violation is below the given threshold λ. In

this paper, we apply a commonly used threshold of 0.5 (50%)

to determine the outcome predicted by logistic regression.

However, more conservative threshold values can be used to

gain more confidence in avoiding SLA violation. Furthermore,

if there is any SLA violation due to prediction errors, MPLEX

is designed to kill the Hadoop jobs running in the Swift cluster,

and re-submit them to the HDFS cluster.

IV. EVALUATION

A. Testbed Setup

For performance evaluation, we setup an OpenStack-based

cloud environment hosting a virtual cluster of Hadoop VMs

for running data-analytics workload, and a separate OpenStack

Swift cluster for object storage. Both clusters are built on the

NSFCloud’s Chameleon testbed. The virtual Hadoop cluster

hosted on the compute nodes is managed by the YARN [33]

resource manager, and is configured with HDFS [17] file

system. The Hadoop version used is 2.7.3. There is one

resource manager node and eight worker nodes. The resource

manager node also hosts the Namenode for HDFS. On each

worker node, a node manager daemon, and a data node

daemon are running with an HDFS partition of size 30GB. We

deploy the default capacity scheduler [30] for YARN where

each job demands the request based on CPU and memory

capacity. The storage cluster is based on OpenStack Swift

(Kilo) object storage implementation [7]. There is one proxy

server to handle all the users’ GET/PUT requests and eight

object servers that actually host the object files. All of the
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(a) (b) (c)

Figure 8: Multiplexing of Hadoop jobs between compute and storage cluster in (a) Low Swift traffic (b) Medium Swift traffic

and (c) High Swift traffic hour

Table V: Hadoop benchmark

Benchmark %job mix Input Size #Maps #Reduces

grep 40% 1-32GB 64 1-4
wordcount 30% 1-32GB 64 1-4
histogram-ratings 30% 1-16GB 64 1-4

Figure 7: Hadoop job inter-arrival time distribution

object servers are configured under zone-1 with a replication

factor of three. Each object server has a special software

loopback partition with a capacity of 100GB to host all the

object data. The servers are connected by 1G of network

configuration. A separate keystone [6] server is used to handle

all of the authentication requests.

In order to enable the execution of Hadoop jobs on top

of OpenStack Swift nodes, we started Hadoop’s daemon

processes on the Swift cluster, and setup the Swift proxy server

to adopt a dual role of object storage proxy, as well as YARN

resource manager. The Hadoop jobs running on the Swift

cluster can directly access the data objects via a Swift adapter.

The MPLEX system is run on a separate virtual machine that

has connectivity to both the YARN resource manager as well

as to the Swift proxy daemon over REST APIs [11], [5]. The

same host is used to receive Hadoop job requests form users.

Figure 9: Hadoop job queue waiting time in the Swift cluster

B. Workloads

To understand the effectiveness of MPLEX, we use a

set of benchmarks with profiles that models the production

workload. For Swift workload, we use the Intel COSBench

(Cloud Object Storage Benchmark) [38]. COSBench provides

several customization options, particularly allows defining the

length of the run, the number of concurrent requests, workload

profile, and data size. To generate synthetic workload that

is scaled down to fit our cluster while still keeping key

features of production load, we define three different traffic

load hours. As shown in Table III, these traffic hours generate

proportionally distinct load. For example, the low traffic hour

is the time that has minimum incoming Swift traffic request.

The medium traffic hour is the time where the cluster still

sees the good amount of Swift web traffic. The high traffic

hour, on the contrary, is the time segment where the cluster is

overloaded with Swift traffic requests. This three-time segment

can perfectly align with the observed traffic behavior as shown

in Figure 1(a).

Object storage is by nature read intensive and exhibits better

read performance compared to write[31]. The real web traffic

nature is also GET intensive. Hence, we modeled our Swift

workload to have three different profile as shown in Table

IV based on the proportion of GET requests. The ready-
heavy profile exhibits almost 90% of GET requests, the write
heavy profile exhibits as much as 50% of PUT requests

while the read-write balanced profile exhibits the closest

web traffic nature of 70%GET and 30%PUT. Among these
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(a) (b) (c)

Figure 10: Throughput improvement by placing Hadoop jobs to storage cloud (a) Low Swift traffic (b) Medium Swift traffic

and (c) High Swift traffic

(a) (b) (c)

Figure 11: Hadoop job execution time in storage cluster at (a) write-heavy GET traffic (b) r/w balanced GET traffic and (c)

read-heavy GET traffic

workload profiles, we use a file size distribution where 80%
of the objects are between 64KB to 512KB, 10% between

1 ∼ 64KB and the rest is between 512 ∼ 4096KB. This

accurately mimics the production storage traffic as outlined

in [15].

For the Hadoop workload, we use the PUMA benchmark

[9]. The Table V shows the benchmark and associated config-

uration used. When reading from the Swift file system, the

number of mappers is determined by the number of input

files in the container. All of our experiments maintain a fixed

number of 64 mappers with same file size for both HDFS and

Swift input files so that performance can be compared against

each other. The workload arrival pattern follows Facebooks

Hadoop job request trace profile. Figure 7 shows the inter-

arrival time distribution of Hadoop jobs.

C. Scheduling in Action

In this section, we evaluate the effectiveness of MPLEX in

making opportunistic job scheduling decisions in the face of

changing workload conditions. We run experiments with three

different clusters load scenario as described in Table III. Figure

8 shows the number of the jobs scheduled on each cluster over

time in these three different traffic load hours. As shown in

Figure 8(a), the storage cluster is able to accommodate a large

number of Hadoop jobs, due to low Swift traffic load. For

medium Swift traffic load, around 70% of the jobs are sent

to HDFS cluster and the rest to the Swift cluster as shown in

Figure 8(b). For a high Swift load scenario shown in Figure

8(c), only 15% of the jobs are placed on the Swift cluster.

The opportunistic job scheduling of MPLEX clearly sets it

apart from a static multiplexing scheme that offloads Hadoop

jobs with a fixed 2:1 ratio between the compute, and storage

clusters, irrespective of changing cluster load, and performance

behavior. This is further supported by Figure 9, which com-

pares the cumulative distribution function (CDF) of queue

waiting times for the jobs submitted to the Swift cluster, in

case of MPLEX, and the static multiplexing scheme. The

worst case queue waiting time observed in case of the static

multiplexing scheme is 100 seconds, which is roughly twice

the worst case waiting time observed in case of MPLEX.

D. Improving Hadoop Job Performance

Next, we evaluate the impact of MPLEX on Hadoop job

performance, and compare its performance with that of no-

multiplexing scheme, and a static multiplexing scheme that

offloads Hadoop jobs with a fixed 2:1 ratio between the

compute, and storage clusters. Figure 10 shows that MPLEX

improves the overall total job throughput significantly on

various traffic load profile. For performance comparison, total

Hadoop job throughput is normalized by the throughput that
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(a) (b) (c)

Figure 12: Swift GET response time in (a)Low (b)Medium and (c)High traffic scenario

(a) (b) (c)

Figure 13: SLA violation over time in (a)Swift-default (b)Swift+static multiplexing and (c)Swift+MPLEX

is observed with no-multiplexing scenario. Our results show

that in case of the r/w balanced profile, MPLEX improves

the job throughput by 1.7 times compared to 1.3 times by

the static scheduler in low load scenario. We see significant

improvement particularly in low load scenario, a moderate

amount of improvement in medium load scenario, and a small

improvement in high load scenario. That is due to the fact that

fewer number of jobs can be placed in the Swift cluster, when

the storage cluster is facing high load, as shown in Figure 8(c).

Figure 11(a),(b) and (c) show that MPLEX improves the

worst case job execution time by almost twice compared to the

static multiplexer in all three cases of different Swift request

profile. The r/w balanced Swift workload profile exhibits the

best Hadoop job performance while read-heavy profile has the

worst. The superior performance of MPLEX is due to the fact

that unlike the static multiplexing scheme, it avoids submitting

too many jobs to the Swift cluster. Since Swift cluster’s object

storage based file system is much slower than the HDFS file

system [31], too many jobs can impact per job execution time

as well as contributing to long waiting time in the queue to

be serviced.

E. Achieving Storage Performance SLA

Next, we evaluate the capability of MPLEX to improve

overall Hadoop job throughput, without violating the perfor-

mance SLA of the cloud storage service. We define the SLA

target for Swift GET response time, t = 150ms for 95th per-

Figure 14: Percentage of SLA violation

centile of the traffic. As part of the design, MPLEX schedules

Hadoop jobs on the Swift cluster only if the probability of

SLA violation is low.

Figure 12 compares the cumulative distribution function

(CDF) of Swift request response time achieved with Swift-

default (no multiplexing), static multiplexing, and MPLEX

for low, medium and high traffic load. In low traffic situa-

tion, shown in Figure 12(a), MPLEX achieves Swift request

response times that are very close to that of Swift-default

case. The amount of performance degradation is between

1 ∼ 2%. For medium traffic load, shown in Figure 12(b), the

degradation of response time is around 5%. However, MPLEX

still maintains the SLA target. Even in high traffic scenario,

shown in Figure 12(c), MPLEX almost closely resembles

Swift-default response time. This is due to the fact that
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(a) (b) (c)

Figure 15: Average GET response time degradation(%) (a) r/w balanced traffic (b) write heavy traffic and (c) read-heavy traffic

MPLEX’s SLA-aware job scheduling algorithm slows down

its Hadoop job placement rate on the Swift cluster. In contrast,

the static multiplexing scheme continues placing many Hadoop

jobs inside the Swift cluster even in high load scenario. This

results in around 15% degradation with a large amount of SLA

violation.

Figure 13 shows the SLA violation over time for Swift-

default, static multiplexing, and MPLEX respectively. Fig-

ure 14 summarizes the percentage of request that violates

the SLA target for the three different load scenarios. In all

three cases, the amount of violation is minimal for both

Swift-default and MPLEX whereas static scheduling shows

as much as 21% of violation. Furthermore, Figure 15 shows

the average response time degradation with respect to no-

multiplexing case for (a) r/w balanced traffic, (b) write-heavy

traffic and read-heavy traffic. We observe that while MPLEX

achieves consistently low response time degradation for all

traffic loads, the static multiplexing scheme exhibits increasing

worse behavior with increasing traffic load.

V. RELATED WORK

Big-data analytics on the cloud is an active area of research.

There is a large body of work [19], [24], [25], [30] devoted

to Big-data analysis on the cloud and optimizing Hadoop per-

formance. There are prior works that tried to explore running

Hadoop directly inside the storage cloud [31]. However, to the

best of our knowledge, none of the existing work provide a

compute-storage multiplexing mechanism to optimize Hadoop

job throughput, while maintaining the performance SLA of

cloud storage service.

Cloud storage performance, and various optimizations have

been studied in previous works [16], [18], [21], [27], [32],

[28], [35]. Guoxin at el. [27] proposed a data reallocation

algorithm to balance the load on cloud storage servers with the

aim to achieve storage performance SLA. Suresh at el. [32]

presented an adaptive replica selection algorithm to improve

the tail latency in cloud data stores. Similar to the approach

used in [32], MPLEX uses a score ranking based policy to

schedule jobs between compute, and storage clusters. While

their work used ranking for each storage server for adaptive

replica selection, MPLEX uses ranking for the whole compute,

and storage cluster to efficiently schedule data-analytics jobs

between the two clusters. MPLEX also applies a machine

learning based prediction model to make job scheduling de-

cisions that avoid the SLA violation of cloud storage service.

Furthermore, most existing works involve intrusive changes in

the cloud storage implementation. In contrast, our work does

not introduce any modification to the core service of cloud

storage, or data-analytics framework such as Hadoop. Hence,

our approach has a general applicability.

Multiplexing resources between different clusters has been

exploited in previous work by [22], [36]. Goiri at el. [22]

focused on improving energy efficiency by scheduling hadoop

jobs in a way that maximizes the usage of green energy.

They multiplex Hadoop job placement between multiple data

centers, based on the prediction of green energy supply and

demand. While their work aimed at minimizing brown energy

consumption, our work differs in the approach that we aimed

in maximizing throughput of Hadoop job processing by lever-

aging idle resources from the storage cloud.

VI. CONCLUSION

We present MPLEX, a system that augments data analytics-

as-a-service through an SLA-aware opportunistic job schedul-

ing technique that efficiently multiplexes the compute and

storage cluster with the aim to improve job throughput, without

violating the performance SLA of cloud storage service.

MPLEX uses real-time performance and load information as

a feedback mechanism, and a machine learning based pre-

diction model to schedule jobs between compute and storage

clusters. It is applicable to any data analytics-as-a-service

platform irrespective of the underlying data processing, and

cloud storage system. Extensive evaluations on NSFCloud’s

Chameleon testbed demonstrate that MPLEX improves the

Hadoop job throughput by up to 1.7X, while maintaining

the 95th percentile response time target of the object storage

workload.
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