
A

Autonomic Provisioning with Self-Adaptive Neural Fuzzy Control for
Percentile-based Delay Guarantee

PALDEN LAMA, University of Colorado, Colorado Springs
XIAOBO ZHOU, University of Colorado, Colorado Springs

Autonomic server provisioning for performance assurance is a critical issue in Internet services. It is chal-
lenging to guarantee that requests flowing through a multi-tier system will experience an acceptable dis-
tribution of delays. The difficulty is mainly due to highly dynamic workloads, the complexity of underly-
ing computer systems and the lack of accurate performance models. We propose a novel autonomic server
provisioning approach based on a model-independent self-adaptive neural fuzzy control (NFC). Existing
model-independent fuzzy controllers are designed manually on a trial and error basis, and are often ineffec-
tive in the face of highly dynamic workloads. NFC is a hybrid of control-theoretical and machine learning
techniques. It is capable of self-constructing its structure and adapting its parameters through fast online
learning. We further enhance NFC to compensate for the effect of server switching delays. Extensive simu-
lations demonstrate that, compared to a rule-based fuzzy controller and a Proportional-Integral controller,
the NFC-based approach delivers superior performance assurance in the face of highly dynamic workloads.
It is robust to variation in workload intensity, characteristics, delay target and server switching delays. We
demonstrate the feasibility and performance of the NFC-based approach with a testbed implementation in
virtualized blade servers hosting a multi-tier online auction benchmark.

Categories and Subject Descriptors: D.4.8 [Operating Systems]: Performance-Modeling and prediction

General Terms: Design, Experimentation, Performance

Additional Key Words and Phrases: Resource Allocation, Multi-tier Internet Services, Percentile-based De-
lay Guarantee, Neural Fuzzy Control, Self Adaptation, Server Virtualization

1. INTRODUCTION
Today, popular Internet services employ a complex multi-tier architecture, with each
tier provisioning a certain functionality to its preceding tier and making use of the
functionality provided by its successor to carry out its part of the overall request pro-
cessing [Urgaonkar et al. 2008]. Autonomic resource management for Internet services
aims to reduce the degree of human involvement in the management of complex com-
puting systems [Huebscher and McCann 2008]. It is critical to performance assurance
and challenging due to rapidly growing scale and complexity of multi-tier Internet
services. Dynamic server provisioning with virtualization is essential to the perfor-
mance assurance of multi-tier Internet services and resource utilization efficiency of
the underlying computer systems. Recent research efforts relied on queuing-theoretic

This article is an extended version of the paper ”Autonomic Provisioning with Self-Adaptive Neural
Fuzzy Control for End-to-end Delay Guarantee” that appeared in Proceedings of the 18th IEEE/ACM
Int’l Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS’2010).
Corresponding author address: Xiaobo Zhou, University of Colorado, Colorado Springs, 1420 Austin Bluffs
Pkwy, CO 80918, USA; email: xzhou@uccs.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c⃝ YYYY ACM 1556-4665/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 Palden Lama and Xiaobo Zhou

Tier 3 − Database

(clustered or

 d1 d2 d3

 end−to−end delay bound

... ...

dispatcher

Tier 1 − Web

dispatcher

Tier 2 − Application

not clustered)

clients

Fig. 1. End-to-end delay in a virtualized multi-tier Internet service architecture.

approaches [Padala et al. 2009; Urgaonkar et al. 2008; Villela et al. 2007] and control-
theoretic approaches [Kamra et al. 2004] based on explicit system performance mod-
els for dynamic server allocation in multi-tier systems. However, it is complex and
time consuming to accurately estimate system performance model parameters such
as service time, workload distribution, etc. Furthermore, system parameter variation
of virtual servers, non-stationary workload and inherent nonlinearity of performance
versus resource allocation introduce additional challenges to achieve an accurate sys-
tem performance model [Litoiu 2007].

End-to-end system delay is the major performance metric of multi-tier Internet ap-
plications. It is the response time of a request that flows through a multi-tier computer
system [Urgaonkar et al. 2008]. Figure 1 depicts a typical three-tier Internet service
architecture. For load sharing, a tier is often replicated and clustered based on server
virtualization techniques. The queueing model based approaches and feedback con-
trol based approaches can guarantee the average delay of requests. But they have no
control on an important performance metric, percentile-based end-to-end delay of re-
quests. A percentile-based performance metric such as the 95th-percentile end-to-end
delay is easy to reason about and to capture individual users’ perception of Internet
service performance [Mi et al. 2008; Welsh and Culler 2003].

It is very challenging to assure a percentile-based delay guarantee of requests of a
multi-tier Internet service. Compared with the average delay, a percentile delay intro-
duces much stronger nonlinearity to the system performance model. Queueing theo-
retic techniques have achieved noteworthy success in providing average delay guaran-
tee on multi-tier server systems. However, most queueing models are mean oriented.
It is costly to compute various moments of the distribution of response times from
a queueing model. Control theoretic techniques were applied to inherently nonlinear
Web systems for performance guarantees by performing linear approximation of sys-
tem dynamics and estimation of system parameters. However, if the deployed system
configuration or workload range deviates significantly from those used for system iden-
tification, the estimated system model used for control would become inaccurate [Lu
et al. 2006]. Recent studies have seen highly dynamic workloads of Internet services
that fluctuate over multiple time scales, which can have a significant impact on the
processing demands imposed on data center servers [Mi et al. 2008; 2009; Singh et al.
2010].

In this paper, we propose an autonomic server allocation approach based on a model-
independent neural fuzzy controller for percentile-based end-to-end delay guarantee in
virtualized multi-tier server clusters. There are model-independent rule based fuzzy
controllers that utilize heuristic knowledge for performance guarantee on Internet
servers [Lama and Zhou 2009; Liu et al. 2003; Wei and Xu 2006]. They use a set of
pre-defined rules and fuzzy membership functions to perform control actions in the
form of resource allocation adjustment. These controllers have some drawbacks. First,
they are designed manually on trial and error basis, using heuristic control knowledge.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Autonomic Provisioning for Percentile Delay Guarantee A:3

There is no specific guideline for determining important design parameters such as the
input scaling factors, the rule base and the fuzzy membership functions. Second, those
design parameters are non-adaptive. They are not effective in the face of highly dy-
namic workloads. To overcome the drawbacks, we design a novel self-adaptive neural
fuzzy controller as a hybrid of control theoretical and machine learning techniques.

The main advantages of the proposed server allocation approach based on the neural
fuzzy controller are as follows:

(1) It is robust to highly dynamic workload intensity as well as characteristics and
change in delay target due to its self-adaptive and self-learning capabilities.

(2) It is model-independent. The parameter variations of the system performance and
the unpredictability of dynamic workloads do not affect the validity and effective-
ness of the proposed server allocation approach.

(3) It is capable of automatically constructing the control structure and adapting con-
trol parameters through fast online learning. The controller executes resource al-
location adjustment and learns to improve its performance simultaneously.

(4) Unlike other supervised machine learning techniques that learn from the super-
vised training data, it does not require off-line training. Avoiding off-line training
saves significant amount of time and efforts required to collect a large set of repre-
sentative training data and to train the system.

Furthermore, we address an important server switching cost issue. Server switch-
ing by addition and removal of a virtual server introduces non-negligible latency to
a multi-tier service. It affects the perceived end-to-end delay of users. It takes time
for a newly added server to adapt to the existing system. For example, an addition of
database replica goes through a data migration and system stabilization phase [Chen
et al. 2006]. A removal of a server does not happen instantaneously, since it has to
process residual requests of an active session. To compensate for the server switching
delay, we perform two enhancements on our neural fuzzy controller. First, we incor-
porate the effect of server switching with the online parameter learning. Second, we
integrate a self-tuning component that adjusts its output to pro-actively compensate
for the server switching effect.

For performance evaluation of the proposed server provisioning approach, we build
a simulation model and conduct extensive simulations using synthetic heavy-tailed
workloads. Simulation results demonstrate the effectiveness of the new approach in
achieving the end-to-end delay guarantee for both stationary and highly dynamic
workloads. We apply dynamic workloads with sudden step-changes similar to what
used in [Urgaonkar et al. 2008] and with continuous changes similar to what used
in [Chen et al. 2006]. Although our approach is designed in a way that is applicable to
any percentile based end-to-end delay guarantees, the experiments are conducted for
assuring the 95th-percentile and the median end-to-end delay targets. Results show
that our approach is effective in provisioning percentile-base delay guarantee. We
perform the sensitivity analysis of the neural fuzzy controller for various delay tar-
gets and compare its performance with the rule based fuzzy controller used in [Lama
and Zhou 2009; 2012a]. The neural fuzzy controller delivers consistently better per-
formance for various delay targets. It, on average, outperforms the rule based fuzzy
control approach by about 30% and 60% in terms of relative delay deviation and tem-
poral target violation, respectively. We also demonstrate the impact of the input scaling
factor on the performance of the rule based fuzzy controller for different delay targets.
There does not exist one single scaling factor that works best for different scenarios.
It demonstrates the need of self-adaptivity based on the neural fuzzy control. Then,
we show the robustness of the new server provisioning approach to server switching
delays and study the impact of the control interval on the responsiveness of control ac-

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 Palden Lama and Xiaobo Zhou

tions. Furthermore, we demonstrate that our approach outperforms a commonly used
proportional integral control based server provisioning technique in the face of dynam-
ically varying workload intensity as well as characteristics.

Finally, we conduct a feasibility study with performance evaluation of the proposed
server provisioning approach based on a testbed implementation of a virtualized server
cluster hosting RUBiS application [Amza et al. 2002; RUBiS], a multi-tier online auc-
tion web site benchmark. The testbed is built on a cluster of HP ProLiant BL460C G6
blade server modules using VMware virtual machines. Experimental results show that
the self-adaptive neural fuzzy control based server provisioning approach is able to as-
sure the percentile-based end-to-end delay guarantee in the face of a highly dynamic
workload with varying intensity and characteristics.

The rest of this paper is organized as follows. Section 2 reviews related work in au-
tonomic resource provisioning. Section 3 presents the design of self-adaptive neural
fuzzy control for dynamic server provisioning. Section 4 describes the enhancement
in the neural fuzzy controller for server switching delays. Section 5 presents simula-
tion results and performance evaluation. Section 6 presents the case study based on
a testbed implementation. Concluding remarks and discussions about the future work
are given in Section 7.

2. RELATED WORK
Autonomic resource management for performance assurance in multi-tier Internet ser-
vices is an important and challenging research topic. Recently, there are a few studies
on the modeling and analysis of multi-tier servers with queueing foundations [Bennani
and Menasce 2005; Diao et al. 2006; Karve et al. 2006; Liu et al. 2008; Singh et al. 2010;
Stewart et al. 2007; Urgaonkar et al. 2005; Urgaonkar et al. 2008]. Diao et al. [Diao
et al. 2006] described a performance model based on M/M/1 queueing for differenti-
ated services of multi-tier applications. Per-tier concurrency limits and cross-tier inter-
actions were addressed in the model. Villela et al. [Villela et al. 2007] studied optimal
server allocation in the application tier that increase a server provider’s profits. An op-
timization problem is constructed in the context of a set of application servers modeled
as M/G/1 processor sharing queueing systems. Urgaonkar et al. designed a dynamic
server provisioning technique on multi-tier server clusters [Urgaonkar et al. 2008].
The technique decomposes the per-tier average delay targets to be certain percentages
of the end-to-end delay constraint. Based on a G/G/1 queueing model, per-tier server
provisioning is executed at once for the per-tier delay guarantees. There is however no
guidance about the decomposition of end-to-end delay to per-tier delay targets. Lama
and Zhou [Lama and Zhou 2009; 2012a] proposed an efficient server provisioning ap-
proach on multi-tier clusters based on an end-to-end resource allocation optimization
based on a M/G/1 queueing model. It is able to minimize the number of virtual servers
allocated to the system and satisfy the average end-to-end response time guarantee
under stationary workloads. Singh et al. [Singh et al. 2010] proposed a novel dynamic
provisioning technique that handles both the non-stationarity in the workload and
changes in request volumes when allocating server capacity in data centers. It is based
the k-means clustering algorithm and a G/G/1 queuing model to predict the server ca-
pacity for a given workload mix. These queueing model based techniques can provide
the average response time based performance guarantee, but not the percentile-based.

Feedback control was used for service differentiation and performance guarantee on
Internet servers [Abdelzaher et al. 2002; Jung et al. 2010; Kamra et al. 2004; Leite
et al. 2010; Liu et al. 2003; Lu et al. 2006; Padala et al. 2009; Wei and Xu 2006]. Sha
et al. [Sha et al. 2002] proposed to integrate queuing model with feedback control for
average response time control of web systems. Karma et al. [Kamra et al. 2004] de-
signed a proportional integral (PI) controller based admission control proxy to bound

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Autonomic Provisioning for Percentile Delay Guarantee A:5

the average end-to-end delay in a three-tier Web service. There are studies that ar-
gue model-dependent control techniques may suffer from the inaccuracy of modeling
dynamic workloads in multi-tier systems. For instance, Lu et al. modeled a controlled
Web server with a second order difference equation whose parameters were identi-
fied using the least square estimator. The estimated system model used for control
would become inaccurate if the real workload range deviates significantly from those
used for performance model estimation [Lu et al. 2006]. Padala et al. proposed Auto-
Control, a combination of an online model estimator and a multi-input multi-output
controller [Padala et al. 2009] . The resource allocation system can automatically adapt
to workload changes in a shared virtualized infrastructure to achieve the average re-
sponse time based service level objective. The approaches can provide performance
guarantee regarding to the average response, but not percentile-based response time.

Percentile-based performance metric has the benefit that is both easy to rea-
son about and to capture individual users’ perception of Internet service perfor-
mance [Lama and Zhou 2009; Leite et al. 2010; Urgaonkar et al. 2008; Watson et al.
2010; Welsh and Culler 2003]. Welsh and Culler [Welsh and Culler 2003] proposed to
bound the 90th-percentile response time of requests in an multi-stage Internet server.
It is achieved by an adaptive admission control mechanism that controls the rate of re-
quest admission. The mechanism complements, but does not apply to dynamic server
provisioning in data centers.

Urgaonkar et al. [Urgaonkar et al. 2008] proposed an interesting approach for as-
suring the 95th-percentile delay guarantee. It uses an application profiling technique
to determine a service time distribution whose 95th-percentile is the delay bound. The
mean of that distribution is used as the average delay bound. It then applies the bound
for the per-tier delay target decomposition and per-tier server provisioning based on
a queueing model. There are two key problems. One is that the approach is queueing
model dependent. The second is that the application profiling needs to be done offline
for each workload before the server replication and allocation. Due to the very dy-
namic nature of Internet workloads, application profiling itself can be time consuming
and importantly not adaptive online.

Lama and Zhou [Lama and Zhou 2009] proposed a fuzzy control based server pro-
visioning approach that can effectively bound the 95th-percentile response time of an
Internet service. The technique works well under stationary system workloads. How-
ever, it does not effectively adapt to the very dynamic nature of Internet workloads.
The study in [Singh et al. 2010] found that the non-stationarity in Internet application
workloads can have a significant impact on the overall processing demands imposed
on data center servers.

Leite et. al [Leite et al. 2010] applied an innovative stochastic approximation tech-
nique to estimate the tardiness quantile of response time distribution, and coupled it
with a proportional-integral-derivative (PID) feedback controller to obtain the CPU
frequency for single-tier servers that will maintain performance within a specified
deadline. It is non-trivial to apply this approach to dynamic server allocation prob-
lem due to several reasons. First, it does not compensate for the effect of process delay
in resource allocation, which is significant due to server switching costs. Second, it ap-
plies a PID controller without using any system performance model despite the fact
that it is an essentially a model based control technique. The controller was designed
solely based on response time measurement and manual tuning of controller parame-
ters for a particular simulated workload. As a result, it may not be adaptive to highly
dynamic workloads.

Watson et. al [Watson et al. 2010] proposed an unique approach to model the proba-
bility distributions of response time, in terms of percentiles, based on CPU allocations
on virtual machines. The performance model was obtained by offline training based on

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Palden Lama and Xiaobo Zhou

 6

 8

 10

 12

 14

 16

 18

 20

 0 20 40 60 80 100 120

R
eq

ue
st

 a
rr

iv
al

 r
at

e
(p

er
 s

ec
)

time (min)

Fig. 2. A highly dynamic workload for a three-tier Internet service.

data collected from the system. It is not adaptive online to dynamically changing work-
loads. The work focuses on performance modeling without addressing issues related to
adaptive resource provisioning such as process delay, system stability, performance
assurance, etc.

Fuzzy theory and control were applied for Web performance guarantee due to its
appealing feature of model independence, and used to model uncertain and imprecise
information in applications [Zhou and Huang 2009]. Liu et al. [Liu et al. 2003] used
fuzzy control to determine an optimal number of concurrent child processes to improve
the Apache web server performance. Wei and Xu [Wei and Xu 2006] designed a fuzzy
controller for provisioning guarantee of user-perceived response time of a web page.
Those fuzzy controllers were designed manually on trial and error basis. Important
design parameters such as input scaling factors, rule base and membership functions
are not adaptive. They are not very effective in the face of highly dynamic workloads.
In this paper, we design a self-adaptive neural fuzzy controller which is capable of
automatically learning its structure and parameters using online measurement.

Statistical machine learning techniques have been used for measuring the capacity
of web sites [Liu et al. 2003; Rao and Xu 2011], for online system reconfiguration [Bu
et al. 2009] and for resource allocation [Meng et al. 2010; Tesauro et al. 2006; Zhang
et al. 2007]. For instance, Bu et al. [Bu et al. 2009] proposed a reinforcement learning
approach for autonomic configuration and reconfiguration of multi-tier web systems.

In this paper, we design a neural fuzzy controller as a hybrid of control theoretical
and machine learning techniques for autonomic server allocation. It uses an online
learning algorithm to self-construct its structure and adapt its parameters based on
live incoming data. This saves significant amount of time and efforts required to collect
a large set of representative training data and to train the system. Furthermore, it
avoids poor performance of a typical online training process due to the incorporation
of feedback control.

3. A SELF-ADAPTIVE NEURAL FUZZY CONTROL
Our previous study in [Lama and Zhou 2009] found that a rule-based fuzzy control
approach for server provisioning provides very good performance under stationary
system workloads. It can assure the 95th-percentile end-to-end delay guarantee on a
three-tier server cluster. However, Internet workloads are often highly dynamic in na-
ture [Mi et al. 2008; 2009; Singh et al. 2010]. We conducted simulation of the rule
based fuzzy control approach in the face of a highly dynamic workload that is illus-
trated in Figure 2. It is sudden step-changes based, similar to a workload scenario
used in [Urgaonkar et al. 2008].

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Autonomic Provisioning for Percentile Delay Guarantee A:7

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100 120

en
d-

to
-e

nd
 d

el
ay

 (
m

ill
is

ec
on

ds
)

time (min)

measured
target

Fig. 3. End-to-end delay variation of a rule-based fuzzy controller.

Simulation results in Figure 3 show significant deviation of the 95th-percentile end-
to-end delay from its pre-specified target 1400 ms. We observe a relative delay devia-
tion and temporal target violation of 47% and 38% respectively. Relative delay devia-
tion is the ratio of the square root mean of delay errors to the end-to-end delay target.
Temporal target violation is a measure of the percentage of times when the end-to-end
delay target is violated within the measuring time frame. In the figure, the top of the
error bar is the measured 95th-percentile end-to-end delay, the bottom of the error bar
is the measured 5th-percentile end-to-end delay, and the data point is the mean.

The rule based fuzzy controller is unable to adapt itself to the highly dynamic work-
load since the rule base and fuzzy membership functions are fixed at the design time
through trial and error. Moreover, its performance is sensitive to a statically chosen
parameter, the input scaling factor. This problem exists for other rule-based fuzzy con-
trol approaches as well [Liu et al. 2003; Wei and Xu 2006]. For autonomic resource
management and performance guarantee of Internet services, self-adaptive server pro-
visioning is a critical and challenging issue.

We design a self-adaptive and self-constructing neural fuzzy controller as a hybrid of
control theoretical and machine learning techniques. Figure 4 shows the block diagram
of the dynamic server provisioning approach with a self-adaptive neural fuzzy control.
The task of the controller is to adjust server provisioning on multi-tier clusters in
order to bound the percentile-based end-to-end delay Td to a specified target Tref . The
controller has two inputs; error denoted as e(k) and change in error denoted as ∆e(k).
Error is the difference between the target and the measured value of the percentile-
based end-to-end delay in the kth sampling period, which is the target delay minus the
measured delay. The output of the controller is the server resource adjustment ∆m(k)
for the next sampling period.

The decomposition of server resource adjustment ∆m(k) to the multiple tiers is per-
formed in proportion to the per-tier delay observed from the controlled system. We
choose per-tier delay rather than per-tier utilization because it directly affects the end-
to-end response time. As the number of servers to be allocated to each tier can be a real
value by the decomposition approach, there are two options. The first is at fine gran-
ularity. That is, a server capacity can be reconfigured according to the real value at
run time with the modern server virtualization technology. However, it requires that
the hosting physical machine has available resources for the virtual server resizing.
Otherwise, it may require server migrations, which are often costly [Isci et al. 2010;
Jung et al. 2010]. The second is at the coarse granularity of a whole server. It uses
the nearest integer value and the minimum is one. This option is feasible when it can
find a physical machine for the server replication. In a datacenter, the administrator
can use either option or the hybrid. As related works in [Lama and Zhou 2009; 2012a;

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Palden Lama and Xiaobo Zhou

Self−Adaptive Neural
Fuzzy Controller

Multi−tier Server
Clusters

Online Learning
Algorithm

d/dt

d/dt

e(k)

Tref Td

Td

e(k)∆

e(k)∆

e(k) ∆m(k)

Fig. 4. Block diagram of a self-adaptive neural fuzzy control.

Layer 2

Layer 3

 Layer 4

y

Layer 1

x1 x2

w 1
w 2

w

u1
u2

u

uA 1 1) uA 1 1)
uA 1 1)

uA 2 2)

uA 2 2)

uA 2 2)
1

2 (x
M

 (x

1

2

 (x

 (x

M (x
 (x

M

M

Π Π Π

Σ

Fig. 5. Schematic diagram of the fuzzy neural network.

Urgaonkar et al. 2008], we adopt the second option in this work. But the neural fuzzy
control based approach supports either option and the hybrid as well.

The neural fuzzy controller is designed to tolerate 5% error within the end-to-end de-
lay target. As long as the error in delay is within the tolerance bound, it stops further
control actions. The controller uses an online learning algorithm to automatically con-
struct its structure and adapt its parameters. Online learning is a category of machine
learning techniques, which learns one instance at a time from each data collected from
the system. This makes it suitable to be deployed at run time.

3.1. Design of neural fuzzy controller
We design the neural fuzzy controller using a general four-layer fuzzy neural network
as shown in Figure 5. The various layers of the neural network and their intercon-
nections provide the functionality of membership functions and rule base of a fuzzy
controller. Unlike a rule based fuzzy controller, the membership functions and rules
dynamically construct and adapt themselves as the neural network grows and learns.
Hence, the proposed controller is robust to highly dynamic workload variation. Table I
summarizes important notations.

The fuzzy neural network adopts fuzzy logic rules as follows:

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Autonomic Provisioning for Percentile Delay Guarantee A:9

Table I. Notation Summary.

Symbol Description
Tref The percentile-based end-to-end delay target
Td The measured percentile-based end-to-end delay
k Index of the control sampling interval
i Index of the input variable in a fuzzy logic rule
j Index of the fuzzy membership function
r Index of the fuzzy logic rule
e(k) Error for the control input
∆e(k) Change in error for the control input
∆m(k) The resource adjustment for the server system

Rr: IF x1 is Aj
1 .. and xn is Aj

n, THEN y is br
where Rr is the rth fuzzy logic rule, xi is an input, either to be e(k) or ∆e(k), and y is

the rule’s output. Aj
i is the jth linguistic term associated with the ith input variable in

the precondition part of the fuzzy logic rule Rr. Linguistic terms are fuzzy values such
as “positive small”, “negative large”, etc. They describe the input variables with some
degree of certainty, determined by their membership functions uAj

i
. The consequent

part or outcome of the rule Rr is denoted as br. Each rule contributes to the controller
output, denoted as ∆m(k) according to its firing strength.

The functions of the nodes in each layer are as follows:
Layer (1): Each node in this layer corresponds to one input variable. These nodes

only pass the input signal to the next layer. The proposed neural fuzzy controller has
two input nodes corresponding to e(k) and ∆e(k). The net input and net output for the
ith node are:

net
(1)
i = xi, y

(1)
i = f

(1)
i (net

(1)
i) = net

(1)
i (1)

Layer (2): Each node in this layer acts as a linguistic term assigned to one of the
input variables in layer (1). These nodes use their membership functions to determine
the degree to which an input value belongs to a fuzzy set. A Gaussian function is
adopted as the membership function. For the jth fuzzy membership node, the net input
and net output are:

net
(2)
ji = − (xi −mji)

2

σ2
ji

(2)

y
(2)
ji = uAj

i
= f

(2)
j (net

(2)
ji) = exp(net

(2)
ji) (3)

Here, mji and σji are the mean and standard deviation of a Gaussian function of the
jth linguistic term associated with ith input variable. They determine the position and
shape of the input membership functions. As shown in Figure 5, let a node represent a
linguistic term A1

1 for the input variable x1, which is e(k). Assume that its membership
function uA1

1
has a mean m11 and standard deviation σ11 of -50 and 20 respectively. A1

1

is a fuzzy value such as “negative small”, “negative large”, etc. that corresponds to the
numeric value of -50 with absolute certainty. The degree of certainty is calculated by
using the membership function uA1

1
. If the measured error in the percentile-based end-

to-end delay e(k) is -40, the output of the node will be 0.77 from Eq. (2). Similarly, let
another node represent a linguistic term A1

2 for the input variable x2, which is ∆e(k).
Assume that its membership function uA1

2
has a mean and standard deviation of -30

and 10 respectively. If the change in error ∆e(k) is -30, the output of the node is 1.
Layer (3): Each node in this layer represents the precondition part of one fuzzy logic

rule. Each node multiplies the incoming signals and outputs the product result, i.e.,

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Palden Lama and Xiaobo Zhou

the firing strength of a rule. For the rth fuzzy rule node,

net(3)r = uAj
1
· uAj

2
... · uAj

n
(4)

y(3)r = ur = f (3)
r (net(3)r) = net(3)r (5)

where n is the number of input variables. The outputs of Layer (2) will be the inputs to
this layer. From the previous example, the inputs to a node in this layer are 0.77 and
1. As a result, the net input and the net output will be 0.77.

Layer (4): This layer acts a defuzzifier. It converts fuzzy conclusions from Layer (3)
into numeric output in terms of resource adjustment ∆m(k). The single node in this
layer sums all incoming signals to obtain the final inferred result. The net input and
net output are:

net(4) =
M∑
r=1

wr · ur (6)

y(4) = f (4)(net(4)) = net(4) (7)

where the link weight wr is the output action strength associated with the rth rule and
y(4) is the output of the neural fuzzy controller. For example, if the link weight wr is
3, the output ∆m(k) of this layer will be 2.31 since ur is 0.77. This result is intuitive
because negative values of e(k) and ∆e(k) imply that the percentile-based end-to-end
delay is greater than its target and the situation is further worsening. Thus, the neural
fuzzy controller allocates more servers to reduce the error. The magnitude of resource
adjustment depends on various parameters and interconnections of the neural fuzzy
controller, which are determined and adapted dynamically as described in the next
section.

Note that the control framework can be extended for integration with the utility com-
puting paradigm when needed. The error term e(k) in the controller can be replaced
by a utility function that captures the cost-benefit tradeoff of server allocations.

3.2. Online Learning of Neural Fuzzy Controller
The neural fuzzy controller combines fuzzy logic’s reasoning with the learning capabil-
ities of an artificial neural network. It is capable of automatically learning its structure
and parameters using online request response time measured from a live system. Ini-
tially, there are only input and output nodes in the neural network. The membership
and the rule nodes are generated dynamically through the structure and parameter
learning processes are described as follows.

3.2.1. Structure Learning Phase. For each input node in layer (1), the structure learning
technique decides to add a new node in layer (2) and the associated rule node in layer
(3), if all the existing rule nodes have firing strength smaller than a certain degree
threshold. Low firing strength of rule nodes imply that the input data pattern of error
and change in error is not recognized by the existing neural network. Hence, the neural
network needs to grow. We use a decaying degree threshold to limit the size of the
neural network. The new nodes at layer (2) have membership functions with a mean
mnew

ji equal to the input xi and standard deviation σnew
ji equal to a pre-specified or a

randomly generated value.
To avoid the newly generated membership function being too similar to the exist-

ing one, the similarities between the new membership function and the existing ones
must be checked. We use the similarity measure proposed in [Lin and Lee 1992] to
check the similarity of two membership functions. Suppose uA(x) and uB(x) are two
Gaussian membership functions with means mA, mB and standard deviations σA, σB

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Autonomic Provisioning for Percentile Delay Guarantee A:11

respectively. Then the similarity measure E(A,B) is given by:

E(A,B) =
|A

∩
B|

σA
√
π + σB

√
π − |A

∩
B|

. (8)

Without loss of generality, assuming mA ≥ mB ,

|A
∩

B|) = 1

2

h2(mB −mA +
√
π(σA + σB))√

π(σA + σB)
(9)

+
1

2

h2(mB −mA +
√
π(σA − σB))√

π(σB − σA)
(10)

+
1

2

h2(mB −mA −
√
π(σA − σB))√

π(σA − σB)
. (11)

where h(x) = max(0, x). In the case of scenario σA = σB ,

|A
∩

B|) = 1

2

h2(mB −mA +
√
π(σA + σB))√

π(σA + σB)
. (12)

If the similarity measure between the new membership function and the existing
ones corresponding to either input variable is less than a pre-specified value, both new
membership functions are adopted. Since the generation of membership functions in
layer (2) corresponds to the generation of a new fuzzy rule, the link weight, wnew, asso-
ciated with a new fuzzy rule has to be decided. Generally, the link weight is initialized
with a random or pre-specified value. The neural fuzzy controller applies an intuitive
understanding of the system behavior for initializing the link weight. If the measured
error in delay e(k) is positive, the link weight is initialized with a randomly chosen
small negative number and vice versa. For instance, a positive value of e(k) indicates
that the observed delay is smaller than the target delay. It is reasonable to reduce the
number of servers allocated to the system by initializing a negative wnew. Thus, the
controller takes corrective actions in the right direction from the beginning although
the magnitude of the link weight has not been fully learned.

The structure learning phase dynamically determines proper input space fuzzy par-
titions and fuzzy logic rules, depending on the measured error and change in error in
the percentile-based end-to-end delay. This is in contrast to a rule based fuzzy con-
troller with heuristically designed rules, which uses input scaling factors and a fixed
set of membership functions to statically determine the input space fuzzy partitions.
Hence, the neural fuzzy controller performs consistently well for a wide range of error
and delay targets.

3.2.2. Parameter Learning Phase. The parameter learning is used to adaptively modify
the consequent part of existing fuzzy rules and the shape of membership functions to
improve the controller’s performance in the face of highly dynamic workload variation.
The goal of performance improvement is expressed as a problem of minimizing an
energy function,

E =
1

2
(Tref − Td)

2 =
1

2
(e(k))2 (13)

where Tref and Td are the target and measured values of the percentile-based end-to-
end delay. The learning algorithm recursively obtains a gradient vector in which each
element is defined as the derivative of the energy function with respect to a parameter
of the network. This is done by the chain rule method. The method is referred to as
the backpropagation learning rule as the gradient vector is calculated in the direction

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 Palden Lama and Xiaobo Zhou

opposite to the flow of the output of each node. The backpropagation learning algorithm
is described as follows.

Layer (4): The error term to be propagated is computed as

δ(4) = − ∂E

∂y(4)
=

[
− ∂E

∂e(k)

∂e(k)

δy(4)

]
=

[
− ∂E

∂e(k)

∂e(k)

∂Td

∂Td

∂y(4)

]
(14)

The link weight wr is updated by the amount

∆wr = −ηw
∂E

∂wr
=

[
−ηw

∂E

∂y(4)

]
∂y(4)

∂net(4)
∂net(4)

∂wr
= ηwδ

(4)ur (15)

where ηw is the learning rate of the link weight. The weights in layer (4) are updated
according to the following equation.

wr(k + 1) = wr(k) + ∆wr (16)

where k denotes the current sampling interval. Thus, the output action strength or
consequence associated with each fuzzy rule is adjusted in order to reduce the error in
the percentile-based end-to-end delay.

Layer (3): Only the error term needs to be calculated and propagated in this layer.
That is

δ(3)r = − ∂E

∂net
(3)
r

=

[
− ∂E

∂y(4)

] [
∂y(4)

∂net(4)
∂net(4)

∂y
(3)
r

∂y
(3)
r

∂net
(3)
r

]
= δ(4)wr (17)

Layer (2): The error term is computed as follows,

δ
(2)
ji = − ∂E

∂net
(2)
ji

=

[
− ∂E

∂net
(3)
r

] [
∂net

(3)
r

∂y
(2)
ji

∂y
(2)
ji

∂net
(2)
ji

]
= δ(3)r y(3)r = δ(3)r ur (18)

The update law for mji is

∆mji = −ηm
∂E

∂mji
= 2ηmδ

(2)
ji

(xi −mji)

(σji)2
(19)

The update law for σji is calculated as

∆σji = −ησ
∂E

∂σji
= 2ησδ

(2)
ji

(xi −mji)
2

(σji)3
(20)

where ηm and ησ are the learning-rate parameters of the mean and the standard devi-
ation of the Gaussian function, respectively. The mean and standard deviation of the
membership functions in this layer are updated as following.

mji(k + 1) = mji(k) + ∆mji (21)
σji(k + 1) = σji(k) + ∆σji (22)

Thus, the position and the shape of the membership functions are adjusted dynami-
cally. The exact calculation of the Jacobian of the system, ∂Td/∂y

(4) in Eq. (14), cannot
be determined due to the unknown dynamics of the multi-tier server clusters. To over-
come this problem, we apply a delta adaptation law proposed in [Lin et al. 1999] as
follows,

δ(4) ≡ e(k) + ∆e(k) (23)

The proof of the convergence of the neural fuzzy controller using Eq. (23) is similar to
that in [Lin et al. 1999] and is omitted here.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Autonomic Provisioning for Percentile Delay Guarantee A:13

NL

PS

ZE

NL NM NS ZE PS PM PL

VL VL VL

VL VL

VL VL

VL

VL

VL

VL

VLPM

PL

NS

NM

VL

SM

SM SM

SM

SM

SM SM SM

SM

VS VS

VS

VS

VS VS

ZE

LG

LG

LG

ML

ML

ML

SMSL

SL

SL

SL

SL

LG LG

LG

ZE SL ML LG

α
∆

e(k)

e(k)
" "

" "

" "

ZE

1 2

4

3
5

2

4

3

1

Fig. 6. The fuzzy rule base for scaling factor α.

4. ENHANCEMENTS ON NEURAL FUZZY CONTROLLER
One major challenge in controlling a physical process is its inherent process delay. For
the dynamic server provisioning process, it is the latency between allocating servers
and measuring the effect of the server provisioning on the percentile-based end-to-end
delay. This latency is caused by various factors including but not limited to the time
required to start up new servers (say virtual machines). For example, long lived work-
load sessions may continue to only use existing servers due to the locality issue while
newly added servers are already started up, which would increase the measured server
switching time. Furthermore, newly added servers do not process new session requests
as quickly as the existing servers due to the cache warmup time. To compensate for the
server switching delay, we propose two enhancements for the neural fuzzy controller.

The first enhancement is on the parameter learning phase. In the neural fuzzy con-
troller, the parameter adjustment depends on the measured error in the percentile-
based end-to-end delay, current weights and outputs of the fuzzy neural network nodes
at various layers. However, due to the server switching delay, the current measure-
ment of delay error may actually be caused by the weights and outputs of the neural
fuzzy controller that existed a few sampling intervals earlier. In our enhancement, we
store the weights and outputs of the neural fuzzy controller at each sampling inter-
val. After a few sampling intervals equivalent to the server switching delay, the stored
values are utilized for parameter learning using back propagation. This enhancement
ensures that the controller’s parameters are adjusted considering the effect of server
switching.

We further enhance the neural fuzzy controller by integrating a self-tuning compo-
nent that adjusts its output to pro-actively compensate for the server switching effects.
We introduce an output scaling factor α in the range [0,1]. It is multiplied by the output
of the neural fuzzy controller to determine the actual adjustment in server allocation.

Figure 6 shows the rule base for the scaling factor controller α. The rule base is
designed to perform on-line gain variation of the neural fuzzy controller based on in-
stantaneous behavior of the system. The table shows the rules corresponding to vari-
ous regions of the system behavior that is shown in Figure 7. The preconditions of a
rule is described by the linguistic values of “e(k)” and “∆e(k)”, such as NL, NM, NS,
ZE, PS, PM, and PL. They stand for negative large, negative medium, negative small,
zero, positive small, positive medium and positive large, respectively. The outcome of
a rule is described by linguistic values of α, such as ZE, VS, SM, SL, ML, LG and
VL. They stand for zero, very small, small, small large, medium large, large and very
large, respectively. These rules are applied only to adjust the scale of the neural fuzzy

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 Palden Lama and Xiaobo Zhou

3

2

4

1

3

4

5

control intervals

1

target

measured

2pe
rc

en
til

e
ba

se
d

en
d−

to
−

en
d

de
la

y

Fig. 7. Fuzzy control effect.

controller’s output. The granularity of output in terms of server provisioning is still de-
termined by the self-adaptive neural fuzzy controller. A few important considerations
for the rule design are as follows:

(1) When the error is large but has the same sign as the change in error, α should be
made very large to prevent from further worsening the situation. This will amplify
the corrective action suggested by the neural fuzzy controller in terms of server
provisioning.

(2) If the server switching delay is high, the controller may not achieve expected out-
put after allocating required number of servers, and hence, may overreact by as-
signing too many servers in the next sampling period. In such situations, usually
the error is big but has the opposite sign as compared to the change in error. This
is compensated by adjusting the output scaling factor to a small value. We assume
that a new server is fully started within a single control interval. However, the
overall server switching delay can be much longer than the control interval.

(3) To improve the controller performance under load disturbance, α should be suffi-
ciently large around the steady state. For example, if the error is small and has the
same sign as a large change in error, α should be large to bring the system back to
steady state within a short time.

(4) At a steady state, when the error is small and the change in error is also small, α
should be very small to avoid oscillations around the equilibrium point.

When a server startup time is longer than the control interval, the neural fuzzy
controller suspends its control actions until the newly allocated server is fully started.
The rationale is that the interim period can show very unstable and unpredictable
behavior no matter how good the control policy is.

5. PERFORMANCE EVALUATION
We evaluate the server provisioning approach based on the self-adaptive neural fuzzy
control in a typical three-tier server cluster with extensive simulations. In simula-
tions, as others in [Chen et al. 2006] we assume that the database tier can be repli-
cated on-demand as it employs a shared architecture. The controlled multi-tier system
has a number of servers pre-allocated initially. For choosing the initial server alloca-
tion, we first run a number of simulations for various server allocations to observe
the percentile-based end-to-end delay in the face of a stationary workload of 12 re-
quests per second. Then, we choose the server allocation that provided the end-to-end
delay close to a target of 1500 ms. The setting is 1 web server, 6 application servers
and 5 database servers. We use the same initial server allocation for all simulations

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Autonomic Provisioning for Percentile Delay Guarantee A:15

Table II. Workload characteristics A.

Parameter WebTier AppTier DBTier
si 20 ms 294 ms 254 ms
σ2
i 848 2304 1876

to demonstrate that the dynamic provisioning approach based on the neural fuzzy
controller is able to guarantee the percentile-based end-to-end delay target when the
workload and delay targets vary dynamically. In practice, the initial server allocation
in the controlled system may be decided by a datacenter administrator based on best
practices. The research in [Meng et al. 2010] proposed an interesting data center ca-
pacity planning approach that exploits statistical multiplexing among the workload
patterns of multiple virtual machines. The research in the initial data center capacity
planning is complementary to our research in dynamic server provisioning.

We generate a synthetic workload using Pareto distributions of request inter-arrival
time and service time, following a G/G/1 FCFS queueing model. Pareto distribution
representing a heavy-tailed traffic has close resemblance to real Internet traffic that
is bursty in nature [Lama and Zhou 2009; Zhou et al. 2004]. Although the workload is
generated according to a specific model and requests are processed in a specific prin-
ciple, our self-adaptive neural fuzzy controller itself does not make such assumptions.
We choose the workload characteristics of a three-tier application reported in [Ur-
gaonkar et al. 2008]. Table II gives the characteristics, in which si and σ2

i are the
average service time and the variance of service time distribution of requests at tier i,
respectively. We apply dynamic request arrival rates with sudden step-changes similar
to what used in [Urgaonkar et al. 2008] and with continuous changes similar to what
used in [Chen et al. 2006]. Each representative result reported is an average of 100
runs.

We use two performance metrics, relative delay deviation as in [Wei and Xu 2006]
and target violation. Relative delay deviation is based on the square root mean of delay
errors. It reflects the transient characteristics of a control system and measures how
closely the percentile-based delay of requests follows a given target for n sampling
intervals. That is,

R(e) =

√∑n
k=1 e(k)

2/n

Tref
. (24)

The relative deviation, however, does not differentiate whether the actual end-to-end
delay is greater than or less than the target. It is indeed desirable that an actual end-
to-end delay is less than the target. To measure the temporal violation of delay target,
we define a metric of target violation

T (v) =

∑n
k=1 v(k)

n
(25)

where v(k) is one if the actual end-to-end delay is greater than the target Tref , and
zero if it is less than or equal to Tref .

The neural network itself is empty initially. As a new node is added into the net-
work, the neural fuzzy controller will choose the sign of the pre-configured link weight
according to the observed error in delay. If the measured error in delay is positive,
the link weight is initialized with a randomly chosen small negative number from the
range of [-6, -3] and vice versa. Choosing initial link weight in the range [-6, -3] or [3,
6] is to attenuate the resource allocation adjustments made by the neural fuzzy con-
troller at its initial phase. The controller will allocate or deallocate at least three and
at most six virtual servers each iteration. As a result, the controller is able to take cor-
rective actions right from the beginning although the magnitude of the link weight has

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Palden Lama and Xiaobo Zhou

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100 120

en
d-

to
-e

nd
 d

el
ay

 (
m

ill
is

ec
on

ds
)

time (min)

measured
target

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120

nu
m

be
r

of
 s

er
ve

rs
 p

er
 ti

er

time (min)

web servers
app servers

db servers

(a) End-to-end delay assurance. (b) Server allocation.

Fig. 8. End-to-end performance of neural fuzzy control for a dynamic workload.

not been fully learned. The neural network grows as the values of error and change
in error are calculated based on the measured end-to-end delay, and the magnitude of
the link weight is updated by the fast online learning.

We initialize the neural fuzzy controller parameters as follows. When a new node is
added in layer (2), its membership function has a standard deviation σji equal to a pre-
specified value 20. The standard deviation of a fuzzy membership function determines
the range of input values that will trigger a particular fuzzy rule. Since neural network
parameters associated with the newly added node are not yet learned, it needs to re-
strict the effect of the new node to a smaller range of input values. The learning rates
ηw, ηm and ηsigma are set to 0.8 for aggressive initial learning. As the neural network
grows in size, the learning rate is gradually decreased in proportion to the number of
rule nodes for fast convergence.

The end-to-end delay of the system is measured periodically at a control interval
of 3 minutes. The choice of control interval depends on the trade-off between respon-
siveness of the controller and robustness to measurement noise. The controller applies
an exponential moving average method to further reduce the transient noise in delay
measurement.

5.1. Effectiveness of Neural Fuzzy Control Approach
We evaluate the effectiveness of the new approach for performance guarantee under
both dynamic and stationary workloads. First, we use a highly dynamic workload with
sudden step-changes in request arrival rate as shown in Figure 2. We set the end-to-
end delay bound to 1400 ms.

Figure 8(a) demonstrates the effectiveness of the neural fuzzy controller in assur-
ing the 95th-percentile end-to-end delay guarantee. The extent of server allocation and
de-allocation is crude at the beginning when the controller has gone through very few
learning steps. The effect of adding or removing servers in such cases is usually not
very good. Results show that during the first 24 minutes, the measured end-to-end de-
lay oscillates significantly around the target delay of 1400 ms with the control actions.
However in some cases, a single control action may be able to bring the end-to-end de-
lay very close to the target depending upon the existing server allocation. For example,
at time 60th minute, adding 2 application servers and 2 database servers to the system
is just enough to bring the end-to-end delay close to the target.

Figure 8(b) shows the corresponding server allocations. The controller stops the con-
trol action as long as the error in the end-to-end delay is within the 5% delay tolerance
bound. This improves the system stability. For example, during 30th minute and 45th
minute, there is no change in the server allocation. Note that the number of servers

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Autonomic Provisioning for Percentile Delay Guarantee A:17

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100 120

av
er

ag
e

de
la

y
(m

ill
is

ec
on

ds
)

time (min)

web servers
app servers

db servers

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

pe
r-

tie
r

se
rv

er
 u

til
iz

at
io

n
%

time (min)

web servers
app servers

db servers

(a) Per-tier average delay. (b) Per-tier utilization.

Fig. 9. Per-tier performance of neural fuzzy control for a dynamic workload.

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60

en
d-

to
-e

nd
 d

el
ay

 (
m

ill
is

ec
on

ds
)

time (min)

measured
target

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60

nu
m

be
r

of
 s

er
ve

rs
 p

er
 ti

er

time (min)

web servers
app servers

db servers

(a) End-to-end delay assurance. (b) Server allocation.

Fig. 10. End-to-end performance of neural fuzzy control for a stationary workload.

allocated to the web tier remains the same. This is due to the workload characteris-
tics used in Table II. The web tier has relatively small resource demand compared to
the application and database tiers. Hence, the controller allocates more servers to the
application tier and database tier.

Figures 9(a) and (b) show the per-tier delay and server utilization under the highly
dynamic workload. The per-tier delay of requests as well as server utilization vary
across tiers mainly due to the characteristics of per-tier resource demands of the given
workload as shown in Table II.

Overall, experimental results show that the new server provisioning approach
achieves a small relative delay deviation of 14% and target violation of 17% respec-
tively. This is a significant improvement from the performance of the rule based fuzzy
controller for the same workload scenario in Figure 3, where the relative delay devia-
tion and the target violation are 47% and 38% respectively.

The neural fuzzy controller is robust to highly dynamic workload variation due to its
self-adaptive capability. There are a few spikes in the end-to-end delay due to sudden
changes in the applied workload. However, it achieves the delay guarantee in a very
responsive manner, usually in few intervals after there is a sudden step-change in the
request arrival rate.

We also apply a stationary workload with an average request arrival rate of 12 re-
quests per second. Figures 10(a) and 10(b) show the end-to-end delay variation and
changes in server allocation. There is an overshooting in the number of application
and database servers allocated at the beginning. It is due to the fact that the neural
fuzzy controller is empty at the beginning. It learns how to make control decisions at

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 Palden Lama and Xiaobo Zhou

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60

av
er

ag
e

de
la

y
(m

ill
is

ec
on

ds
)

time (min)

web servers
app servers

db servers

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

pe
r-

tie
r

se
rv

er
 u

til
iz

at
io

n
%

time (min)

web servers
app servers

db servers

(a) Per-tier average delay. (b) Per-tier utilization.

Fig. 11. Per-tier performance of neural fuzzy control for a stationary workload.

run time. As the learning process proceeds, the control behavior improves over time.
Results show that the neural fuzzy controller is able to guarantee the 95th-percentile
end-to-end delay target of 1000 ms within a couple of sampling intervals, in spite of
the fact that the controller starts its operation with an empty structure. This is due to
its capability to self-construct its structure and to adjust its parameters through the
fast online learning algorithm.

Figures 11(a) and 11(b) show the per-tier delay and server utilization under the
stationary workload. The per-tier delay of requests as well as server utilization vary
across tiers mainly due to the characteristics of per-tier resource demands of the given
workload as shown in Table II. More stable results compared to those in Figures 9(a)
and 9(b) are due to the fact that the workload is stationary rather than highly dynamic.

5.2. Comparison With Rule Based Fuzzy Controllers
A rule based fuzzy controller has shown its merits in achieving performance assurance
through model-independent resource allocation and dynamic output scaling factor tun-
ing [Lama and Zhou 2009; 2012a]. However, it shows inconsistent delay guarantee
and significantly more target violations in case of highly dynamic workloads. That is
mainly due to the fact that the rule based fuzzy controller applies statically chosen
input scaling factor, rule base and membership functions that are manually tuned for
a particular workload and a delay target. In this section, we compare the performance
of our neural fuzzy controller (NFC) with a rule based fuzzy controller (RBFC) used
in [Lama and Zhou 2009; 2012a]. We choose an input scaling factor of 1/500 as it shows
good performance under a stationary workload for the rule based fuzzy controller. For
quantitative comparison, we take the performance of NFC as a baseline and define the
performance difference between NFC and RBFC as

PDdeviation =
R(e)RBFC −R(e)NFC

R(e)NFC
(26)

PDviolation =
T (v)RBFC − T (v)NFC

T (v)NFC
(27)

If PD is positive, the NFC has better performance than RBFC and vice versa.

5.2.1. Dynamic Workload with Sudden Step-Change Request Arrival Rate. First, we apply a
dynamic workload with sudden step-changes in the request arrival rate as shown in
Figure 2. Figure 12 shows that the self-adaptive neural fuzzy controller is more ro-
bust to the dynamic workload variation compared to the rule based fuzzy controller in
assuring the 95th-percentile end-to-end delay guarantee (1500 ms). NFC outperforms

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Autonomic Provisioning for Percentile Delay Guarantee A:19

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100 120

en
d-

to
-e

nd
 d

el
ay

 (
m

ill
is

ec
on

ds
)

time (min)

measured
target

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100 120

en
d-

to
-e

nd
 d

el
ay

 (
m

ill
is

ec
on

ds
)

time (min)

measured
target

 0

 10

 20

 30

 40

 50

 60

deviation violation

de
vi

at
io

n
an

d
vi

ol
at

io
n

va
lu

e

RBFC
NFC

(a) with RBFC. (b) with NFC. (c) performance comparison.

Fig. 12. 95th-Percentile end-to-end delay assurance for a dynamic step-change workload(target 1500 ms).

 0

 10

 20

 30

 40

 50

 60

 800 1000 1200 1400 1600

R
el

at
iv

e
de

vi
at

io
n

End-to-end delay target (milliseconds)

RBFC
NFC

 0

 10

 20

 30

 40

 50

 60

 800 1000 1200 1400 1600

T
ar

ge
t v

io
la

tio
n

End-to-end delay target (milliseconds)

RBFC
NFC

-20

 0

 20

 40

 60

 80

 100

9 10 11 12 13 14

P
er

f.
D

iff
 (

%
)

End-to-end delay target (× 102 milliseconds)

deviation diff
violation diff

(a) relative delay deviation. (b) temporal violation. (c) performance difference.

Fig. 13. Performance comparison for various delay targets with dynamic step-change workload.

RBFC by 76% and 33% in terms of the relative delay deviation and the target violation
respectively. Its robustness to highly dynamic workloads is due to the self-adaptive
and self-learning capabilities.

Next, we conduct sensitivity analysis of two controllers for various end-to-end delay
targets. Figure 13(a) shows that the relative delay deviation tends to increase with the
increase in the end-to-end delay target (from 800 ms to 1600 ms). This is due to the fact
that larger delay targets require fewer servers for allocation, making it more difficult
to achieve fine-grained control on the 95th-percentile end-to-end delay. As shown in
Figure 13(b), the temporal target violation is small for medium range of delay targets
between 1000 ms to 1400 ms. The delay targets higher than this range show more
target violations due to a small number of servers involved in the control action. The
targets in the lower range also result in larger target violations due to the fact that a
controller takes more control intervals to reach very low delay targets. Compared to
the rule based fuzzy controller, the new neural fuzzy controller consistently achieves
less delay deviation and target violation for various delay targets. Figure 13(c) shows
that NFC outperforms RBFC for all delay targets except 1100 ms. For that case, the
rule based fuzzy controller has slightly better performance in terms of delay deviation
because it is well suited for that particular delay target. On average, NFC performs
better than RBFC by 32% and 59% in terms of delay deviation and target violation
respectively. The main reason of the performance improvement is due to the fact that
it adapts itself to accommodate various range of inputs instead of relying on statically
chosen input scaling factor.

5.2.2. Dynamic Workload with Continuous Change in Request Arrival Rate. Our neural fuzzy
control based server provisioning approach is applicable to any type of workload and
delay guarantee metric due to its self-adaptive capability. We illustrate this by experi-
menting on a scenario with continuously changing load similar to what used in [Chen
et al. 2006], in which the workload request arrival rate variation follows a sinusoid
(sine) function. Figure 14 illustrates the workload scenario. As a case study, we aim to

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 Palden Lama and Xiaobo Zhou

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120

R
eq

ue
st

 a
rr

iv
al

 r
at

e
(p

er
 s

ec
)

time (min)

Fig. 14. A continuously changing dynamic workload for a three-tier Internet service.

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120

en
d-

to
-e

nd
 d

el
ay

 (
m

ill
is

ec
on

ds
)

time (min)

median
target

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120

en
d-

to
-e

nd
 d

el
ay

 (
m

ill
is

ec
on

ds
)

time (min)

median
target

 0

 10

 20

 30

 40

 50

 60

deviation violation

de
vi

at
io

n
an

d
vi

ol
at

io
n

va
lu

e

RBFC
NFC

(a) with RBFC. (b) with NFC. (c) performance comparison.

Fig. 15. Median end-to-end delay for a continuously changing workload (target 1000 ms).

 0

 10

 20

 30

 40

 50

 60

 70

 800 1000 1200 1400 1600 1800

R
el

at
iv

e
de

vi
at

io
n

End-to-end delay target (milliseconds)

RBFC
NFC

 0

 10

 20

 30

 40

 50

 60

 70

 800 1000 1200 1400 1600 1800

T
ar

ge
t v

io
la

tio
n

End-to-end delay target (milliseconds)

RBFC
NFC

 0

 50

 100

 150

 200

8 9 10 11 12 13 14 15 16 17

P
er

f.
D

iff
 (

%
)

End-to-end delay target (× 102 milliseconds)

deviation diff
violation diff

(a) relative delay deviation. (b) temporal violation. (c) performance difference.

Fig. 16. Performance comparison for various delay targets with continuously changing workload.

assure the median end-to-end delay guarantee instead of 95th-percentile based guar-
antee. This experiment is to demonstrate the capability of the neural fuzzy control in
assuring other percentile-based end-to-end delay guarantee.

As shown in Figure 15, the median end-to-end delay is mostly above the target of
1000 ms as the workload continuously increases till the time 60 minutes. Both con-
trollers allocate more servers to reduce the median end-to-end delay. After time 60
min, the median end-to-end delay is mostly below the target as the workload contin-
uously decreases. In this case, both controllers de-allocate servers to bring the end-
to-end delay close to the target. Throughout the experiment, the self-adaptive NFC is
able to keep the median end-to-end delay closer to the target as compared to RBFC.
NFC outperforms RBFC by 85% and 14% in terms of the relative delay deviation and
the target violation respectively.

Next, we conduct sensitivity analysis of two controllers for various end-to-end delay
targets. Figures 16(a), (b) and (c) show that the neural fuzzy controller consistently
outperforms the rule based fuzzy controller in terms of the relative delay deviation

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Autonomic Provisioning for Percentile Delay Guarantee A:21

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500

R
el

at
iv

e
de

vi
at

io
n

1/Input scaling factor

RBFC
NFC

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500

T
ar

ge
t v

io
la

tio
n

1/Input scaling factor

RBFC
NFC

 0

 50

 100

 150

 200

1 5 10 15 20 25

P
er

f.
D

iff
 (

%
)

1/Input scaling factor × 102"

deviation diff
violation diff

(a) relative delay deviation. (b) temporal violation. (c) performance difference.

Fig. 17. Performance comparison for various input scaling factors with delay target 1400 ms in case of
dynamic step-change workload.

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500

R
el

at
iv

e
de

vi
at

io
n

1/Input scaling factor

RBFC
NFC

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500

T
ar

ge
t v

io
la

tio
n

1/Input scaling factor

RBFC
NFC

 0

 50

 100

 150

 200

1 5 10 15 20 25 30

P
er

f.
D

iff
 (

%
)

1/Input scaling factor × 102

deviation diff
violation diff

(a) relative delay deviation. (b) temporal violation. (c) performance difference.

Fig. 18. Performance comparison for various input scaling factors with delay target 1000 ms in case of
dynamic step-change workload.

and target violation for various delay targets. Similar to the results observed in case
of the sudden step-change workload, the performance difference varies depending on
the range of delay targets for which the rule based fuzzy controller is well tuned. For
example, the performance differences in relative delay deviation and temporal target
violation range from 17% to 42% and 0% to 17% respectively for delay targets between
1300 ms and 1600 ms. For delay targets outside this range, the performance difference
is much larger. It is 48% to 165% for relative delay deviation and 14% to 73% for
temporal target violation. On average, NFC outperforms RBFC by 68% and 26% in
terms of delay deviation and target violation respectively.

5.3. Impact of Input Scaling Factor on Controller’s Self Adaptivity
We now study the impact of the input scaling factor on the performance of the rule
based fuzzy controller, and compare its performance with our neural fuzzy controller.
For RBFC, through trial-and-error we observed a certain ratio between the input scal-
ing factors for ∆e(k) and e(k) that gave the best performance. We found this ratio is
about 1:3 for the given workloads. For RBFC in the experiments, the input scaling fac-
tor for ∆e(k) is chosen as one-third of the input scaling factor for e(k). For example,
when the input scaling factor for e(k) is 1/500, it is 1/1500 for ∆e(k). RBFC works well
when it is relatively less sensitive to the change in error.

Figures 17 and 18 show their relative delay deviation, target violation and perfor-
mance difference for end-to-end delay targets 1400 ms and 1000 ms respectively in
case of the dynamic step-change workload. Results demonstrate that increasing the
scaling factor may improve the performance of the rule based fuzzy controller for one
delay target (1400 ms), but it may degrade the performance for another delay target
(1000 ms). In both cases, the performance of the neural fuzzy controller is consistently
better than the rule based control. We observe similar results in case of the continu-
ously changing workload as shown in Figures 19 and 20.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 Palden Lama and Xiaobo Zhou

 0

 10

 20

 30

 40

 50

 60

 70

 80

100 500 1000 1500 2000 2500

R
el

at
iv

e
de

vi
at

io
n

1/Input scaling factor

RBFC
NFC

 0

 10

 20

 30

 40

 50

 60

 70

 80

100 500 1000 1500 2000 2500

T
ar

ge
t v

io
la

tio
n

1/Input scaling factor

RBFC
NFC

-50

 0

 50

 100

 150

 200

1 5 10 15 20 25

P
er

f.
D

iff
 (

%
)

1/Input scaling factor × 102

deviation diff
violation diff

(a) relative delay deviation. (b) temporal violation. (c) performance difference.

Fig. 19. Performance comparison for various input scaling factors with delay target 1100 ms in case of
continuously changing workload.

 0

 10

 20

 30

 40

 50

 60

 70

 80

100 500 1000 1500 2000 2500

R
el

at
iv

e
de

vi
at

io
n

1/Input scaling factor

RBFC
NFC

 0

 10

 20

 30

 40

 50

 60

 70

 80

100 500 1000 1500 2000 2500

T
ar

ge
t v

io
la

tio
n

1/Input scaling factor

RBFC
NFC

-50

 0

 50

 100

 150

 200

1 5 10 15 20 25

P
er

f.
D

iff
 (

%
)

1/Input scaling factor × 102

deviation diff
violation diff

(a) relative delay deviation. (b) temporal violation. (c) performance difference.

Fig. 20. Performance comparison for various input scaling factors with delay target 1300 ms in case of
continuously changing workload.

When the input scaling factor is chosen as 1/100, the rule based fuzzy controller
shows very good performance in terms of relative delay deviation and temporal target
violation for one delay target (1100 ms), but very poor performance for another delay
target (1300 ms). For the target 1100 ms and input scaling factor 1/100, its perfor-
mance is similar to that of neural fuzzy controller. The neural fuzzy controller’s relative
delay deviation is slightly better by 12% and the temporal target violation is slightly
worse by 16%. For all other scaling factors, the neural fuzzy controller significantly
outperforms the rule based fuzzy controller. For the target 1300 ms, the performance
of two controllers is similar when the input scaling factor is chosen to be 1/1000 but
the performance of the neural fuzzy controller is significantly better for most of other
scaling factors.

The rule based fuzzy controller is sensitive to the choice of the input scaling fac-
tor, which attempts to partition the input fuzzy space non-adaptively. For the optimal
performance, it needs to be manually tuned each time for different delay targets. In
practice, a highly dynamic and realistic workload increases the possibility that the
inputs to the fuzzy controller (i.e., error and change in error) may not fit into the in-
put space fuzzy partitions as intended. Furthermore, the delay target can also change
dynamically according to the service level agreement. Hence, there does not exist one
single scaling factor that works best for different scenarios. Since the rule base and
fuzzy membership functions are also fixed at the design time through trial and error,
the rule based fuzzy controller is unable to adapt itself to a highly dynamic workload.
Thus, we need a self-adaptive controller designed based on neural fuzzy control. The
main reason behind the superior performance of the neural fuzzy controller in assur-
ing the end-to-end delay guarantee is its self adaptivity and online learning capability
as compared to trial and error based design of the rule based fuzzy controller.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Autonomic Provisioning for Percentile Delay Guarantee A:23

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100 120

en
d-

to
-e

nd
 d

el
ay

 (
m

ill
is

ec
on

ds
)

time (min)

measured
target

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100 120

en
d-

to
-e

nd
 d

el
ay

 (
m

ill
is

ec
on

ds
)

time (min)

measured
target

 0

 5

 10

 15

 20

 25

 30

 35

deviation violation

w/o enhancement
w enhancement

(a) without enhancements. (b) with enhancements. (c) performance comparison.

Fig. 21. 95th-percentile end-to-end delay assurance with neural fuzzy controller for a dynamic step-change
workload due to server switching delays.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 20 40 60 80 100 120

en
d-

to
-e

nd
 d

el
ay

 (
m

ill
is

ec
on

ds
)

time (min)

median
target

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 20 40 60 80 100 120

en
d-

to
-e

nd
 d

el
ay

 (
m

ill
is

ec
on

ds
)

time (min)

median
target

 0

 20

 40

 60

 80

 100

deviation violation

w/o enhancement
w enhancement

(a) without enhancements. (b) with enhancements. (c) performance comparison.

Fig. 22. Median end-to-end delay assurance with neural fuzzy controller for a continuously changing work-
load due to server switching delays.

5.4. Impact of the Control Enhancements on Server Switching Delay
We demonstrate the impact of the two control enhancements designed in Section 4 on
the performance of the neural fuzzy controller. We assume the times taken by addition
and removal of one virtual server at any tier of an application are 16 and 8 seconds
respectively. Due to the server switching delays, the controller may not achieve the
expected output after adding or removing servers from a multi-tier cluster. Hence, it
may overreact by assigning or removing too many servers in the next control interval.
This results in large and frequent overshoots and undershoots of the 95th-percentile
end-to-end delay from the given target. This is illustrated in Figure 21(a) where we
apply a dynamic step-change workload.

Then, we compensate the server switching effect by the two proposed enhancements
on the neural fuzzy controller. Figures 21(b) and 21(c) show that the integrated neural
fuzzy controller provides more consistent assurance of the 95th-percentile end-to-end
delay guarantee. The improvements in relative delay deviation and target violation
are 47% and 66% respectively. It is due to the fact that the enhancements consider
the effect of server switching delay when learning the control parameters and they
adaptively change the output of the neural fuzzy controller.

We observe similar impact of the enhancements when the neural fuzzy controller
is used to assure the median end-to-end delay guarantee in case of a continuously
changing workload as shown in Figures 22(a), (b) and (c). Figures 23(a) and (b) show
the server allocation at various tiers of the multi-tier cluster managed by the neural
fuzzy controller without and with the enhancements respectively. Due to the presence
of server switching delays, the controller without the enhancements abruptly assigns
and removes more servers than necessary. This is avoided by the proposed enhance-
ments on the neural fuzzy controller and thus there is the performance improvement
with less deviation and violation.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 Palden Lama and Xiaobo Zhou

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120

nu
m

be
r

of
 s

er
ve

rs
 p

er
 ti

er

time (min)

web servers
app servers

db servers
total servers

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120

nu
m

be
r

of
 s

er
ve

rs
 p

er
 ti

er

time (min)

web servers
app servers

db servers
total servers

(a) without enhancements. (b) with enhancements.

Fig. 23. Server allocations with the neural fuzzy controller due to server switching delays.

Table III. Workload characteristics B.

Parameter WebTier AppTier DBTier
si 13.15 ms 272.67 ms 241.61 ms
σ2
i 7.21 442.58 729.70

5.5. Comparison with a PI controller under Varying Workload Characteristics
In this section, we evaluate the performance of our neural fuzzy control based server
provisioning technique in case of varying workload characteristics. In practice, the
workload characteristic of a multi-tier application varies according to its workload
mix. For example, the service time distribution of browsing mix based workload
requests is different than that of shopping mix based workload requests in an e-
commerce application [Singh et al. 2010]. Classical proportional integral (PI) con-
trollers have been widely used for admission control and performance assurance in
Internet servers [Kamra et al. 2004; Lu et al. 2006]. We use the classical PI control
technique as the baseline for comparison with the neural fuzzy controller. The control
interval is 3 minutes in both controllers.

Since PI control is model-based, we first obtain the system performance model of our
virtualized multi-tier system by using a standard system identification technique. We
use the workload characteristic A as shown in TABLE II and measure the end-to-end
delay for various virtual server allocations. Based on the offline data collected from
the system, we use the Least Squares Method (LSM) to estimate the parameters of the
system model [Wang and Wang 2009]. The parameters are given by Eq. (28).

d′(k) = b1d
′(k − 1) + c1m

′(k − 1) (28)

where b1 = −0.06829 and c1 = −0.5149. The controlled variable in the system model is
d′(k) = d(k) − d where d(k) is the end-to-end delay measured at sampling interval k.
Note that the end-to-end delay measurement can be percentile-based, mean or median
based. The manipulated variable is m′(k) = m(k) − m where m(k) is the number of
virtual servers allocated at sampling interval k. d and m are the end-to-end delay
and virtual server allocation corresponding to a chosen operating point that is used
to linearize the system model. We choose operating points in the system by selecting
the middle value of a typical range of virtual server allocation as m, and then measure
the resultant end-to-end delay as d. Based on the system model, the PI controller is
designed to achieve the desired control performance such as system stability and zero
steady-state error. The transfer function of the designed PI controller is:

F (z) =
−0.34131(z + 1)

(z − 1)
(29)

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Autonomic Provisioning for Percentile Delay Guarantee A:25

 0

 1

 2

 3

 4

 5

 6

Workload_A Workload_B

R
el

at
iv

e
D

el
ay

 D
ev

ia
tio

n

PI Control
NFC

 0

 5

 10

 15

 20

Workload_A Workload_B

R
el

at
iv

e
D

el
ay

 D
ev

ia
tio

n

PI Control
NFC

(a)under a stationary workload . (b) under a highly dynamic workload.

Fig. 24. Performance comparison with PI control for varying workload characteristics.

We compare the performance of server provisioning approach with our neural fuzzy
controller and with the PI controller when the workload changes from characteristic
A shown in TABLE II to characteristic B shown in TABLE III. Figures 24(a) and (b)
show the relative delay deviations for the two workload characteristics with stationary
intensity and with dynamically varying intensity respectively. For stationary workload
with characteristic A, our neural fuzzy controller shows similar performance as the PI
controller. However, it significantly outperforms the PI controller for workload char-
acteristic B. The PI controller is designed for a system model that is identified by
using workload characteristic A. Hence, it shows poor performance when the workload
characteristics changes. On the other hand, our neural fuzzy controller is adaptive to
varying workload characteristics. For highly dynamic workload, the neural fuzzy con-
troller outperforms the PI controller for both workload characteristics A and B. This
is because unlike the PI controller, it is adaptive to variation in workload intensity as
well as characteristics.

As a summary, compared with the PI controller, there is an overall performance im-
provement of 61% by the use of the neural fuzzy controller. This value is the average of
the performance difference metrics defined in Eq. (26) and Eq. (27), for the 4 scenarios
- (1) stationary workload A, (2) stationary workload B, (3) dynamic workload A and (4)
dynamic workload B.

6. A CASE STUDY BASED ON THE TESTBED IMPLEMENTATION
6.1. The Testbed
We conduct a feasibility study with performance evaluation of the proposed neural
fuzzy control based server provisioning approach in a prototype data center, which
consists of 12 HP ProLiant BL460C G6 blade server modules and a 40 TB HP EVA stor-
age area network with 10 Gbps Ethernet and 8 Gbps Fibre/iSCSI dual channels. Each
blade server is equipped with Intel Xeon E5530 2.4 GHz quad-core processor and 32
GB DDR3 memory. Virtualization of this cluster is enabled by VMWare’s vSphere 4.1
Enterprise edition. vSphere controls the disk space, memory, and CPU share (in MHz)
allotted to the virtual machines, and also provides an application programming inter-
face (API) to support the remote management of virtual machines. Our controller uses
VMware’s VIX API 1.10 as an actuator to dynamically instantiate or de-instantiate
VMs on the hosts and to assign CPU shares to the virtual machines.

We have implemented a virtualized multi-tier server cluster architecture as shown
in Figure 1. The database tier is not replicable in our testbed implementation. Each
server in the multi-tier cluster is hosted inside a VMware virtual machine. The con-
figuration of each virtual machine for the web and application tiers is 1 vCPU, 2 GB

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 Palden Lama and Xiaobo Zhou

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60

nu
m

be
r

of
 c

on
cu

rr
en

t u
se

rs

time (min)

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60

en
d-

to
-e

nd
 d

el
ay

 (
se

co
nd

s)

time (min)

measured
target

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60

nu
m

be
r

of
 s

er
ve

rs
 p

er
 ti

er

time (min)

web servers
app servers

db servers
total servers

(a) A dynamic workload. (b) Delay assurance. (c) Server allocation.

Fig. 25. End-to-end performance of neural fuzzy control based on a testbed implementation hosting RUBiS.

RAM and 15 GB hard disk space. We use 4 vCPUs, 2 GB RAM and 15 GB hard disk
space for the database server to perform the case study where the database tier is
not the bottleneck. Otherwise, the database tier server needs to be reconfigured with
more resources or replicated. The guest operating system used is Ubuntu Linux ver-
sion 10.04. Load balancers are used to distribute requests among virtual machines at
the web and application tiers. An Apache module, mod proxy balancer, is used for load
balancing while taking into account session affinity.

The neural fuzzy controller interacts with the VM manager (VMM) through the
vSphere Management API. To start a VM, the controller issues the VM start request
using the PowerOnVM Task method. It submits a virtual machine power-on task to
the VMM. The controller obtains the task start time from the task information struc-
ture. When the power-on task has been completed, the controller obtains the task com-
pletion time. Using the task start and completion time, the controller calculates the
time used for starting the VM. Similarly, it can obtain the time used for removing a
VM. Our experiments show that adding or removing a VM in the testbed cluster takes
approximately 7 seconds, which is quite small compared to the control interval of 3
minutes used for delay measurement.

As many related studies [Lama and Zhou 2012b; Padala et al. 2009; Urgaonkar
et al. 2008; Watson et al. 2010], this work uses an open-source multi-tier application
benchmark, RUBiS [RUBiS], in the experimental study. RUBiS implements the core
functionality of an eBay like auction site: selling, browsing and bidding. It implements
three types of user sessions, has nine tables in the database and defines 26 interac-
tions that can be accessed from the clients Web browsers. The application contains a
Java-based client that generates a session-oriented workload. RUBiS sessions have an
average duration of 15 minutes and the average think time is 5 seconds. It defines
two workload mixes: a browsing mix made up of only read-only interactions and a bid-
ding mix that includes 15% read-write interactions. We configure the RUBiS clients
to submit workloads of different mixes as well as workloads of time-varying intensity.
Each RUBiS client also provides a sensor that measures the client-perceived QoS met-
rics such as average response time and throughput over a period of time. We modify
the client to measure the percentile-based response time required by our experiments.
Our implementation of RUBiS application is done with Apache 2.2.14, PHP 5.3.2 and
MySQL 5.1 servers for the web, application and database tiers.

6.2. End-to-end and Per-tier Delays by the Neural Fuzzy Controller
For performance evaluation, we apply a dynamic workload to our multi-tier virtualized
server cluster as shown in Figure 25 (a). Initially, the workload consists of a bidding
mix of 200 concurrent users. After 20 minutes we double the workload intensity to 400
concurrent users with browsing workload mix. Another 20 minutes later, we decrease

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Autonomic Provisioning for Percentile Delay Guarantee A:27

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50 60

av
er

ag
e

de
la

y
(m

ill
is

ec
on

ds
)

time (min)

web servers
app servers

db servers

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

pe
r-

tie
r

se
rv

er
 u

til
iz

at
io

n
%

time (min)

web servers
app servers

db servers

(a) Per-tier delays. (b) Per-tier server utilization.

Fig. 26. Per-tier performance of neural fuzzy control based on a testbed implementation hosting RUBiS.

the workload to 300 concurrent users. The reported results are from a single run. The
95th-percentile end-to-end delay target is set to be 2 seconds.

Figure 25(a) shows that the self-adaptive neural fuzzy controller is able to guar-
antee the 95th-percentile delay target of 2 seconds within a few sampling intervals.
The multi-tier system is initially provisioned with one virtual server at each tier.
As the controller starts allocating virtual servers at the web and application tiers,
it applies online learning to tune its neural network structure and parameters based
on the measured percentile-based end-to-end delay of requests. We observe that the
95th-percentile delay approaches the target of 2 seconds within the first 15 minutes of
the experiment as a result of dynamic server allocations. The oscillation of the delay
around its target is mainly due to the fact that neural fuzzy controller needs to learn
how to control the system by exploring different server allocations. As time progresses,
the controller becomes more effective in achieving the end-to-end delay guarantee.

There is a spike in the measured end-to-end delay at time 20th minute due to the
sudden increase in the workload intensity and the change in the workload mix. How-
ever, the neural fuzzy controller achieves the delay guarantee in a responsive manner,
usually in three to four control intervals. Similarly, there is a sudden drop in the mea-
sured delay at time 40th minute due to the decrease in workload from 400 to 300
concurrent users. The neural fuzzy controller effectively removes virtual servers from
different tiers to bring the end-to-end delay close to the target. Results show that the
controller is robust to dynamically varying workload intensity as well as characteris-
tics due to its self-adaptive capability.

Figure 25(b) shows the change in the allocation of virtual servers at various tiers.
The controller allocates servers at individual tiers in proportion to the per-tier average
delay measurement. Note that in the testbed implementation, the server allocation ad-
justments are only distributed between the web and application tiers as the database
tier is not replicated.

We also show the per-tier average delay and server utilization. Obtaining per-tier de-
lays of a request is nontrivial. At the web tier (Apache) and the application tier (PHP),
we can obtain the response time of each request from its log. However, at the database
tier, the free community version MySQL 5.1 does not provide such a functionality for
obtaining a query’s response time. That means, we can obtain the delay at the web tier,
and the total delay but not the per-tier delay at the application and the database tiers.
To timestamp each query issued from the application tier, we make an instrumenta-
tion of RUBiS application by modifying its PHP scripts. Thus, we are able to measure
the per-tier delays. Note that the per-tier delay measured by this approach may not

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 Palden Lama and Xiaobo Zhou

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60

en
d-

to
-e

nd
 d

el
ay

 (
se

co
nd

s)

time (min)

measured
target

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60

en
d-

to
-e

nd
 d

el
ay

 (
se

co
nd

s)

time (min)

measured
target

(a) with 1-minute control interval. (b) with 5-minute control interval.

Fig. 27. End-to-end performance of neural fuzzy control with different control intervals.

be perfectly accurate since it includes the time spent inside the application tier while
constructing the query before sending it to database tier.

Figures 26 (a) and (b) show the per-tier average delay of requests and server utiliza-
tion at various control intervals. The per-tier delay of requests as well as server utiliza-
tion vary across tiers mainly due to the characteristics of per-tier resource demands of
the given workload. In our experiment, the resource utilization at the database tier is
small compared to the resource utilization at the web and application tiers mainly due
to the high server capacity at the database server.

6.3. Impact of Control Interval on Control Robustness and Delay Guarantee
In the experiments reported so far, the end-to-end delay of the system is measured
periodically at a control interval of 3 minutes. The choice of control interval depends
on the tradeoff between robustness to delay measurement noise and responsiveness of
control actions. We evaluate the impact of choosing different control intervals on the
end-to-end delay guarantee and control robustness to measurement noise.

Figures 27 (a) and (b) show the 95th-percentile delay achieved by the neural fuzzy
controller when the control intervals are chosen as 1 minute and 5 minutes respec-
tively. We observe that using a short control interval of 1 minute results in significant
oscillations in the measured delay. It is due to the fact that the controller reacts in-
effectively in response to the measured noise in delay. It is necessary to use a longer
control interval so that the controller can allocate servers effectively based on more
accurate and consistent measurements of delay.

On the other hand, using a long control interval of 5 minutes reduces the measure-
ment noise, but also reduces the responsiveness of the controller in achieving the end-
to-end delay target. In such cases, the control actions of adding or removing virtual
servers are performed less frequently. Hence, it takes longer time to bring the end-to-
end delay close to the target as shown in Figure 27(b).

In the case study, the control interval of 3 minutes is chosen to balance the trade-
off between the neural fuzzy controller’s responsiveness and robustness to noise. The
length of the control interval is a very interesting and important issue. There might
not exist a control interval that works best for different workload scenarios and differ-
ent applications.

7. CONCLUSIONS AND FUTURE WORK
Performance assurance is critical and challenging to data centers that host popular
Internet services. In this paper, we have designed a novel self-adaptive neural fuzzy
control based server provisioning approach to guarantee the end-to-end delay of re-

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Autonomic Provisioning for Percentile Delay Guarantee A:29

quests flowing through multi-tier server clusters. The approach can effectively provide
any percentile and the mean based delay guarantee. The major contributions lie in
the design and evaluation of a model-independent and self-adaptive control system for
dynamic server provisioning. We combine the strength of both machine learning and
control theoretic techniques for robust performance assurance in the face of highly dy-
namic workloads. We further enhance the neural fuzzy controller to compensate for
the effect of server switching delays. We have also studied the impact of input scal-
ing factor on controller’s self adaptivity and the impact of the control interval on the
system robustness.

Our approach is capable of automatically constructing the controller’s structure and
adapting control parameters through fast online learning. Simulation results have
demonstrated that the neural fuzzy controller is robust to highly dynamic workloads
and changes in delay target. Compared to the rule based fuzzy controller and a clas-
sical PI controller, the new approach has shown superior performance in achieving
the end-to-end delay assurance, particularly under highly dynamic workloads. Impor-
tantly, we have demonstrated the feasibility and excellent performance of the new
approach in a testbed implementation of virtualized server cluster. The neural fuzzy
controller demonstrated its promise of being a self-adaptive approach for autonomic
computing in virtualized data centers.

In the future work, we will continue to tackle the autonomic performance control
problem from the following three perspectives. First, we aim to enrich the neural fuzzy
controller by developing self-tuning components for choosing the control interval and
other key parameters. The control interval choice can affect performance measure-
ment noise and responsiveness of control actions. We want to extend the controller
to support multiple heterogeneous applications with varying workload characteristics.
Second, we will consider integrating a reinforcement learning based component for
resource allocation optimality. Third, we want to integrate admission control with dy-
namic server allocation when the resources are being exhausted in the system.

ACKNOWLEDGMENTS

This research was supported in part by NSF CAREER award CNS-0844983 and research grant CNS-
1217979. A preliminary version of the paper appeared in [Lama and Zhou 2010]. The authors thank the
National Institute of Science, Space and Security centers for providing blade server equipments for conduct-
ing the case study. The authors are so grateful to the associate editor Dr. Jeffrey Kephart and the anonymous
reviewers for their valuable suggestions for revising the manuscript.

REFERENCES
ABDELZAHER, T. F., SHIN, K. G., AND BHATTI, N. 2002. Performance guarantees for Web server end-

systems: a control-theoretical approach. IEEE Trans. on Parallel and Distributed Systems 13, 1, 80–96.
AMZA, C., CHANDA, A., COX, A., ELNIKETY, S., GIL, R., RAJAMANI, K., ZWAENEPOEL, W., CECCHET,

E., AND MARGUERITE, J. 2002. Specification and implementation of dynamic web site benchmarks. In
Proc. IEEE Int’l Workshop on Workload Characterization (WWC). 3 – 13.

BENNANI, M. N. AND MENASCE, D. A. 2005. Resource allocation for autonomic data centers using analytic
performance models. In Proc. IEEE Int’l Conf. on Autonomic Computing (ICAC).

BU, X., RAO, J., AND XU, C.-Z. 2009. A reinforcement learning approach to online web system auto-
configuration. In Proc. IEEE Int’l Conf. on Distributed Computing Systems (ICDCS).

CHEN, J., SOUNDARARAJAN, G., AND AMZA, C. 2006. Autonomic provisioning of backend databases in
dynamic content Web servers. In Proc. IEEE Int’l Conf. on Autonomic Computing (ICAC).

DIAO, Y., HELLERSTEIN, J. L., PAREKH, S., SHAIHK, H., SURENDRA, M., AND TANTAWI, A. 2006. Modeling
differentiated services of multi-tier web applications. In Proc. IEEE Int’l Symp. on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems (MASCOTS).

HUEBSCHER, M. C. AND MCCANN, J. A. 2008. A survey of autonomic computing: Degrees, models, and
applications. ACM Computing Surveys 40, 3.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 Palden Lama and Xiaobo Zhou

ISCI, C., HANSON, J. E., WHALLEY, I., STEINDER, M., AND KEPHART, J. O. 2010. Runtime demand esti-
mation for effective dynamic resource management. In Proc of Network Operations and Management
Symposium (NOMS).

JUNG, G., HILTUNEN, M. A., JOSHI, K. R., SCHLICHTING, R. D., AND PU, C. 2010. Mistral: Dynamically
managing power, performance, and adaptation cost in cloud infrastructures. In Proc. IEEE Int’l Conf.
on Distributed Computing Systems (ICDCS).

KAMRA, A., MISRA, V., AND NAHUM, E. M. 2004. Yaksha: a self-tuning controller for managing the perfor-
mance of 3-tiered web sites. In Proc. IEEE Int’l Workshop on Quality of Service (IWQoS).

KARVE, A., KIMBREL, T., PACIFICI, G., SPREITZER, M., STEINDER, M., SVIRIDENKO, M., AND TANTAWI,
A. 2006. Dynamic placement for clustered web applications. In Proc. ACM WWW.

LAMA, P. AND ZHOU, X. 2009. Efficient server provisioning for end-to-end delay guarantee on multi-tier
clusters. In Proc. IEEE Int’l Workshop on Quality of Service (IWQoS).

LAMA, P. AND ZHOU, X. 2010. Autonomic provisioning with self-adaptive neural fuzzy control for end-to-end
delay guarantee. In Proc. IEEE/ACM Int’l Symp. on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS). 151–160.

LAMA, P. AND ZHOU, X. 2012a. Efficient server provisioning with control for end-to-end delay guarantee on
multi-tier clusters. IEEE Transactions on Parallel and Distributed Systems 23, 1, 78–86.

LAMA, P. AND ZHOU, X. 2012b. NINEPIN: Non-invasive and energy efficient performance isolation in vir-
tualized servers. In Proc. IEEE/IFIP Conference on Dependable Systems and Networks (DSN). 1–12.

LEITE, J. C. B., KUSIC, D. M., MOSSÉ, D., AND BERTINI, L. 2010. Stochastic approximation control of
power and tardiness in a three-tier web-hosting cluster. In Proc. IEEE Int’l Conf. on Autonomic comput-
ing (ICAC).

LIN, C. AND LEE, C. S. G. 1992. Real-time supervised structure/parameter learning for fuzzy neural net-
work. In Proc. IEEE Int’l Conf. on Fuzzy Systems. 1283–1291.

LIN, F.-J., WAI, R.-J., AND LEE, C.-C. 1999. Fuzzy neural network position controller for ultrasonic motor
drive using push-pull dc-dc converter. Control Theory and Applications 146, 1, 99–107.

LITOIU, M. 2007. A performance analysis method for autonomic computing systems. ACM Trans. on Au-
tonomous and Adaptive Systems 2, 1.

LIU, X., HEO, J., SHA, L., AND ZHU, X. 2008. Queueing-model-based adaptive control of multi-tiered web
applications. IEEE Transactions on Network and Service Management 5, 3, 157–167.

LIU, X., SHA, L., AND DIAO, Y. 2003. Online response time optimization of apache web server. In Proc. Int’l
Workshop on Quality of Service (IWQoS).

LU, C., LU, Y., ABDELZAHER, T. F., STANKOVIC, J. A., AND SON, S. H. 2006. Feed back control architec-
ture and design methodology for service delay guarantees in web servers. IEEE Trans. on Parallel and
Distributed Systems 17, 9, 1014–1027.

MENG, X., ISCI, C., KEPHART, J., ZHANG, L., AND BOUILLET, E. 2010. Efficient resource provisioning in
compute clouds via vm multiplexing. In Proc. Int’l Conf. on Autonomic Computing (ICAC).

MI, N., CASALE, G., CHERKASOVA, L., AND SMIRNI, E. 2008. Burstiness in multi-tier applications: Symp-
toms, causes, and new models. In Proc. ACM/IFIP/USENIX Int’l Middleware Conference.

MI, N., CASALE, G., CHERKASOVA, L., AND SMIRNI, E. 2009. Injecting realistic burstiness to a traditional
client-server benchmark. In Proc. IEEE Int’ Conference on Autonomic Computing (ICAC).

PADALA, P., HOU, K.-Y., SHIN, K. G., ZHU, X., UYSAL, M., WANG, Z., SINGHAL, S., AND MERCHANT, A.
2009. Automated control of multiple virtualized resources. In Proc. of the EuroSys Conference (EuroSys).
13–26.

RAO, J. AND XU, C. 2011. Online capacity identification of multitier websites using hardware performance
counters. IEEE Transaction on Parallel and Distributed Systems 22, 3, 426–438.

RUBIS. Rice university bidding system. http://www.cs.rice.edu/CS/Systems/DynaServer/rubis.
SHA, L., LIU, X., LU, Y., AND ABDELZAHER, T. 2002. Queueing model based network server performance

control. In Proc. IEEE Real-Time Systems Symposium (RTSS).
SINGH, R., SHARMA, U., CECCHET, E., AND SHENOY, P. 2010. Autonomic mix-aware provisioning for non-

stationary data center workloads. In Proc. IEEE Int’l Conf. on Autonomic Computing (ICAC). 21–30.
STEWART, C., KELLY, T., AND ZHANG, A. 2007. Exploiting nonstationarity for performance prediction. In

Proc. of the EuroSys Conference (EuroSys). 31–44.
TESAURO, G., JONG, N. K., DAS, R., AND BENNANI, M. N. 2006. A hybrid reinforcement learning approach

to autonomic resource allocation. In Proc. IEEE Int’l Conf. on Autonomic Computing (ICAC).
URGAONKAR, B., PACIFICI, G., SHENOY, P., SPREITZER, M., AND TANTAWI, A. 2005. An analytical model

for multi-tier Internet services and its applications. In Proc. ACM SIGMETRICS.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Autonomic Provisioning for Percentile Delay Guarantee A:31

URGAONKAR, B., SHENOY, P., CHANDRA, A., GOYAL, P., AND WOOD, T. 2008. Agile dynamic provisioning
of multi-tier Internet applications. ACM Trans. on Autonomous and Adaptive Systems 3, 1, 1–39.

VILLELA, D., PRADHAN, P., AND RUBENSTEIN, D. 2007. Provisioning servers in the application tier for
e-commerce systems. ACM Trans. on Internet Technology 7, 1, 1–23.

WANG, X. AND WANG, Y. 2009. Co-con: Coordinated control of power and application performance for virtu-
alized server clusters. In Proc. IEEE Int’l Workshop on Quality of Service (IWQoS).

WATSON, B. J., MARWAH, M., GMACH, D., CHEN, Y., ARLITT, M., AND WANG, Z. 2010. Probabilistic per-
formance modeling of virtualized resource allocation. In Proc. IEEE Int’l Conf. on Autonomic computing
(ICAC).

WEI, J. AND XU, C.-Z. 2006. eQoS: provisioning of client-perceived end-to-end QoS guarantee in Web
servers. IEEE Trans. on Computers 55, 12, 1543–1556.

WELSH, M. AND CULLER, D. 2003. Adaptive overload control for busy Internet servers. In Proc. 4th
USENIX Symposium on Internet Technologies and Systems (USITS).

ZHANG, Q., CHERKASOVA, L., AND SMIRNI, E. 2007. A regression-based analytic model for dynamic re-
source provisioning of multi-tier Internet applications. In Proc. IEEE Int’l Conf. on Autonomic Comput-
ing (ICAC).

ZHOU, D. AND HUANG, W. W. 2009. Using a fuzzy classification approach to assess e-commerce web sites:
An empirical investigation. ACM Trans. on Internet Technology, Article 12, 9, 3.

ZHOU, X., WEI, J., AND XU, C.-Z. 2004. Processing rate allocation for proportional slowdown differentiation
on Internet servers. In Proc. IEEE Int’l Parallel and Distributed Processing Symp. (IPDPS). 88–97.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

