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Abstract-Dynamic server provisioning is critical to quality-
of-service assurance for multi-tier Internet applications. In this
paper, we address three important and challenging problems.
First, we propose an efficient server provisioning approach on
multi-tier clusters based on an end-to-end resource allocation
optimization model. It is to minimize the number of servers
allocated to the system while the average end-to-end delay
guarantee is satisfied. Second, we design a model-independent
fuzzy controller for bounding an important performance metric,
the 90 t h -percentile delay of requests flowing through the multi-
tier architecture. Third, to compensate for the latency due
to the dynamic addition of servers, we design a self-tuning
component that adaptively adjusts the output scaling factor
of the fuzzy controller according to the transient behavior of
the end-to-end delay. Extensive simulation results, using one
representative customer behavior model in a typical three-tier
web cluster, demonstrate that the provisioning approach is able
to significantly reduce the server utilization compared to an
existing representative approach. The approach integrated with
the model-independent self-tuning fuzzy controller can efficiently
assure the average and the 90 t h -percentile end-to-end delay
guarantees on multi-tier server clusters.

I. INTRODUCTION

Internet applications pose great challenges including scal-
ability and quality-of-service guarantee to the underlying
networked systems. Popular Internet applications employ a
multi-tier architecture, with each tier provisioning a certain
functionality to its preceding tier and making use of the
functionality provided by its successor to carry out its part
of the overall request processing [2], [3], [6], [7], [11], [12],
[14], [15], [18]. For load sharing, various tiers of an Internet
application are often replicated and clustered. Today, a typical
e-commerce application usually consists of three tiers; a front-
end Web tier that is responsible for HTTP request processing,
a middle application tier that implements core application
functionality say based on Java Enterprise platform, and a
backend database that stores product catalogs and user orders.
In this context, an incoming user request undergoes HTTP
processing, application server processing, and triggers queries
or transactions at the database. Note that the database tier may
or may not be replicated on-demand depending if the database
employs a shared or shared-nothing architecture [2], [14].

Dynamic server provisioning is critical to quality-of-service
assurance for Internet applications. The problem was well
studied in the context of single-tier servers [4], [13], [19].
It is however non-trivial or even infeasible to extend the

mechanisms designed for a single-tier architecture to a multi-
tier architecture. The challenges include the inter-tier inter-
action, concurrency limits and cross-tier performance depen-
dencies [3]. For example, adding servers to one tier does not
necessarily increase the effective system performance due to
cross-tier performance dependencies [14]. End-to-end system
delay is the major performance metric of multi-tier Internet
applications. It is the response time of a request that flows
through a multi-tier computer system [14], [17] (we use the
terms "delay" and "response time" interchangeably). In this
paper, we address three important but challenging problems.
The first is what is an efficient server provisioning scheme
with end-to-end delay guarantee in multi-tier server clusters.
The second is how to bound the 90th-percentile end-to-end
delay. The third is how to reduce the delay oscillation effect
due to the dynamic addition of servers.

Recently, an important dynamic provisioning approach was
proposed in [14] for multi-tier Internet applications. Figure 1
illustrates an example on a typical three-tier server cluster.
The approach decomposes an end-to-end delay guarantee into
the per-tier average delay targets (i.e., d1 , d2 , and d3 ) . Then
per-tier server provisioning is conducted based on a queueing
model to meet the per-tier delay target. Its key problem, how-
ever, is on how to determine those decomposition percentages,
while the dynamic behavior of an Internet application shifts the
performance bottleneck from one tier to another. The important
performance metric is the end-to-end system delay, not the
per-tier delay. In this paper, we propose an efficient server
provisioning scheme that aims to minimize the total number
of servers allocated to a multi-tier cluster while the end-to-end
delay guarantee is satisfied.

We next address the second important problem, that is,
how to bound the 90 t h -percentile end-to-end delay of requests
flowing through the multi-tier service. People envision that the
metric of the 90 t h -percentile delay, compared to the average
delay, has the benefit that is both easy to reason about and
to capture the user's perception of Internet service perfor-
mance [17]. The queueing model based approaches in [3],
[15] can monitor the average delay of requests, but have no
control on the 90 t h -percentile delay of requests. The work
in [14] proposed an innovative approach for assuring the 95t h -

percentile delay guarantee (applicable to the 90 t h -percentile
delay guarantee). It uses an application profiling technique to
determine a service time distribution whose 95t h -percentile
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Fig. 1. End-to-end delay guarantee on a multi-tier server cluster.

is the delay bound. The mean of that distribution is used as
the average end-to-end delay constraint. It then applies the
constraint for the per-tier delay target decomposition and per-
tier server provisioning based on a queueing model. There
are two key problems, however. One is that the approach is
model dependent. The second is that the application profiling
has to be done each time before the server replication and
allocation, which could be time consuming and complex due
to the dynamic nature of Internet applications. We use a model-
independent fuzzy controller to bound the 90t h -percentile
delay of requests on a multi-tier server architecture. Fuzzy
control has been recently applied for performance guarantee
on single-tier Internet servers [8], [16]. We apply it for end-to-
end system delay guarantee on multi-tier architecture, together
with a resource allocation optimization model.

Furthermore, we consider a practicability issue with the new
server provisioning approach. Addition (or switching) of a
server to a tier introduces non-negligible latency to a multi-tier
service [2], which will affect the perceived end-to-end delay of
users. The system instability also occurs due to the time spent
by the newly added server adapting to the existing system.
For example, an addition of database replica goes through
a data migration and system stabilization phase [2], during
which the delay will be higher than expected. Provisioning of
servers during an adaptation phase will cause oscillations in
server allocation. We design a self-tuning control component
to reduce potential oscillation due to server additions. The
latency introduced by addition of a server is considered as a
process delay. To compensate for the process delay, the self-
tuning component adaptively adjusts the output scaling factor
according to the transient behavior of the end-to-end delay.
The scaling factor is chosen due to its significant influence on
the performance and stability of the controller system.

We build a simulation model for a typical three-tier web
cluster and conduct extensive simulations to evaluate the
new server provisioning approach. We use a representative
session-based customer behavior model from the work in [10].
Experimental results demonstrate that the new approach is
able to significantly reduce the server utilization compared
to the representative server provisioning approach designed in
work [14]. Integrated with the model-independent self-tuning
fuzzy controller, it can effectively and efficiently assure the
average and the 90t h -percentile end-to-end delay guarantees

on a multi-tier cluster. Results also show that the use of the
self-tuning component can provide fine granularity fuzzy con-
trol in end-to-end delay, great efficiency in resource utilization,
and fast convergence to the steady state.

The major contributions of our work lie in the modeling and
analysis of the efficient server provisioning scheme on multi-
tier server clusters, the design and implementation of a model-
independent self-tuning control system, and the evaluation
and conveyed insights about provisioning end-to-end delay
guarantees by the server provisioning approach with fuzzy
control for multi-tier Internet services.

The structure of this paper is as follows. Section II reviews
related work. Section III presents the optimization model-
ing and analysis. Section IV gives the design of a model-
independent self-tuning fuzzy controller. Section V is on the
performance evaluation. Section VI concludes the paper.

II. RELATED WORK

Resource management for quality-of-service provisioning
in multi-tier Internet applications is a very important and
active research topic. A few studies focused on the modeling
and analysis of multi-tier servers with queueing foundations.
For instance, Diao et al. described a performance model for
differentiated services of multi-tier applications [3]. Per-tier
concurrency limits and cross-tier interactions were addressed
in the model based on a M / M /1 queueing model. The work
in [11] designed a coordinated admission control approach
based on a machine learning technique.

The work in [15] studied an optimization for allocating
servers in the application tier that increase a server provider's
profits. That single-tier provisioning method does not consider
the end-to-end delay constraint. Recently, Urgaonkar et al. de-
signed an innovative dynamic provisioning technique on multi-
tier server clusters [14]. It sets the per-tier average delay targets
to be certain percentages of the end-to-end delay constraint.
Based on a queueing model, per-tier server provisioning is
executed at once for the per-tier delay guarantees. The work
provides important insights on dynamic provisioning for multi-
tier clusters. There is however no guidance nor optimization
about the decomposition of end-to-end delay to per-tier delay
targets. It relies on a queueing model with application profiling
for the 95t h -percentile delay guarantee. Our work aims to find
an efficient server provisioning scheme based on an end-to-end
resource allocation optimization model. We further design a



theory, we have d i = E[Wil + E[Xil = ;:':~[~!J) + E[Xi],
where E[Wi ] is the expected queueing delay at tier i, E[Xi ]

and E[Xr] are the first moment and second moment of the
service time distribution Xi at tier i, respectively.

We formulate the dynamic server provisioning with the end-
to-end delay guarantee as the optimization problem:

(6)

(7)

Minimize Lmi (1)
i=l

Subject to Ldi=U-U (2)
i=l

a. = PiE[Xt] + E[Xi] (3)
2ri(1 - Pi)

AViri (4)mi=--
Pi

0:::; Pi < 1. (5)

Pi

The equations (2) and (3) lead to the constraint function

~ PiE(X;)
C(p1,···, Pn) = ~(2ri(1 _ Pi) + E[XiJ).

'l.=1
Let v be the Lagrange multiplier. The optimal solution to

(1) occurs when the first order derivatives of the Lagrangian
objective function L (PI, ... , Pn) over variables Pi are equiv-
alent to the first order derivatives of the constraint function
C (PI, ... , Pn) over variable Pi multiplied by t/, That is

aL(P1, ... ,Pn) = V aC(P1, ... ,Pn) (8)
Bp, api·

Deriving v and using it with (4) leads to the solution
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U - U - Li=l E[Xi] 2Aviri
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Av 0 r 0 + (10)
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Eq. (1) gives the optimization objective. It is to minimize
the total number of servers allocated to the multi-tier server
cluster. We assume the servers are homogeneous with the
same cost and each tier is replicable on-demand [2]. If one
wants to differentiate the deployment costs at different tiers,
the objective function can be a weighted sum. Eq. (2) describes
that the average end-to-end delay of a request is bounded. [; is
an important parameter used for end-to-end delay guarantee.
If it equals to E, the constraint is that the average end-to-
end delay of a request be less than the bound U. We later
use it with a model-independent fuzzy controller for the
90th-percentile end-to-end delay guarantee. Eq. (3) describes
the predicted average delay of a request at a tier. Eq. (4)
describes the relationship between the server allocation and
the utilization of each tier. It assumes a load balancer which
can equally distribute the workload to each server of a tier.
Eq. (5) describes the resource allocation constraint.

The equations (1) and (4) lead to the objective function

model-independent self-tuning fuzzy controller to address the
lack of an accurate workload model.

Feedback control was used for service differentiation and
performance guarantee on Internet servers [1], [6], [9], [16].
Linear control techniques were applied to control the resource
allocation in single-tier Web servers [1]. However, the per-
formance of the linear feedback control is often limited [16].
Recent work applied adaptive control for performance guaran-
tee [6]. For instance, a multi-tier e-commerce application was
modeled as one M / G /1 server [6]. A proportional integral
(PI) controller based admission control proxy was developed to
maintain the end-to-end response time target. However, using
the average response time as the performance metric is unable
to represent the shape of a response time curve. For the end-
to-end delay guarantee, the inherent process delay needs to be
considered and addressed as well.

Fuzzy control was applied for performance guarantee.
In [8], fuzzy control was used to determine an optimal number
of concurrent child processes to improve the aggregated server
performance. In [16], a fuzzy controller was used for provi-
sioning guarantee of user-perceived response time of a web
page. It demonstrated that due to the model independence, the
approach significantly outperforms linear PI controllers. The
work was done on a single server. We use fuzzy control for
dynamic server provisioning with end-to-end delay guarantee
in a multi-tier server architecture, together with a resource
allocation optimization model. We also consider the use of
the self-tuning capability for fine-granularity control of the
system performance.

III. AN EFFICIENT SERVER PROVISIONING ApPROACH

We propose a resource allocation optimization based server
provisioning scheme that minimizes the total number of
servers allocated to a multi-tier cluster while the end-to-end
delay guarantee is satisfied. The basic idea is to divide the
provisioning process into a sequence of intervals. In each
interval, based on the measured resource utilization, end-
to-end delay, and the predicted workload, the servers are
dynamically allocated to the tiers at once.

Popular multi-tier Internet applications are session
based [14], [20]. Consider sessions arrive at a rate A to a
n-tier server cluster. Let Vi denote the average number of
visits of a session to tier i. The request arrival rate to tier
i becomes AVi. A request in different tiers usually demands
different processing resource usages [10], [20], [14]. Let r i

be the normalized resource demand of a request in tier i. Let
m, be the number of servers allocated to tier i in the current
interval. With a load balancer, the workload at a tier is shared
by the allocated homogeneous servers. Let Pi be the resource
utilization of tier i, Pi == AViri/mi. The requests will traverse
multiple tiers. Like many works in [3], [15], [20], we assume
that request arrivals to a tier meet a Poisson process. We
model the workload at each tier by an M / G /1 queueing
system. Let Xi be the service time distribution at tier i.

Let d; denote the average delay of a request in tier i.
According to Pollaczek-Khinchin formula of the queueing
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Fig. 2. A self-tuning fuzzy controller.

Internet workload measurements indicate that a heavy-tailed
distribution is often an accurate model for service time distri-
bution for many Web applications. Like work in [5], [19], we
use a bounded pareto distribution for modeling a heavy-tailed
distribution. Our work in [19] found closed-form expressions
of E[XJ and E[X;J for a bounded pareto distribution, which
are used in the optimization model.

IV. A SELF-TUNING Fuzzy CONTROLLER

The server provisioning scheme based on the optimization
however is model dependent. We enhance it with a self-tuning
fuzzy controller that is model independent. The fuzzy con-
troller determines the number of servers to be allocated to each
tier at once without relying on an accurate workload model.
It is to guarantee the average end-to-end delay on a multi-
tier system, to bound the 90t h -percentile end-to-end delay,
and to integrate the fuzzy controller with the optimization
model. To provide fine granularity control on the delay and the
resource utilization efficiency, we consider the use of uniform
membership functions in the fuzzy controller. The self-tuning
capability is to compensate for the process delay due to the
addition of a server to a tier.

A. The architecture of the fuzzy controller
Figure 2 illustrates the block diagram of the self-tuning

fuzzy controller. The controller has two inputs; e(k) is the
difference between the measured value and target value of the
end-to-end delay in the (k)th sampling period, and De(k)
is the change in error. The output of the controller is the
resource adjustment Dm(k) for the next sampling period.
The scaling factors K e , K6,e and aK6,m are used to tune
the controller's performance. The output scaling factor a is
automatically adjusted by the scaling factor controller. Thus,
the total number of servers allocated to the multi-tier clusters
during the (k + l)th sampling period is

m(k + 1) = m(k) + aKf'..m6 m(k) = JaKf'..m6 m(k)dk. (11)

The fuzzy controller consists of four components. The rule
base is the core component. It contains a set of rules based
on which fuzzy control decisions are made. The fuzzification
interface converts numeric values of controller inputs into
equivalent fuzzy values. It determines the certainties of fuzzy
values based on input membership functions. The inference
component applies pre-defined rules according to the fuzzified
inputs and generates fuzzy conclusions. The defuzzification

------ target delay
_ measured delay

Fig. 3. Fuzzy control effect.
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Fig. 4. The fuzzy rule base.

interface combines fuzzy conclusions and converts them to
a single output, i.e., the resource allocation adjustment in a
numeric value.

B. The fuzzy rule base

Designing the rule base for a fuzzy controller is based
on heuristic control knowledge. The rules are defined using
linguistic variables "e(k)", "De(k)" and "Dm(k)" corre-
sponding to the numeric values of control inputs and outputs.
The linguistic variables "e(k)" and "De(k)" have linguistic
values NL, NM, NS, ZE, PS, PM, and PL. The linguistic
variable "Dm(k)" has linguistic values NH, NL, NM, NS,
ZE, PS, PM, PL, and PH. The rules are in the form of
If-Then statements. For example, If error "e(k)" is N Land
change in error "De(k)" is PL, then the resource adjustment
Dm(k) is ZE. To design the fuzzy control rules, we analyzed
the behavior of end-to-end delay due to changes in resource
allocation. We identified five zones of the end-to-end delay as
shown in Figure 3. Since e(k) and De(k) have opposite signs
in zones 1 and 3, the error is self-correcting. If e(k) is small,
Dm(k) needs to be adjusted to slow down the current trend so
as to avoid any overshoot. Whereas, if e(k) is large, Dm(k)
needs to be adjusted to speed up the current trend. In zones
2 and 4, e(k) and De(k) have the same sign. That is, the
measured end-to-end delay is moving away from the target
value. Therefore, Dm(k) should be adjusted to reverse the
current trend. Zone 5 indicates the steady state since e(k) and
De(k) have small magnitudes. In this case, Dm(k) should be
adjusted to maintain the current state and to correct steady state
errors. The control rules designed for each of the analyzed
zones are illustrated in Figure 4.
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c. Fuzrlficaiion, inference, defurzification
Fuzzification is the process of converting the numeric input

values into corresponding linguistic values and calculating the
certainty of those linguistic values. The effective inputs to
fuzzy controller are e( k) multiplied by input scaling factor
K; and De(k) multiplied by input scaling factor K 6 e . The
linguistic values are represented by membership functions. As
work in [16], we choose triangle membership functions due to
the simplicity and wide usage. We consider both uniform and
non-uniform membership functions. The membership func-
tions for both scaled inputs and output are defined within the
common interval [-1,1]. The values of the inputs e(k) and
De(k) are mapped into [-1,1] by the input scaling factors K;
and K 6 e , respectively. The output value Dm(k) is mapped
into [-1,1] by the output scaling factor a . K 6 m .

Figure 5 shows uniform membership functions for fuzzy
control inputs e( k) and De(k). The fuzzification process
assigns linguistic values to an input and determines their
certainties by using input membership functions. The certainty
of linguistic value m assigned to an input is denoted by j.L(m).
For example, if e(k) is 1/3, the linguistic variable "e(k)" is
assigned a value PS and j.L(PS) is 1. If De(k) is 1/6,"De(k)"
is assigned values ZE and PS with certainties j.L(ZE) and
j.L(P S) as 0.5. Based on the fuzzified inputs, the inference
mechanism determines which rules should be applied to reach
fuzzy conclusions. Let j.L(m, n) denote the premise certainty
of rule(m, n) where m and n are membership functions.
Following the standard max-min inference mechanism, the
rules to be activated are defined as set of rule(m, n) such
that j.L(m, n) > 0, where j.L(m, n) = min(j.L(m),j.L(n)). For
example, if e( k) = 1/3 and De(k) = 1/6, the certainties of
rule(PS,ZE) and rule(PS,PS) are j.L(PS, ZE) == 0.5 and
j.L(PS, PS) == 0.5, respectively.

The defuzzification component combines the rules activated

by the inference mechanism using the "center average" method
and calculates the fuzzy controller output. Let b(m, n) de-
note the center of the membership function of the result
of rule(m, n). The fuzzy control output is calculated as
/\ () E b(m,n)·p,(m,n)L::::.m k == _---;r'l'n===.,n.------ _E p,(m,n)

The membership function of fuzzy control output deter-
mines the value of b(m, n). As shown in Figure 6, we use a
large number of uniform membership functions for the fuzzy
control output D m (k) to increase the flexibility.

D. A scaling factor controller for self-tuning

One major challenge in controlling a physical process is
its inherent process delay [16]. For the dynamic server pro-
visioning process, it is the latency between allocating servers
and accurately measuring the effect of the server provisioning
on the end-to-end delay. To compensate for the process delay,
we design a scaling-factor controller which adaptively adjusts
the output scaling factor a . K 6 m according to the transient
behavior of the end-to-end delay. The output scaling factor
is chosen due to its significant impact on the performance
stability of the system.

The scaling factor controller works in similar way as the
fuzzy controller. The output of the controller is the gain
updating factor a. The membership function of a is defined
within the interval [0,1], as shown in Figure 7. Figure 8 shows
the rule base for the scaling-factor controller. It is designed in
association with that of the fuzzy controller. A few important
considerations for the rule design are as follows:

1) When the error is large but has the same sign as the
change in error, a should be made very large to prevent
from further worsening the situation.

2) To avoid large overshoot and reduce the settling time,
a is set at a small value when the error is big but has



Equilibrium value refers to the resource allocation value for
which the end-to-end delay reaches or is close to the target
value. From (11) and (12), we get

m(k + 1) = m(k) - aK6m~m(k). (13)

We choose V(m(k)) == m2(k) as the Lyapunov function in
the discrete time. It gives the distance of the allocated re-
sources from its equilibrium value. By applying the Lyapunov
stability theorem, we find the stability constraint as follows,

2E
l~m(k)1 < -K . (14)

a 6m

The stability constraint is intuitive as it suggests that increas-
ing the output scaling factor reduce the stability of the system.

F. Integration with the optimization
We have designed a model-independent fuzzy controller

for 90t h -percentile end-to-end delay guarantee in multi-tier
server clusters. However, the server allocation with the fuzzy
controller does not promise the efficiency of the end-to-end
resource provisioning. We integrate the fuzzy controller with
the optimization model. The integrated approach uses the same
fuzzy controller, except that the output of the controller is the
adjustment value of the parameter [; used in the optimization
model Eq.(10). Increasing [; reduces the value of target
response time, thus increases the resource allocation and vice
versa. The advantage of controlling [; is that the number of
servers allocated to each tier is based on the optimization in
each sampling interval of the fuzzy control process.

the opposite sign as compared to the change in error.
If the process delay is high, the controller may not
achieve expected output after allocating required number
of servers, and hence, tries to overreact by assigning
too many servers in the next sampling period. This is
compensated by adjusting the output scaling factor to a
small value.

3) When the error is small, there should be a wide variation
of the gain, depending on the process trend to avoid large
overshoot and undershoot. This will avoid an excessive
oscillation.

4) To improve the controller performance under load dis-
turbance, a should be sufficiently large around the stead
state.

5) At a steady state, when the error is small and the change
in error is also small, a should be very small to avoid
oscillation problem around the equilibrium point.

E. Stability analysis
A system is said to be stable if it would come to its

equilibrium state after any external input, initial conditions
or disturbances that have impressed the system. We analyze
the stability of the self-tuning fuzzy control system by using
Lyapunov's direct method. It is a time domain method suitable
for analyzing the stability of a non-linear system.

We follow an approach similar to [16] for finding a suitable
Lyapunov function. We first define the difference between the
equilibrium resource value and current one as

m(k) = M(k) - m(k). (12)

TABLE I
THE CHARACTERISTICS OF WORKLOAD A AND B.

Workload A WebTier AppTier DBTier
E[Xi] 24.163 ms 48.709 ms 34.403 ms
E[X?] 591.864 2667.88 1191.77
Workload B WebTier AppTier DBTier
E[Xi] 13.593 ms 67.962 ms 44.536 ms
E[X?] 192.226 4805.66 1991.71

v. PERFORMANCE EVALUATION

We evaluate the server provisioning approach based on
the optimization model alone, the model-independent fuzzy
control system, and the integrated approach in a typical three-
tier server cluster with extensive simulations. As others in [2],
we assume that the database tier can be replicated on-demand
as it employs a shared architecture. As our previous work
in [20], we use a synthetic session-based workload generator
derived from a customer behavior model in [10]. It allows us
to perform sensitivity analysis in a flexible way. A session
generator produces head requests that initiate sessions. The
subsequent requests of a session are generated according to
the customer behavior model. The think time was generated
by an exponential distribution with a mean of 5 seconds.

As work in [5], [19], we use bounded pareto distributions
for modeling the service time distribution. We adopt two
such sets of characteristics as shown in Table I. During the
simulation, the end-to-end delay was measured periodically
with a sampling interval of 4 minutes. Each representative
result reported in the following is an average of 100 runs.

A. Impact of the provisioning optimization

The first experiment is to demonstrate that the optimization-
based provisioning approach is able to significantly reduce
the overall server usage while the end-to-end delay guarantee
is still satisfied. For comparison, we experimented the per-
tier decomposition based approach in [14] that sets the per-
tier average delay targets to be 10%, 50%, and 40% of the
end-to-end delay target, respectively. We also experimented
a balanced decomposition based approach that sets each tier's
average delay target to be 1/3 of the end-to-end delay target. In
this experiment, we set the target average delay to be 300 msec
and 500 msec for the characteristics A and B, respectively.

Figure 9 shows the total number of servers required by
three approaches for the average end-to-end delay guarantee
at varying session arrival rate. It shows that the optimization-
based approach uses the minimum number of servers for
the delay guarantee. It also shows that the impact of the
delay decomposition on the server usage is dependent on the
workload characteristics. Figure 9(a) shows that by using the
characteristic A, the balanced approach uses less servers than
the 10%-50%-40% approach. Figure 9(b) shows that by using
the characteristic B, the 10%-50%-40% approach uses less
servers than the balanced approach. Overall, the experimental
results show that the optimization-based approach can reduce
the total number of servers allocated by about 20% compared
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Fig. 9. Impact of three server provisioning approaches on the server usage.
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Fig. 11. End-to-end delay due to the optimization-based allocation.

to the 10%-50%-40% decomposition approach, and by about
25% compared to the balanced decomposition approach.

Figure 10 shows the number of servers at each tier required
by three approaches for the average end-to-end delay guarantee
due to the use of characteristic A. Results of characteristic B
are omitted due to the space limitation. Figure 11 shows the
average end-to-end delay with its 90t h and 10t h percentiles at
varying session arrival rate due to the use of the optimization-
based approach. It shows while the average end-to-end delay
is within the target, there is no control on the 90t h -percentile
end-to-end delay.

B. Impact of the self-tuning controller

To evaluate the impact of the self-tuning capability on the
controller performance, we simulate the instability of end-to-
end delay during the addition of servers in a tier. Figure 12

shows the performance difference of the fuzzy control system
with and without the self-tuning capability with workload char-
acteristic A. The simulation was performed with a workload
of 1600 sessions per minute, the characteristic A and the target
90th-percentile end-to-end delay of 200 msec. From 12(a) and
(b), we observe that the target end-to-end delay is reached
much earlier by the use of the self-tuning fuzzy controller that
reduces unnecessary oscillations during the server allocation
processes. It leads to less number of server switchings as
compared to the fuzzy control system without the self-tuning
capability. Figure 12(c) shows that the self-tuning capability
can significantly speed up the convergence rate for the end-to-
end delay guarantee and slightly reduce the delay deviation.
Moreover, the total number of servers allocated at the steady
state is less by the use of the self-tuning fuzzy controller,
as shown in Figures 12(d)-(f). It is due to the fact that the
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Fig. 12. Impact of the self-tuning controller on the system performance workload characteristic A. (a-c) Impact on the end-to-end delay deviation and
convergence rate; (d-e) Impact on the number of servers allocated to the multi-tier system.
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Fig. 13. Impact of the self-tuning controller on the system performance workload characteristic B. (a-c) Impact on the end-to-end delay deviation and
convergence rate; (d-e) Impact on the number of servers allocated to the multi-tier system.

control process is more finely and adaptively tuned with the
self-tuning capability. Note that the impact of the self-tuning
capability on the server usage at different tiers is different.
Similar results were obtained for workload characteristic B,
as shown in Figure 13.

c. Impact of optimization and fuzzy controller integration

In the previous experiments, the optimization model was
applied just once when the initial system workload is mea-
sured. We now apply the optimization model at every sampling
instance of fuzzy control action. This is achieved by adjusting
the controllable parameter [; as discussed in section IV-F.
We study the performance impact of the integrated approach

when subjected to a dynamic workload. The session arrival
rate changes from 800 sessions per minute to 1600 sessions
per minute. The workload characteristic A is used with the
target 90t h -percentile end-to-end delay of 200 msec.

Figure 14(a) show that the integrated approach has little
impact on the end-to-end delay. It has a similar deviation
of the end-to-end delay and a similar convergence rate to
the steady state. During the interval minutes 44-48, there are
spikes in the end-to-end delay due to both approaches. Results
show that the self-tuning fuzzy controller is able to quickly
adjust the server allocations and assure the 90t h -percentile
end-to-end delay guarantee. Figures 14(b) show the efficiency
impact of the optimization on the number of servers allocated
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to the multi-tier system. Though the impact on the server
usage at different tiers is different, the integrated approach can
significantly reduce the total number of servers needed for the
end-to-end delay guarantee. We also conducted the experiment
with the workload characteristic B. We found similar efficiency
impact of the integrated approach.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed an efficient server provisioning
approach based on an end-to-end resource allocation opti-
mization model. Compared to an existing representative ap-
proach, it is able to significantly reduce the number of servers
allocated for the end-to-end delay guarantee of multi-tier
Internet applications. We then designed a model-independent
self-tuning controller that is able to provide both average
and the 90t h -percentile end-to-end delay guarantees under
dynamic workloads. The integration of the optimization model
and the model-independent fuzzy controller provides superior
performance in resource utilization efficiency and end-to-end
delay assurance. Our future work will be on the impact of non-
uniform membership functions on the delay guarantee and the
resource allocation efficiency, and on the implementation and
evaluation of the approach in a prototype data center.
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