
Robust Resource Scaling of Containerized Microservices
with Probabilistic Machine learning

Peng Kang
Department of Computer Science
University of Texas at San Antonio

San Antonio, Texas, USA
peng.kang@utsa.edu

Palden Lama
Department of Computer Science
University of Texas at San Antonio

San Antonio, Texas, USA
palden.lama@utsa.edu

Abstract—Large-scale web services are increasingly being
built with many small modular components (microservices),
which can be deployed, updated and scaled seamlessly. These
microservices are packaged to run in a lightweight isolated
execution environment (containers) and deployed on computing
resources rented from cloud providers. However, the complex
interactions and the contention of shared hardware resources in
cloud data centers pose significant challenges in managing web
service performance. In this paper, we present RScale, a robust
resource scaling system that provides end-to-end performance
guarantee for containerized microservices deployed in the
cloud. RScale employs a probabilistic machine learning-based
performance model, which can quickly adapt to changing
system dynamics and directly provide confidence bounds in the
predictions with minimal overhead. It leverages multi-layered
data collected from container-level resource usage metrics and
virtual machine-level hardware performance counter metrics
to capture changing resource demands in the presence of multi-
tenant performance interference. We implemented and evalu-
ated RScale on NSF Cloud’s Chameleon testbed using KVM
for virtualization, Docker Engine for containerization and
Kubernetes for container orchestration. Experimental results
with an open-source microservices benchmark, Robot Shop,
demonstrate the superior prediction accuracy and adaptiveness
of our modeling approach compared to popular machine learn-
ing techniques. RScale meets the performance SLO (service-
level-objective) targets for various microservice workflows even
in the presence of multi-tenant performance interference and
changing system dynamics.

Keywords-Microservices, Performance modeling, Machine
Learning.

I. INTRODUCTION

Large-scale web services (e.g Netflix, Uber, Spotify) are
increasingly adopting cloud-native design patterns such as
microservices and containers [25]. In a microservice archi-
tecture, an application is built using a combination of loosely
coupled and service-specific components that communicate
via lightweight APIs, instead of using a single, tightly cou-
pled monolith of code as shown in Fig. 1. Despite its many
benefits [6], transitioning from monolithic to microservice
architecture creates significant challenges for organizations.
One of the primary challenges lies in managing the end-
to-end tail latency (e.g 95th percentile latency) of requests
flowing through the microservice architecture, which results

Web

CartCatalogue User Payment

Rabbitmq

Shipping

Dispatch

Ratings

MongodbMysql Redis Mysql

Figure 1: Microservice architecture of Robot Shop.

Web

cartpayment Shipping

Mongodb Redis

Catalogues Workflow

CartCatalogue PaymentRatings

Web

Cart Workflow

Figure 2: Workflow DAGs.

in poor user experiences and loss of revenue [12, 31].
Determining effective resource management policies to meet
the end-to-end performance objectives in such a complex
distributed system is difficult and error-prone [9, 22].

Performance modeling and dynamic resource provisioning
of multi-tier monolithic applications have been well-studied
during the past decade [11, 18, 23, 24, 30]. However,
microservice architecture and its complex interplay with
the cloud environment introduce new challenges in quality
of service aware resource management. Request execution
workflows in a microservice architecture can span numerous
microservices forming a directed acyclic graph (DAG) with
complex interactions across the service topology [9, 10, 22].
Fig. 2 shows the DAG structure of workflows involved with
processing product Catalogues and shopping Carts in the
Robot Shop benchmark. Furthermore, in a cloud environ-
ment, where microservices run as containers hosted on a
cluster of virtual machines (VMs), application performance
can degrade often in unpredictable ways [1, 3, 7, 28]. Tail
latency is highly sensitive to any variance in the system
which could be related to application, OS or hardware [12].
Together these issues pose significant challenges in modeling
the system behavior and managing them effectively.

Recent works have developed machine learning models
that relate observable resource usage metrics [21, 26] or re-
source allocation metrics [27] with application performance.
As the model complexity grows (e.g from linear regression
to deep neural networks), they can capture complex and non-
linear system behavior more accurately as shown in our pre-
vious work [17]. However, these models are slow in adapting
to changing dynamics of the cloud environment such as
drastic variations in workload characteristics and perfor-
mance interference patterns. Furthermore, these models are
deterministic, i.e they provide point estimates only without
expressing uncertainty associated with the prediction, which
can be critical for providing robust performance guarantee.
There are techniques such as bootstrapping [2], which can
calculate the confidence bounds on each prediction made by
a deterministic model. However, such techniques are asso-
ciated with large overheads, which make them impractical
for dynamic resource management.

In this paper, we present RScale, a robust resource scaling
system that provides end-to-end performance guarantee for
containerized microservices deployed in the cloud. RScale
employs an adaptive performance model based on a proba-
bilistic machine learning technique, Gaussian Process (GP)
Regression [19]. In contrast to deterministic models, GP
regression based performance models are highly adaptive to
the changing dynamics of the cloud environment due to its
data-efficiency (the ability to learn more from less data) and
lazy learning technique, which delays the generalization of
training data until the next inference interval, thus enabling
local approximation of the target function. Furthermore, they
directly provide confidence bounds on each prediction to as-
sist in making better resource scaling decisions with minimal
overhead. To capture the complex interplay between end-
to-end tail latency of microservice workflows, inter-service
performance dependencies, and cloud-induced performance
variability, RScale leverages data collected from multiple
layers of the cloud environment including container-level
resource usage metrics and hardware performance counter
based metrics associated with underlying VMs.

Our key contributions are as follows.
• We develop a robust performance model based on

a probabilistic machine learning approach, Gaussian
Process regression, which can predict the end-to-end
tail latency of microservice workflows and efficiently
estimate the confidence bounds of each prediction.

• We show how our performance models can adapt to
changing system dynamics such as time-varying perfor-
mance interference patterns arising from the contention
of underlying shared resources in a cloud environment.

• We design a robust resource scaling system to manage
the end-to-end tail latency of microservice workflows
by explicitly incorporating predictive uncertainty ob-
tained from probabilistic performance models into the
resource allocation problem. This approach ensures

system robustness and reduces the effects of modeling
errors on the ability to meet end-to-end performance
objectives.

• We implement and evaluate RScale on NSF Cloud’s
Chameleon testbed 1 using a representative microser-
vices benchmark, Robot Shop2, which is containerized
with Docker and deployed in a cluster of VMs managed
by Kubernetes 3 an open-source container orchestra-
tion engine. Experimental evaluation demonstrates how
RScale can provide robust performance guarantee for
containerized microservices in a cloud environment.

We outline the rest of this paper as follows. Section II
presents related work. Section III elaborates RScale’s key
design and implementation details. Section IV gives the
testbed setup and experimental results. Conclusion is in
Section V.

II. RELATED WORK

Dynamic resource provisioning. Dynamic resource pro-
visioning of Internet applications has been an important
research topic for many years [11, 18, 21, 23, 24, 27,
30]. There are traditional analytical modeling approaches
based on queueing theory [23, 24], and hybrid approaches
that combine queueing theory with machine learning tech-
niques [20, 30]. Urgaonkar et al. [24] designed a dy-
namic server provisioning technique on multi-tier server
clusters. The technique decomposes the per-tier average
delay targets to be certain percentages of the end-to-end
delay constraint. Based on a G/G/1 queueing model, per-
tier server provisioning is executed for the per-tier delay
guarantees. Singh et al. [20] proposed a dynamic provision-
ing technique that handles both the non-stationarity in the
workload and changes in request volumes when allocating
server capacity in data centers. It is based on the k-means
clustering algorithm and a G/G/1 queuing model to predict
the server capacity for a given workload mix. Although
these approaches were effective for multi-tier monolithic
applications, they can become intractable when dealing with
complex microservice architecture in a cloud environment.
The complexity introduced by having many moving parts
with complex interactions and the presence of cloud-induced
performance variability [3, 28] pose significant challenges in
modeling the system behavior, identifying critical resource
bottlenecks and managing them effectively.

Machine Learning Based Systems. Machine learning
techniques have been widely adopted in cluster resource
allocation and management [4, 8, 21, 17, 26, 27, 29]. Nguyen
et al. [21] applied polynomial curve fitting to obtain a black-
box performance model of an application’s SLO violation
rate for a given resource pressure. They used the model to

1https://www.chameleoncloud.org
2https://github.com/instana/robot-shop
3https://kubernetes.io/

https://www.chameleoncloud.org
https://github.com/instana/robot-shop
https://kubernetes.io/

dynamically adjust the number of VMs assigned to a cloud
application. Wajahat et al. [26] presented an application-
agnostic, neural network-based auto-scaler for minimizing
SLA violations of diverse applications. Delimitrou et al. [4]
used collaborative filtering to estimate the impact of resource
scale-out (more servers) and scale-up (more resources per
server) on application performance. Iqbal et al. [8] used
supervised learning to predict the workload arrival rate
and combined the observed response time of the last k
intervals to make resource provisioning decisions. Yang,
Z. [29] proposed a model-based reinforcement learning for
microservice resource allocation. However, these works have
mainly focused on applying deterministic machine learning
models, which provide point estimates only without express-
ing uncertainty associated with the prediction. Recent work
using Bayesian Neural Network [32] is able to estimate
the uncertainty in predictions for deep regression models.
However, it is challenging to quickly adapt such models to
drastic variations in workload and performance interference
patterns. In contrast, our work presents a robust resource
scaling system that utilizes an adaptive performance model
and directly incorporates predictive uncertainty into the
resource allocation problem.

III. RSCALE DESIGN AND IMPLEMENTATION

In this section, we present the key design and implemen-
tation of RScale, a resource scaling system that aims to
provide a robust performance guarantee for containerized
microservices.

A. RScale Architecture

Fig. 3 shows the interaction between various components
of RScale. The performance monitor is responsible for
periodically collecting data from the application, container,
and VM layers at each physical server that hosts the VMs
belonging to an application owner (cloud user). The mapping
of containers to VMs and VMs to the physical server can
be obtained via commonly available APIs provided by the
container orchestration engine (Kubernetes) and cloud man-
agement software (OpenStack) respectively. Probabilistic
performance models based on Gaussian Process Regression
for respective microservice workflows are adapted based on
observed data samples. Finally, the auto-scalar component
is responsible for adding or removing containers for various
microservices to meet the end-to-end tail latency targets for
microservice workflows, based on the optimization problem
formulated in Section III-B.

B. Performance Modeling with Gaussian Process

GP regression is a non-parametric probabilistic modeling
technique. In contrast to a deterministic ML-based per-
formance modeling approach, which aims to approximate
a particular function that can represent the relationship
between independent variables and the predicted variable,

Hypervisor

Libvirt API

Micro
service

Microservice Micro
service

Container
Engine

VMPerformance
Monitor

Adaptive
Model

Container
Engine

VM

Autoscaler

Figure 3: RScale Architecture.

GP regression utilizes the concept of Gaussian Process and
Bayesian inference to find a distribution over all the possible
functions that are consistent with the observed data. Hence,
this probabilistic modeling approach can directly provide
confidence bounds on its predictions, which is critical for
making robust resource management decisions in an uncer-
tain cloud environment.

Model Formulation. As with all Bayesian methods, GP
regression begins with a prior distribution of functions, and
updates this as data points are observed, producing the
posterior distribution over functions. The prior distribution
is defined by a GP, a collection of random variables, any
finite number of which have (consistent) joint Gaussian
distributions. For every input x there is an associated random
variable f(x), which is the value of the stochastic function
f at that location. In this context of modeling containerized
microservices, x represents a vector of performance metrics
collected from the application-layer, container-layer, and
VM-layer at a particular sampling interval. f(x) represents
the distribution of the end-to-end tail latency of a particular
workflow for the given set of input data denoted by x.
GP assumes that p(f(x1), · · ·, f(xN)) is jointly Gaus-
sian, with a mean function m(x) and covariance function
Σ(x) = k(xi, xj), where k is a positive definite kernel.
The key idea is that if xi and xj are deemed by the
kernel to be similar, then we expect the output of the
function at those points to be similar, too. A commonly
used kernel function is squared-exponential kernel given by
kSE(x, x

′) = σ2exp
(︂
− (x−x′)2

2l2

)︂
. It calculates the squared

distance between points and converts it into a measure of
similarity, controlled by hyperparameters σ and l.

Let f be the function values that have been observed
(training set output) for a training input set X , and let f∗
be a set of function values that need to be predicted (test
set output) corresponding to test input set X∗. The joint
distribution of the function values can be expressed as:[︃

f
f∗

]︃
∼ N

(︃[︃
m(X)
m(X∗)

]︃
,

[︃
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

]︃)︃
(1)

where m(X) and m(X∗) are the training and testing mean
functions. Usually, for notational simplicity the prior means

Table I: Kernel Selection using log marginal likelihood.

kernel log marginal likelihood
Catalogue Cart

RBF -3.153E+03 -2.153E+03
RationalQuadratic -2.995E+03 -2.052E+03

Matern -3.036E+03 -2.086E+03
DotProduct -1.988E+15 -1.706E+15

RBF + RationalQuadratic -2.971E+03 -2.027E+03
RBF + Matern -2.974E+03 -2.027E+03

RationalQuadratic + Matern -2.977E+03 -2.027E+03

are assumed to be constant and zero. This is also consistent
with the practice of data normalization in machine learning.
If there are n training points and n∗ test points then
K(X,X∗) denotes the n × n∗ matrix of the covariances
evaluated at all pairs of training and test points, and similarly
for the other entries K(X,X), K(X∗, X∗) and K(X∗, X).
Based on Bayesian inference, it is possible to get the
conditional distribution of f∗ given f as shown in Eq. (2).

f∗ | f ∼ N
(︁
m̄, Σ̄

)︁
∼ N(K (X∗, X)K (X,X)

−1
f,

K (X∗, X∗)−K (X∗, X)∗ K (X,X)
−1

K (X,X∗))
(2)

This is the posterior distribution over target functions for a
specific set of test cases X∗. The mean of this distribution,
m̄, will be used to predict the end-to-end tail latency of
a microservice workflow. The standard deviation σ̄ derived
through Cholesky decomposition [5] of the variance Σ̄, will
be used to get the confidence bound on the prediction.

Kernel Selection. One of the key design for the general-
ization properties of a GP model is the choice of the kernel
function. A multitude of possible families of kernel functions
exists such as Matern kernel, Rational quadratic kernel, etc.
New kernel can be derived by additive and multiplicative
combination of existing kernels[15]. We systematically com-
pare the log marginal likelihood (LML) of various kernels on
our training data to select the best kernel for the GP models
in Table I. We use the sum kernel RBF+RationalQuadratic
for our GP model corresponding to the highest LML value
for both Catalogue and Cart workflows.

GP Model Fitting. For a set of n observations, the hyper-
parameters associated with the kernel functions are estimated
and optimized during the fitting of GP model. This is done
by maximizing the log marginal likelihood, log p(f |X, θ)
i.e the probability of the data given the hyperparameters
denoted by θ, as shown in Eq. (3).

L = log p(f |X, θ) = −1

2
log |K (X,X) |

−1

2
fT (K(X,X))−1f − n

2
log(2π)

(3)

C. Robust Resource Scaling.

Although existing cloud platforms4 provide mechanisms
for auto-scaling microservices, they expect application own-
ers to specify thresholds for various microservices load

4https://aws.amazon.com/ecs/

Table II: Notation for Resource Scaling Optimization.

Symbol Description
S Set of microservices relevant to the target workflows
R Set of container resource types(CPU, network)
SLOtarget

j tail latency target of workflow j
xir Average utilization of resource r in microsevices i
m̄j(x) Posterior mean function of workflow j from Eq.2
σ̄j(x) Posterior standard deviation of workflow j from Eq.2
Sj Set of microservices related to workflow j

metrics to enable auto-scaling features. For example, the
auto-scaling feature in Kubernetes determines the allocation
of containers to a microservice by using the formula:

desiredReplicas = max
r

(

⌈︃
currentReplicas ∗ currentMetricr

desiredMetricr

⌉︃
)

(4)
If the desiredMetricr is specified as an average CPU
utilization of 40% for and the currentMetricr for CPU
utilization is 50% for a particular microservice, the number
of containers allocated to that microservice will be doubled
since the ratio is 1.2 (50%/40%). If multiple metrics are
specified, this calculation is done for each metric, and then
the largest of the desired replica counts is chosen. Any
scaling is executed only if the ratio of currentMetricr
and desiredMetricr drops below 0.9 or increases above
1.1 (10% tolerance). It is challenging and burdensome for
application owners to determine the resource utilization
thresholds for various microservices in order to meet the
application’s end-to-end performance target. Setting inap-
propriate thresholds may lead to overprovisioning or un-
derprovisioning of resources. We now describe how RScale
can enable cloud platforms to automatically determine these
thresholds based on user-provided performance SLO targets.

1) Problem Formation: Consider that SLO targets in
terms of the end-to-end tail latency for a set of workflows
are specified. For a given workload condition, we aim to
find the highest resource utilization values of the relevant
microservices, at which the given SLO targets will not be
violated. These utilization values are calculated periodically
and set as the thresholds (desiredMetricValue) for making
resource scaling decisions. These dynamic thresholds help in
determining which microservices should be scaled, and how
many containers should be allocated to each microservice
based on Eq. (4). This approach aims to avoid resource
overprovisioning while providing a performance guarantee
to the given workflows.

We formulate resource scaling as a constrained optimiza-
tion problem as follows:

max
∑︂
iϵS

∑︂
rϵR

xir (5)

s.t.∀j : m̄j (x) + κσ̄j (x) ≤ SLOtarget
j (6)

∀i, r : xir ≥ 0 (7)

https://aws.amazon.com/ecs/

Algorithm 1: Online Adaptation and Resource Scal-
ing

Require: collect training dataset D containing N samples;
for T = 1 to infinity do

1: collect multi-layered data at sampling interval T ;
2: Insert new sample into dataset D;
3: Remove the oldest sample from dataset D;
4: Update model (Fit model to dataset D);
5: Solve the optimization problem given by Eqs. (5) -
(8);
6: Calculate desiredReplicas from Eq. (4);
7: Scale microservices

end for

x = ((xir)rϵR)iϵSj
(8)

The symbol notations are described in Table II. The ob-
jective function in Eq. (5) aims to maximize the container-
layer resource usage i.e the sum of average utilization of
CPU and network resources in the set of microservices that
are relevant to the target workflows. The relevance of a
microservice to a workflow can be determined either by
analyzing the workflow DAG or through machine learning-
based feature selection[14].

Consider that m̄j (x) and σ̄j (x) are the posterior mean
function and standard deviation function provided by the GP
regression model for workflow j. Depending on the tunable
parameter κ, the inequality constraint in Eq. (6) ensures with
certain confidence bound that the SLO target of workflow j
will not be violated. For example, if κ = 2, there is a 95%
probability that the tail latency of workflow j will less than
the SLO target. This is because point-wise mean plus and
minus two times the standard deviation corresponds to the
95% confidence region in a Gaussian distribution.

2) Solution: We apply a non-linear optimization tech-
nique, the interior-point method [16], to solve the resource
scaling optimization problem. In the formulation of the pro-
posed optimization problem, application-layer metrics (e.g
workload intensity) is not included as variables, although
m̄j (x) and σ̄j (x) depend on this metric as well. Instead,
the values of these metrics will be fixed according to their
observed values at the time of solving the optimization
problem and treated as constants for the instance. Therefore,
the resource scaling decision can be made directly based on
the container-layer resource usage thresholds as determined
by the optimization. This allows the resource scaling mech-
anism to be practical and manageable.

D. Putting It All Together

Algorithm 1 describes the overall operation of RScale
system, including performance monitoring, online model
adaptation, and resource scaling. In order to adapt the per-
formance model in the face of changing system dynamics,

Catalogue-NN Catalogue-GP Cart-NN Cart-GP
ML models

0

5

10

15

20

25

30

M
AP

E
(%

)

Pod_CPU+Pod_Net
Pod_CPU+Pod_Net+VM_CPU+VM_Net+VM_CPI

(a) Prediction error.

Catalogue-NN Catalogue-GP Cart-NN Cart-GP
ML models

0.0

0.2

0.4

0.6

0.8

1.0

R2
 S

co
re

Pod_CPU+Pod_Net
Pod_CPU+Pod_Net+VM_CPU+VM_Net+VM_CPI

(b) R2 Score.
Figure 4: Prediction accuracy of Catalogue and Cart work-
flow models.

RScale maintains a sliding window of data samples collected
from the cloud environment. The use of the sliding window
allows the GP models to forget old observations and uti-
lize recent observations. At each sampling interval, RScale
updates the GP models by fitting the models to the sliding
window dataset (See GP Regression Model fitting in Section
III-B). Then, it solves the resource scaling optimization
problem given by Eqs. (5) - (8). During this process, the GP
models are iteratively evaluated to obtain the optimal values
of desired resource utilization (desiredMetrics). Then the
desiredReplicas for individual microservices are calculated
by Eq. (4). Finally, the microservices are scaled by adding
or removing containers allocated to them.

In this paper, we focus on coarse-grained resource scaling
(scale-out approach) at the granularity of containers running
on cloud VMs. We do not scale-up containers and VMs. This
makes our approach transparently enforceable in existing
cloud systems. We also make the assumption that when the
resources available in a cluster of VMs are insufficient to
accommodate the scaling of microservices, new VMs can be
added to the cluster. Similarly, when VMs are underutilized
they can be removed from the cluster. This assumption is
in alignment with the VM auto-scaling feature of existing
cloud platforms. Hence, avoiding overprovisioning of mi-
croservices based on the proposed techniques will contribute
to resource efficiency in terms of the number of VMs used.

IV. EVALUATION

A. Experimental TestBed

We set up a cloud prototype testbed closely resembling
real-world cloud platforms, such as Google Kubernetes
Engine and Amazon Elastic Container Services. The testbed
includes four bare metal servers leased on NSF Chameleon
Cloud. Each server was equipped with dual-socket Intel
Xeon E5-2670 vs Haswell processors(each with 12 cores
@ 2.3Ghz), 128 GB of RAM and connected by 10Gbps
Ethernet. 16 VMs were hosted on the server cluster by using
KVM for server virtualization. Each VM was configured
with four vCPUs, 8 GB RAM and 30GB disk space.
A Kubernetes cluster using these 16 VMs was built for
container orchestration and management. Docker (Version
18.06.2-ce) was used as the container runtime engine.

As a representative microservice benchmark, we used
Robot Shop which emulates an e-commerce website. The

200 300 400
data size

0

10

20

30

40

Ex
ec

ut
io

n
tim

es
(s

)

(a) Bootstrap overhead(NN).

250 300
predicted tail latency(ms)

0.00

0.02

0.04

0.06

Pr
ob

ab
ilit

y
de

ns
ity

95% prediction interval

μ= 276.79
σ= 18.89

(b) Data size is 200.

250 300
predicted tail latency(ms)

0.00

0.02

0.04

0.06

Pr
ob

ab
ilit

y
de

ns
ity

95% prediction interval

μ= 278.90
σ= 14.32

(c) Data size is 300.

250 300
predicted tail latency(ms)

0.00

0.02

0.04

0.06

Pr
ob

ab
ilit

y
de

ns
ity 95% prediction interval

μ= 276.81
σ= 8.20

(d) Data size is 400.
Figure 5: Distribution of predicted tail latency for Cart workflow obtained using the Bootstrap method and its associated
overheads for various data sizes.

Locust tool5 was used to generate user traffic composed of
a number of concurrent clients that generate HTTP-based
REST API calls. To introduce performance interference,
memory-intensive STREAM[13] benchmark and the Iperf
Network Performance benchmark6 were executed on ran-
domly select VMs in the testbed. The intensity of interfer-
ence was varied by changing the number of containers for
each interfering workload.

B. Machine Learning models.

We compare our GP regression based probabilistic model
with a multi-layer perceptron based Neural Network (NN),
which is a representative deterministic model with superior
prediction accuracy. The input features of each model in-
clude the number of concurrent clients, pod-level resource
metrics (the average CPU utilization and network throughput
of load-balanced pods for each microservice), and VM-level
resource metrics (the CPU utilization, network throughput
and CPI of VMs that host the pods). We use the scikit-
learn library’s randomized lasso[15] technique to reduce our
feature space and avoid potential over-fitting issues [14].
The hyperparameters of NN models are tuned by scikit-
learn’s GridSearchCV tuner. The prediction accuracy of NN
model is highly sensitive to the number of hidden layers
and the number of neurons in each hidden layer. Hence,
we tuned these parameters through an exhaustive search for
various combinations of input feature space and the targeted
workflow for the prediction of end-to-end tail latency. The
optimal number of hidden layers for our NN model is three,
and the optimal number of neurons in these three hidden
layers is (5, 3, 3) for Catalogue workflow and (3, 4, 6) for
Cart workflow.

C. Prediction Accuracy.

We evaluate the prediction accuracy of NN and GP models
with two different input feature space. The first input feature
space includes only pod-level resource metrics and the
second input feature space uses both pod-level and VM-level
metrics. We also evaluate the models with 10-fold cross-
validation on the collected dataset and compared the mean

5https://locust.io
6https://iperf.fr/

200 400
data size

0

20

40

60

Ti
m

e(
s)

GP
NN

(a) Overheads in GP and NN
models with bootstrapping.

200 400
data size

220
240
260
280
300
320
340

pr
ed

ict
ed

 la
te

nc
y(

m
s)

GP
NN

(b) Predicted tail latency with
95% prediction interval for NN
and GP models.

Figure 6: Comparing predictive uncertainty in GP and NN
models (with bootstrapping) for Cart workflow. Measured
tail latency is 280ms.

absolute percentage error (MAPE) and the coefficient of
determination, R2. An R2 of 1 indicates that the regression
predictions perfectly fit the data. Figs. 4 show that the GP
regression models for the Catalogue and Cart workflows
provided better prediction accuracy than NN models. To
collect the training data, we conduct extensive experiments
on our testbed by varying the number of concurrent clients
and the performance interference levels experienced by
different microservices in the Robot Shop benchmark. We
also vary the number of containers (pods) allocated to the
microservices, and measure the end-to-end tail latency of
various workflows as reported by the Locust tool.

D. Estimation of Predictive Uncertainty.

Estimation of uncertainty for NN. Making robust
resource management decisions in the face of changing
dynamics of the cloud environment requires the ability
to quantify predictive uncertainty of performance models.
However, deterministic performance models, such as popular
machine learning (ML) based models applied in recent
works [21, 26, 29], provide point estimates only without
confidence bounds. Although bootstrapping methods can
calculate the confidence bounds on each prediction made by
a deterministic model, they incur large overheads. Here, we
evaluate the bootstrap technique using NN model to estimate
the uncertainty in the prediction of tail latency for Cart work-
flow, when facing a workload of 55 concurrent clients and in-
terference on Web microservice from STREAM benchmark.
The NN model is trained with 80% of randomly sampled

https://locust.io
https://iperf.fr/

1 2 3 4 5 6 7
Training interval

10
15
20
25
30
35
40

M
AP

E(
%

)

Catalogue with 10 samples per interval
Cart with 10 samples per interval
baseline for Catalogue workflow
baseline for Cart workflow

(a) Case 1: Initial model trained
with dataset that includes in-
terference from memory inten-
sive workload. Model is adapted
online and tested with dataset
that includes interference from
network intensive workload.

1 2 3 4 5 6 7
Training interval

10
15
20
25
30
35
40

M
AP

E(
%

)

Catalogue with 10 samples per interval
Cart with 10 samples per interval
baseline for Catalogue workflow
baseline for Cart workflow

(b) Case 2: Initial model trained
with dataset that includes inter-
ference in Web and Cart mi-
croservices. Model is adapted
online and tested with dataset
that includes interference in
Catalogue microservice.

Figure 7: Prediction errors during online adaptation of GP
model to changing interference pattern.

training data and used to predict the tail latency. This process
is repeated for 200 iterations to obtain a distribution of
predicted tail latency. The 95% confidence interval obtained
from this distribution provides the predictive uncertainty of
the model. We found that using 200 iterations for bootstrap
provided the optimal estimation accuracy for a given data
size, and iterations greater than 200 only increased the
overhead. Due to space limitation, we only show the results
obtained by using 200 bootstrap iterations for various data
sizes as shown in Fig. 5. We observe that the predictive
uncertainty reduces with increasing data size. However, there
is a significant overhead of bootstrapping for all data sizes.

Comparison of uncertainty between NN and GP.
Fig. 6 compares the predictive uncertainty and associated
estimation overheads in case of GP and NN models. In
contrast to NN models which require bootstrapping to es-
timate predictive uncertainty, GP models directly provide
confidence bounds on each prediction. Fig. 6a compares
the time taken by these two methods to estimate the 95%
prediction interval. We observe that when the data size is
200, NN model with bootstrapping incurs 4X more overhead
than GP model in estimating predictive uncertainty. This
is despite the fact that we include the time taken for
model fitting as a part of GP model’s estimation overhead.
However, model fitting may not be needed every time for GP
to make a prediction. This can further reduce its overhead
of uncertainty estimation. Fig. 6b shows that GP model is
able to achieve smaller uncertainty in its prediction than the
NN model for various data sizes.

E. Model Adaptiveness.

To evaluate the adaptiveness of GP regression models,
we conduct experiments for two cases that require online
adaptation of performance models in the face of varying
interference patterns. As shown in Fig. 7, the prediction error
of the GP models converges quickly and stays close to the
the baseline value as the model is adapted over the training
intervals. Here, the baseline is the prediction error measured

cat
alo

gu
e

rat
ing

s

mon
go

db

Microservices

0
10
20
30
40
50

CP
U

ut
iliz

at
io

n
(%

)

desired NN
desired GP
measured

(a) Current vs Desired CPU
utilization of various microser-
vices using NN and GP models.

web
rat

ing
s

cat
alo

gu
e

Microservices

0
2
4
6
8

Ne
tw

or
k

R/
W

 (k
b/

s) desired NN
desired GP
measured

(b) Current vs Desired Network
throughput of various microser-
vices using NN and GP models.

Figure 8: Optimization of resource utilization thresholds for
efficient resource scaling with a workload of 30 concurrent
clients, and SLO target 170 ms for 95th percentile latency
of Catalogue workflow.

car
t

use
r

web

Microservices

0

10

20

30

40

50

CP
U

ut
iliz

at
io

n
(%

) desired NN
desired GP
measured

(a) Current vs Desired CPU
utilization of various microser-
vices using NN and GP models.

car
t

cat
alo

gu
e

use
r

Microservices

0
2
4
6
8

Ne
tw

or
k

R/
W

 (k
b/

s) desired NN
desired GP
measured

(b) Current vs Desired Network
throughput of various microser-
vices using NN and GP models.

Figure 9: Optimization of resource utilization thresholds for
efficient resource scaling with a workload of 30 concurrent
clients, and SLO target 220 ms for 95th percentile latency
of Cart workflow.

in the offline evaluation of the model with the offline training
dataset. The adaptiveness of a GP regression model can be
attributed to its ability to learn more from less data and
lazy learning technique, which delays the generalization of
training data until the next inference interval, thus enabling
local approximation of the target function.

F. Performance Guarantee.

We now evaluate the effectiveness of RScale’s resource
scaling optimization in meeting the end-to-end tail latency
targets of microservice workflows. For this purpose, we
specify performance SLO targets of 170 ms and 220 ms
for Catalogue and Cart workflows respectively, when a
workload of 30 concurrent clients is applied to the Robot
Shop benchmark. Furthermore, we compare the impact of
the resource scaling optimization based on NN and GP
regression models respectively. Fig. 8 compares the current
(measured) resource utilization of the microservices relevant
to Catalogue workflow and their desired resource utilization
values, when only one pod is allocated to each microservice.
In case of NN model based optimization, current CPU
utilization of microservices including Catalogue, Ratings
and MongoDB are less than their desired CPU utilization.
Furthermore, the ratios of the current network read/write
throughput and desired network read/write throughput for

NN GP
prediction models for Catalogue

0
50

100
150
200
250
300

95
th

 p
er

ce
nt

ile
 la

te
nc

y

170

SLO target
measured
predicted

(a) Catalogue workflow.

NN GP
prediction models for Cart

0

100

200

300

400

95
th

 p
er

ce
nt

ile
 la

te
nc

y

220

SLO target
measured
predicted

(b) Cart workflow.

Figure 10: 95th percentile latency of microservice workflows
with resource scaling optimization based on NN and GP.

microservices including Web, rating, and Catalogue are
within the tolerance range from 0.9 to 1.1. Therefore, NN
model based resource optimization does not suggest any
change in resource allocation. Whereas in case of GP model
based optimization, the ratio of current CPU utilization and
desired CPU utilization and the ratio of current Network
Read/Write throughput and desired Network Read/Write
throughput for Catalogue microservice are 1.3 and 2.8
respectively. Hence, the desired number of replicas for
Catalogue is three according to Eq. 4. The desired replicas
stay the same as current replicas for Ratings, MongoDB,
and Web. Thus, the optimal resource scaling option for GP
model based optimization is to add two additional pods
to the Catalogue microservice. Similarly, Fig. 9 shows the
optimal resource scaling option relevant to Cart workflow
for NN is to allocate an additional pod to Web and another
new pod to Cart and for GP is to allocate an additional pod
to Web and three new pods to Cart.

Finally, combining the two different scaling options for
Catalogue workflow and Cart workflow, the optimal resource
scaling option to satisfy both SLO targets at the same
time according to NN, is to add one pod to Web, Cart,
and Catalogue respectively. On the other hand, the optimal
solution according to GP is to add one pod to Web and
three pods to Cart and Catalogue respectively. Fig. 10 shows
that when the microservices are scaled based on the NN’s
optimization model, the measured 95th percentile latency for
Catalogue and Cart workflows violates the SLO target. This
is due to the fact that resource scaling optimization was
performed without considering the uncertainty associated
with performance prediction. On the other hand, GP model
based resource scaling is able to meet the SLO targets
since the 95% confidence interval of prediction is directly
incorporated into the resource scaling optimization problem.

G. Overhead Analysis

A potential drawback of using GP regression lies in its
computational complexity. A straightforward implementa-
tion of GP regression requires inversion of the covariance
matrix, with a memory complexity of Θ

(︁
n2

)︁
and a com-

putational complexity of Θ
(︁
n3

)︁
. However, this is feasible

even on a desktop computer for data sizes of n up to a few
thousand. As GP models are non-parametric, they employ

100 200 400 600 800
Training data set

0

10

20

30

40

50

Fi
tti

ng
 ti

m
e(

s)

Catalogue workflow
Cart workflow

(a) Fitting time.

100 200 400 600 800
Training data set

0.00
0.01
0.02
0.03
0.04
0.05

Pr
ed

ict
io

n
tim

e(
s)

Catalogue workflow
Cart workflow

(b) Prediction time.

Figure 11: Impact of training data size on GP.

a lazy learning technique that delays the generalization of
training data until the inference (prediction) is made. It
means that they need to consider the training data each time
they make a prediction. Hence, the size of training data
determines both the time taken to fit GP models and the
time taken to make a prediction as shown in Fig. 11.

100 200 400 600 800
Training data set

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Op
tim

iza
tio

n
tim

e(
s) Catalogue workflow

Cart workflow

Figure 12: Optimization time
for GP.

Fig. 12 shows the im-
pact of training data size
on the time taken to solve
the resource scaling opti-
mization problem given by
Eqs. (5) - (8). We ob-
serve that the optimization
problem takes more time
to converge in the case of
Cart workflow since it has
a much wider range of tail latency (100ms to 1000ms), com-
pared to that of the Catalogue workflow (50ms to 250ms)
for a given range of resource utilization values. Based on
our overhead analysis, we limit the training data size to 200
samples so that the overhead of data collection(Line 1-3 in
algorithm 1), the overhead of model fitting, prediction, and
optimization(Line 4-6 in algorithm 1), and the overhead of
scaling (Line 7 in algorithm 1) remain smaller than the data
sampling interval of 30 seconds.

H. Provisioning under varying load intensity

0 2 4 6 8 10
Sampling interval

25

30

35

40

45

50

co
nc

ur
re

nt
 c

lie
nt

s

Figure 13: Dynamic work-
load for Cart workflow.

We now illustrate the
provisioning of resources
under a dynamic workload
shown in Fig. 13. We set
the SLO target of Cart
workflow in terms of the
95th percentile latency to
be 220ms. Figs. 14 (a) and
(b) show the end-to-end
tail latency of Cart work-
flow without interference
and with interference respectively under a dynamic work-
load. In Fig. 14a, RScale is able to meet the SLO target for
the Cart workflow by scaling the appropriate microservices
at sampling interval 2 and 4 in response to increasing
workload intensity. When the workload intensity decreases,
pods are removed from appropriate microservices at sam-

0 2 4 6 8 10
Sampling interval

0

200

400

600

95
%

 la
te

nc
y(

m
s)

add a pod
 to Cart

add three pods to
 Cart, one pod to
Web and Catalogue

remove one pod
 from Cart and Catalogue

remove one pod
 from Cart

Prediction
SLO target

Measured latency
95% CI

(a) 95th percentile latency with-
out interference.

0 2 4 6 8 10
Sampling interval

0

100

200

300

400

500

95
%

 la
te

nc
y(

m
s)

add two pods
 to Cart

add one pod to Cart,
 Web, and Catalogue

remove one pod from
 Cart and Catalogue

remove one pod
 from Cart and Web

Measured latency
SLO target

Prediction
95% CI

(b) 95th percentile latency with
interference from iPerf.

Figure 14: Resource provisioning under dynamic workload
for Cart workflow.

0 1 2 3 4 5 6 7
Sampling interval

0

100

200

300

400

95
%

 la
te

nc
y(

m
s)

Stream
Interference

IPerf Interference

add four pods
 to Catalogue

Measured latency
Predicted latency

SLO target
95% CI

(a) Catalogue workflow.

0 1 2 3 4 5 6 7
Sampling interval

0

200

400

600

800

95
%

 la
te

nc
y(

m
s)

Stream
Interference

IPerf Interference

add four
pods to
Cart

Measured latency
Predicted latency

SLO target
95% CI

(b) Cart workflow.
Figure 15: Resource provisioning under varying interference.

pling interval 6 and 8 in order to avoid overprovisioning of
resources.

Fig. 14b shows similar results in the presence of perfor-
mance interference from iPerf colocated with the microser-
vices relevant to Cart workflow. We observe that RScale
allocates more resources and decreases fewer resources
when performance interference exists in the system.

I. Provisioning under varying interference.

We evaluate the effectiveness of RScale in providing per-
formance guarantee to Catalogue and Cart workflows under
varying interference patterns. In this experiment, the initial
GP models are trained with dataset including interference
from memory-intensive STREAM workload. As shown in
Fig. 15, the interfering workload is changed from STREAM
to network-intensive iPerf after sampling interval 2. As a
result, the measured tail latency exceeds the SLO target
at sampling interval 3. RScale is able to adapt the model
quickly and scale the appropriate microservices at sampling
interval 4. Finally, the measured tail latency meets the SLO
target at sampling interval 5.

V. CONCLUSION

In this paper, we designed and implemented RScale,
a robust resource scaling system that provides end-to-end
performance guarantee for containerized microservices de-
ployed in multi-tenant cloud. Unlike existing works, RScale
ensures system robustness by explicitly incorporating pre-
dictive uncertainty estimated from probabilistic performance
models into the resource allocation problem. Experimental
evaluation demonstrates that RScale can meet the end-to-
end tail latency of microservice workflows even in the
face of multi-tenant performance interference and changing

system dynamics. In future, we plan to develop interference-
aware container scheduling technique that aims to minimize
the resource contention experienced by the containerized
microservices when they are placed on a cluster of VMs. We
will further extend our work to include diverse microservice-
based applications with different resource bottlenecks.

ACKNOWLEDGMENT

Results presented in this paper were obtained using the
Chameleon testbed supported by the National Science Foun-
dation. The research is supported by NSF CNS 1911012
grant.

REFERENCES

[1] A. Balalaie, A. Heydarnoori, and P. Jamshidi. Mi-
croservices architecture enables devops: Migration to
a cloud-native architecture. IEEE Software, 33(3):42–
52, May 2016.

[2] J. Brownlee. Statistical Methods for Machine Learn-
ing: Discover how to Transform Data into Knowledge
with Python. Machine Learning Mastery, 2018.

[3] X. Chen, L. Rupprecht, R. Osman, P. Pietzuch, F. Fran-
ciosi, and W. Knottenbelt. Cloudscope: Diagnosing
and managing performance interference in multi-tenant
clouds. In Proc. of the IEEE International Symposium
on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems, MASCOTS ’15, page
164–173, 2015.

[4] C. Delimitrou and C. Kozyrakis. Quasar: Resource-
efficient and qos-aware cluster management. SIGARCH
Comput. Archit. News, 42(1):127–144, Feb. 2014.

[5] D. Dereniowski and M. Kubale. Cholesky factoriza-
tion of matrices in parallel and ranking of graphs.
In R. Wyrzykowski, J. Dongarra, M. Paprzycki, and
J. Waśniewski, editors, Parallel Processing and Ap-
plied Mathematics, pages 985–992, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg.

[6] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Maz-
zara, F. Montesi, R. Mustafin, and L. Safina. Microser-
vices: Yesterday, Today, and Tomorrow, pages 195–216.
Springer International Publishing, Cham, 2017.

[7] M. Fazio, A. Celesti, R. Ranjan, C. Liu, L. Chen, and
M. Villari. Open issues in scheduling microservices in
the cloud. IEEE Cloud Computing, 3:81–88, 09 2016.

[8] W. Iqbal, A. Erradi, M. Abdullah, and A. Mahmood.
Predictive auto-scaling of multi-tier applications using
performance varying cloud resources. IEEE Transac-
tions on Cloud Computing, pages 1–1, 2019.

[9] V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Ry-
balkin, and C. Yan. Speeding up distributed request-
response workflows. SIGCOMM Comput. Commun.
Rev., 43(4):219–230, Aug. 2013.

[10] D. Jiang, G. Pierre, and C.-H. Chi. Autonomous
resource provisioning for multi-service web applica-

tions. In 19th International World-Wide Web Confer-
ence (WWW), pages 471–480, 01 2010.

[11] P. Lama and X. Zhou. Autonomic provisioning with
self-adaptive neural fuzzy control for percentile-based
delay guarantee. ACM Transactions on Autonomous
and Adaptive Systems, 8:9:1–, 07 2013.

[12] J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Gribble.
Tales of the tail: Hardware, os, and application-level
sources of tail latency. In Proc. of the ACM Symposium
on Cloud Computing, SOCC ’14, page 1–14, 2014.

[13] J. McCalpin. Memory bandwidth and machine bal-
ance in high performance computers. IEEE Technical
Committee on Computer Architecture Newsletter, pages
19–25, 12 1995.

[14] N. Meinshausen and P. Bühlmann. Stability selec-
tion. Journal of the Royal Statistical Society Series
B, 72:417–473, 09 2010.

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825–2830, 2011.

[16] F. A. Potra and S. J. Wright. Interior-point methods.
Journal of Computational and Applied Mathematics,
124(1):281 – 302, 2000. Numerical Analysis 2000.
Vol. IV: Optimization and Nonlinear Equations.

[17] J. Rahman and P. Lama. Predicting the end-to-end tail
latency of containerized microservices in the cloud. In
Proc. of the IEEE International Conference on Cloud
Engineering (IC2E), pages 200–210, 06 2019.

[18] J. Rao and C.-Z. Xu. Online measurement of the capac-
ity of multi-tier websites using hardware performance
counters. In Proc. of the IEEE International Con-
ference on Distributed Computing Systems (ICDCS),
2008.

[19] C. Rasmussen and C. Williams. Gaussian Processes
for Machine Learning. MIT Press, 01 2005.

[20] R. Singh, U. Sharma, E. Cecchet, and P. Shenoy.
Autonomic mix-aware provisioning for non-stationary
data center workloads. In Proc. of the 7th International
Conference on Autonomic Computing, ICAC ’10, 01
2010.

[21] S. Subbiah, j. wilkes, X. Gu, H. Nguyen, and
Z. Shen. Agile: Elastic distributed resource scaling
for infrastructure-as-a-service. In Proc. of 10th Inter-
national Conference on Autonomic Computing (ICAC
13), 2013.

[22] L. Suresh, P. Bodik, I. Menache, M. Canini, and
F. Ciucu. Distributed resource management across
process boundaries. In Proc. of ACM Symposium on
Cloud Computing (SoCC), 2017.

[23] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and
A. Tantawi. An analytical model for multi-tier internet

services and its applications. Sigmetrics Performance
Evaluation Review, 33:291–302, 06 2005.

[24] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and
T. Wood. Agile dynamic provisioning of multi-tier in-
ternet applications. ACM Transactions on Autonomous
and Adaptive Systems, 3, 03 2008.

[25] M. Villamizar, O. Garcés, L. Ochoa, H. Castro, L. Sala-
manca, M. Verano, R. Casallas, S. Gil, C. Valen-
cia, A. Zambrano, and M. Lang. Infrastructure cost
comparison of running web applications in the cloud
using aws lambda and monolithic and microservice
architectures. In 2016 16th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing
(CCGrid), pages 179–182, 2016.

[26] M. Wajahat, A. Gandhi, A. Karve, and A. Kochut.
Using machine learning for black-box autoscaling. In
Proc. of IEEE International Green and Sustainable
Computing Conference (IGSC), pages 1–8, 01 2016.

[27] L. Wang, J. Xu, H. Duran-Limon, and M. Zhao.
Qos-driven cloud resource management through fuzzy
model predictive control. In Proc. of IEEE Interna-
tional Conference on Autonomic Computing, pages 81–
90, 07 2015.

[28] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey. Bobtail:
Avoiding long tails in the cloud. In Proc. of USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2013.

[29] Z. Yang, P. Nguyen, H. Jin, and K. Nahrstedt. Miras:
Model-based reinforcement learning for microservice
resource allocation over scientific workflows. In Proc.
of IEEE International Conference on Distributed Com-
puting Systems (ICDCS), 2019.

[30] Q. Zhang, L. Cherkasova, and E. Smirni. A regression-
based analytic model for dynamic resource provision-
ing of multi-tier applications. In Fourth International
Conference on Autonomic Computing, ICAC’07, pages
27–27, 07 2007.

[31] Y. Zhang, D. Meisner, J. Mars, and L. Tang. Treadmill:
Attributing the source of tail latency through precise
load testing and statistical inference. SIGARCH Com-
put. Archit. News, 44(3):456–468, June 2016.

[32] L. Zhu and N. Laptev. Deep and confident prediction
for time series at uber. In IEEE International Confer-
ence on Data Mining Workshops. IEEE, 2017.

	Introduction
	Related Work
	RScale Design and Implementation
	RScale Architecture
	Performance Modeling with Gaussian Process
	Robust Resource Scaling.
	Problem Formation
	Solution

	Putting It All Together

	Evaluation
	Experimental TestBed
	Machine Learning models.
	Prediction Accuracy.
	Estimation of Predictive Uncertainty.
	Model Adaptiveness.
	Performance Guarantee.
	Overhead Analysis
	Provisioning under varying load intensity
	Provisioning under varying interference.

	Conclusion

