Robust performance modeling of containerized microservices with Probabilistic Machine learning

Peng Kang†, Department of Compute Science, Palden Lama†, PhD
‡The University of Texas at San Antonio, San Antonio, Texas 78249

Background & Motivation

Large-scale web services are increasingly being built with many small modular components (microservices), which can be deployed, updated, and scaled seamlessly. These microservices are packaged to run in a lightweight isolated execution environment (containers) and deployed on compute resources rented from cloud providers. However, the complex interactions and the contention of shared hardware resources in cloud data centers pose significant challenges in managing web service performance.

In this paper, we develop probabilistic machine learning-based performance models, which can quickly adapt to changing system dynamics and directly provide confidence bounds in the predictions even when the data is noisy and sparse, to enable cloud platforms to provide robust performance guarantee for large-scale web services. We also leverage multi-layered data collected from container-level resource usage metrics and virtual machine-level hardware performance counter metrics for enhancing performance modeling accuracy.

Framework & Platform

Workloads. We used an open-source microservices benchmark, Robot Shop[7], for performance characterization and the Locust tool[3] to generate user traffic for the Robot Shop benchmark.

Microservices

Microservice architecture aims to overcome various limitations of traditional monolithic architecture for software development[5, 4]. Microservice architecture splits the application into many smaller self-contained components, called microservices, that serve specific functions and communicate with each other via lightweight language-agnostic APIs as shown in Figure 2.

Adaptive Modeling

Gaussian Process(GP) Regression, a non-parametric kernel-based probabilistic modeling technique, utilizes the concept of Gaussian Process and Bayesian inference to find a distribution over all the possible functions that are consistent with the observed data[6]. Hence, this probabilistic modeling approach can provide confidence bounds on its predictions, which is critical for making robust resource management decision in an uncertain cloud environment.

Problem Formulation. We aim to find the highest resource utilization values of the relevant microservices, at which the given SLO target will not be violated. Therefore, we design a constrained optimization problem as follows:

\[
\max \sum_{i \in S} \sum_{r \in R,j} R_{ij} \sigma_i \quad \text{s.t.} \quad \forall j, \theta_j(x) \leq \text{SLA}_{\text{target}}
\]

where \(R_{ij} \) is the average utilization of resource \(r \) in microservice \(j \), \(\theta_j(x) \) is the posterior mean function of workflow \(j \), and \(\sigma_i \) is the posterior standard deviation of workflow \(j \).

Evaluation & Result

Fig. 5: Comparison of R² Score Between NN and GP

Fig. 6: Comparison of Prediction accuracy between NN and GP

Results. The scalar configuration implements the decision as suggested by the models. However, actual observed latency suggest the scaling decision for NN failed to meet the SLO target, whereas GP meets the SLO target.

Acknowledgement

This research was supported by NSF research grant CNS-1911012. Results presented in this paper were obtained using the Chameleon testbed supported by the NSF.

Reference

[7] Chameleon: A configurable experimental environment for large-scale cloud research
https://www.chameleon-cloud.org/