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Background & Motivation

Large-scale web services are increasingly being built with many small modular
components (microservices), which can be deployed, updated and scaled seamlessly.
These microservices are packaged to run in a lightweight isolated execution environ-
ment (containers) and deployed on compute resources rented from cloud providers.
However, the complex interactions and the contention of shared hardware resources
in cloud data centers pose significant challenges in managing web service performance.

In this paper, we develop probabilistic machine learning-based performance models,
which can quickly adapt to changing system dynamics and directly provide confidence
bounds in the predictions even when the data is noisy and sparse, to enable cloud
platforms to provide robust performance guarantee for large-scale web serivces. We
also leverage multi-layered data collected from container-level resource usage metrics
and virtual machine-level hardware performance counter metrics for enhancing
performance modeling accurate.
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Fig. 1: framework for automatically adaptive performance modeling with multi-layer data.

Experimental Testbed. We implemented and evaluated our modeling approach on
NSF Cloud’s Chameleon[1] testbed using KVM for virtualization, Docker Engine for
containerization and Kubernetes[2] for container orchestration.

Workloads. We used an open-source microservices benchmark, Robot Shop[7], for
performance characterization and the Locust tool[3] to generate user traffic for the
Robot Shop benchmark.

Microservices

Microservice architecture aims to over-
come various limitations of traditional
monolithic architecture for software de-
velopment[5, 4]. Microservice architec-
ture splits the application into many
smaller self-contained components, called
microservices, that serve specific func-
tions and communicate with each other
via lightweight language-agnostic APIs as
shown in Figure 2.
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Fig. 2: Microservices.
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Fig. 3: Workflow DAGs.

Adaptive Modeling

Gaussian Process(GP) Regression, a non-parametric kernel-based probabilistic modeling
technique, utilizes the concept of Guassian Process and Bayesian inference to find a distribution
over all the possible functions that are consistent with the observed data[6]. Hence, this proba-
bilistic modeling approach can provide confidence bounds on its predictions, which is critical for
making robust resource management decision in an uncertain cloud environment.

Problem Formulation. We aim to find the
highest resource utilization values of the rele-
vant microservices, at which the given SLO tar-
get will not be violated. Therefore, we design
a constrained optimization problem as follows:

max
∑
iεS

∑
rεR xir

s.t. ∀ : m̄j (x) + κσ̄j (x) ≤ SLO
target
j

∀i, r : xir ≤ 0
x = ((xir)rεR)iεSj

Symbol Description
S Set of microservices relevant to the target workflows
R Set of container resource types(CPU, I/O, network)

SLO
target
j tail latency target of workflow j

xir Average utilization of resource r in microsevices i
m̄j(x) Posterior mean function of workflow j
σ̄j(x) Posterior standrad deviation of workflow j
Sj Set of microservices relevant to workflow j

Evaluation & Result
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Fig. 4: Comparison of Prediction accuracy between NN and GP.
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Fig. 5: Comparison of R2 Score Between NN and GP.
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Fig. 6: Evaluating adaptiveness of performance models.
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Fig. 7: Confidence Interval for latency prediction of two different workflows.(Computed by GP)
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Fig. 8: Current vs desired average CPU utilization of various microsevices.
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Fig. 9: Current vs desired average Network Read/Write of various microsevices.
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Fig. 10: Observed vs Predicted 95th percentile latency, for resource configurations suggested by NN and GP.

Results. The scalar configuration implements the decision as suggested by the mod-
els. However, actual observed latency suggest the scaling decision for NN failed to
meet the SLO target, where as GP meets the SLO target.
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