Laplacian Eigenmaps for Dimensionality Reduction and Data Representation

Lisa Wainer

Supervised by

Dr. Massi Pontil
Dimensionality Reduction

- Central problem in Machine Learning
- Arises in other fields
 - Information Processing
 - Data Compression
 - Scientific Visualisation
 - Pattern Recognition
Aims

- To obtain compact representation of data
 - Capturing desired information
 - Without loss of too much information
Benefits

- Data in a more compact form allows
 - Visualisation of the data
 - Speeds up processing time
 - Focus on significant features
Dimensionality Reduction as a Mapping
Methods in General Use

- Principle Components Analysis
 - Eigenvector method
 - Simple to implement

- PCA is limited to linear projections
 - Cannot produce good representation of non-linear data
A more powerful method

- Using Laplacian Eigenmaps
 - Belkin & Niyogi, 2001

- Unsupervised Learning algorithm

- Can generate non-linear mappings
 - Represent non-linear data
Algorithm Overview

- **Stage 1**
 - Builds a graph incorporating neighbourhood information of the data set

- **Stage 2**
 - Computes low dimensional representation
 - Optimally preserving local relationships between points

- Assumes the data sits on an underlying manifold
What is a Manifold?

- Non-linear lower dimensional substructure
 Eg. A 'Swiss Roll'
 - 2-D submanifold lying in 3-D space
Other Motivation

- Preserving local information seems to emphasise *natural clusters* in the data

- Possible role in human perception
 - Suggests a possible mechanism for emergent categorisation
Main Technical Aims

- Understand and Implement the algorithm
 - Matlab implementation

- Test the algorithm on data
 - Real (eg. images of faces)
 - Synthesised - see Toy example
 - Dependent on run time of Matlab implementation
Additional Technical Aims

- Time Permitting
- Study the use of the algorithm
 - Classification Problems & Clustering
 - Eg. Faces or Non-faces
- Comparisons with other non-linear methods
 - Kernal PCA
Plan

- 3 months to complete project

Outline
- Milestone 1: Algorithm implementation
- Milestone 2: Testing on Data
- Milestone 3: Writeup

Meetings with supervisor
- Twice a week when possible
- Begin June 3rd
Schedule

Understanding

Implementation I

Implementation II

Testing

Test Performance

Writeup
General Approach

- Iterative, incremental approach
 - Typical for scientific project

- Most resembles 'Agile' method (Collins-Cope)
 - Plan in detail for the short term
 - Broad strokes for long term
 - Risk analysis
Risk 1

- Computer resources
 - Effects possibility of testing on real data
 - May be able to negotiate with department
 - Focus on other additional Aims
Risk 2

- Supervisor absence
 - Aware that supervisor will be away
- Dates of holidays and plan accordingly
- Core understanding early on
- Possibly identify a second supervisor
Risk 3

- Running out of time
 - Disciplined approach to work
 - Keep regular hours

- Aim to do each week
 - Book work
 - Computer work
 - Written work
Risk Minimisation

- Prioritise
 - Understanding and Development of algorithm
 - Testing on Toy data set
 - Writing up as go along

- Maximise time with supervisor
 - More frequent meetings
 - Encourages work ethic
Metrics for Project Cycle

- Highly mathematical algorithm
 - Gives landmarks to assess progress

- Meeting milestones
 - Reports to supervisor
Metrics for Testing

- Test on Toy Example data set
- Compare with results from Belkin & Niyogi (2001)
 - Does my implementation perform similarly?
- Identified package available (Belkin)
Toy Example Data

Binary Images of Vertical and Horizontal Bars
Toy Example
Representations of the Data

From (Belkin & Niyogi, 2001)
Metrics for the Algorithm

- Can the overall method be assessed?
 - Comparison with other method
 - Kernal PCA : Non-linear form of PCA
 - Information loss
 - Runtime
Stakeholders

- Lisa Wainer
- Dr. Massi Pontil
- UCL CS Department
Resources

- PC & Matlab
- Toy Data Sets
 - Will generate
- Real data sets
 - Images of faces