Research Related to This Course

- Processes and Threads
 - OOPSLA’11, SOSP’11

- Synchronizations
 - EuroSys’17, ASE’17

- Memory Management
 - SIGCSE’17, OSDI’08

General Information

- Self Introduction
 - Research interests: security, reliability and performance issues of parallel applications (Software Research Group)
 - Looking for the REU student

- Class Page
 - http://www.cs.utsa.edu/~tongpingliu/teaching/cs3733/cs3733.html
 - Syllabus, class schedule, slides and assignments

- Prerequisites:
 - CS 3423 (Systems Programming)
 - CS 3843 (Computer Organization)
 - Solid background of C/C++
General Information (cont.)

- Required textbook:
 - *Operating System Concepts*, by Silberschatz, Galvin and Gagne (SGG), 9th edition (older versions work)
 - *Unix Systems Programming (USP)*, by Robbins and Robbins

Contact Information

- Office: NPB 3.328
- Office hours:
 - TuTh: 3:45pm – 5:00pm;
 - Or by appointment
- Email: Tongping.Liu@utsa.edu
 - Best way to reach me!
 - PLEASE put “CS3733” in the subject line or the body
 - Common questions are better to be posted at Blackboard forum.

Grade Distribution

- Programming projects (30%)
 - Four projects are expected
 - Discussions are allowed but no code-copying/cheating
- Quizzes (10%)
 - Will be assigned randomly during classes
 - Thus, attendance is mandatory
- Two Midterm Exams (15% each)
 - Closed books, closed notes
- One Final Exam (30%)
 - December 13 (12:30pm – 3:00pm): fixed date and time
 - Comprehensive, closed books, closed notes
- Bonus points: Projects (4%), Exams (6%)

Final Grade (Out of 1100)

<table>
<thead>
<tr>
<th>Grade Distribution</th>
<th>Final Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>>= 960</td>
<td>A+</td>
</tr>
<tr>
<td>930 - 959</td>
<td>A</td>
</tr>
<tr>
<td>900 - 929</td>
<td>A-</td>
</tr>
<tr>
<td>870 - 899</td>
<td>B-</td>
</tr>
<tr>
<td>800 - 829</td>
<td>B+</td>
</tr>
<tr>
<td>770 - 799</td>
<td>C+</td>
</tr>
<tr>
<td><= 599</td>
<td>F</td>
</tr>
</tbody>
</table>
Other Policies

- Late policy for projects: every project should turn in no later than 10 days (without prior consent), but with 10% off each day.
- Policy for exams: no early/makeup exam without university sanctioned excuse or prior consent
- Zero tolerance on cheating!
 - Fail directly if cheating in any project and exam

Course Objectives

- Better understanding of basic OS concepts;
- Learn the principles behind the design of operating systems;
- Gain hands-on programming experiences
 - Familiar with C Programming
 - Task Scheduling
 - Virtual Memory Management
 - Multithreaded Programming and Synchronization

Topics to be covered

- Introduction to OS (SGG Chapter 1)
- Programs and Processes (SGG 3.1, 3.2, and USP Chapter 2)
- CPU Scheduling (SGG 5.1-5.3, 5.6)
- Processes in UNIX (USP Chapter 3)
- UNIX I/O (USP Chapters 4, 5 and 6.1-6.4)
- The Token Ring (USP 7.1 – 7.3)
- Threads (SGG Chapter 4 and USP 12.1-12.2)
- Monitors and signals (SGG 6.7, USP 8.1-8.6, and 9.4)
- Network Communication (USP Chapter 18)
- Memory Management (SGG Chapter 18)
- Virtual Memory (SGG 9.1-9.4)
Summary of Topics

- Introduction of OS
- Programs and Processes
- CPU Scheduling
- IO and File Operations
- Inter-Process Communication
- Memory Management
- Threads
- Synchronizations

Project 1: processes and IO

Project 2: CPU Scheduling

Midterm 1 at Week 7

Midterm 2 at Week 14

Project 3: Memory Management

Project 4: Threads and Syncs

Final Exam at 12/13

Expectation for OS Course

- **Difficult** course
 - Significant amount of workload
 - Many abstractions and concepts
 - No much coding examples of the OS implementation (CS4853/CS5463 instead)

- **Important** course
 - Introducing many important concepts, such as concurrency, scheduling, memory management
 - Help understand the performance and scalability
 - Teaching the design of computer systems even if you never touch a line of kernel code

Language courses teach you how to fly, while OS enables you to fly higher and farther

Course Design

- The course was designed by the whole OS team at UTSA, which involves the effort from Dr. Dakai Zhu, Tongping Liu, Steve Robins, Lama Palden, and Turgay Korkmaz

- We designed the slides and projects by combining our wisdom together

1st Homework (no credit)

- Change the default email on Blackboard to your favorite email:

 - Getting future important notices etc;
