Final Review – 2018F

Instructor: Dr. Tongping Liu

The University of Texas at San Antonio
Outline

- Lecture-06: Intro to DS
- Lecture-07: Application-Level Communication
- Lecture-08: Remote Objects and RMI
- Lecture-09: Naming
- Lecture-10: DS Synchronization
- Lecture-11: Consistency & Replication
Outline of Lecture-06

- Different Distributed Systems
 - Distributed computing systems
 - Distributed information systems
 - Distributed pervasive systems

- OS in distributed systems
 - Distributed OS vs. Network OS vs. Middleware

- Design objectives of distributed systems
 - Transparency, openness and scalability

- Architecture of distributed systems
 - Software vs. system architectures
Important Points of Lecture-06

- Definition and difference of DCS, DIS and DPS (A)
- Definition of distributed systems (B)
- Three aspects of scalability in DS (B)
- Techniques of Scalability (B)
- Basic client-server model, two-tiered and multitiered architecture (A)
Outline of Lecture-07

- **Fundamentals**
 - Client/Server communication protocols
 - Request vs. Request-reply vs. Request-reply-acknowledge
 - Invocation semantics
 - Exact once vs. at least once vs. at most once
 - Communication types
 - Transient vs. persistent
 - Synchronous vs. asynchronous

- **Models for application communications**
 - **RPC**: remote procedure call
 - Message-oriented communication
 - Stream-Oriented communication
 - Multicast communication
Important Points of Lecture-07

- Client/server communication protocols (R, RR, RRA) (B)
- Traditional failure handling in RR (B)
- Idempotent operations (A)
- Server invocation semantics in RR (A)
- Type of communications (recognition: persistent/transient synchronous/asynchronous) (B)
- RPC steps, parameter passing, basic mechanism (B)
- Problems of RPC (B)
- Guarantee QoS for streams (A)
Outline of Lecture-08

- Distributed/Remote Objects
- Remote object reference (ROR)
- Remote Method Invocation (RMI)
- Case study and example: Java RMI

Other issues for remote objects
 - Factory method; Transient vs. Permanent objects;
 - Callback objects; Distributed Garbage collection;
Important Points of Lecture-08

- Remote object, remote object reference, remote interface (B)
- Parameters for remote methods (B)
- RMI steps - overall (B)
- RPC vs. RMI (B)
Outline of Lecture-09

- Overview: name and name services
 - Naming space and implementation

- Flat name and simple resolutions

- Structure name
 - Name space and resolution
 - Case study: DNS

- Attributed-based naming
 - Directory service
 - Hierarchical Implementations: LDAP
 - Decentralized Implementations
Important Points of Lecture-09

- Name, access point, and identifier (B)
- Naming systems and their goals (B)
- Flat name and simple resolutions (B)
- Distributed hash table and finger table (A)
- Structure name (B)
- Name resolution: iterative and recursive (B)
- Steps of DNS resolution (B)
- How DNS achieves the scalability (B)
Outline of Lecture-10

- Physical clock/time in distributed systems
 - No global time is available
 - Network Time Protocol
 - Berkeley Algorithm

- Logical clock/time and ‘Happen Before’ Relation
 - Lamport’s logical clock → total ordering multicast
 - Vector clocks → Causally ordering

- Mutual Exclusion: Distributed synchronizations
 - De/Centralized algorithms
 - Distributed algorithms (Ricart & Agrawala)
 - Logical token ring
Important Points of Lecture-10

- Network time protocol: basic idea (B)
- Berkeley algorithm (B)
- Logic Time and why? (B)
- Happened-Before relations (B)
- Logic clocks (example) (B)
- Issues of logic clock (B)
- Vector clocks (B)
- Comparison between logic clock vs. vector clock (B)
- Mutual exclusion of distributed synchronization (B)
Outline of Lecture-11

■ Motivations for replications
 ➢ Performance and/or fault-tolerance

■ Data-Centric Consistency Models
 ➢ Continuous Consistency, Consistent Ordering of Operations

■ Client-Centric Consistency Models
 ➢ Eventual Consistency
 ➢ Monotonic Reads, Monotonic Writes
 ➢ Read Your Writes, Writes Follow Reads

■ Replica Management
 ➢ Replica-Server Placement, Content Replication&Placement
 ➢ Content Distribution

■ Consistency Protocols
 ➢ Implementation of the consistency models
Important Points of Lecture-11

- Motivations for replication (B)
- Consistency models: data/client centric (B)
- Sequential consistency and causal consistency (B)
- Client-centric consistency model (B)
- Replica management (A)
Final Score Distribution

- Traditional OS (~50%)
- Distributed Systems (~50%)

- Total: 320 points
- Examination Time: 12/11 6:30pm~8:30pm