NAME:__

Instructions
1. Do **ONLY** 6 of the 7 problems
3. You have 90 minutes for the exam
4. Show all your work
5. Do not separate exam papers
1. (20 pts) What is the output of the following program? Show what is printed when `printlist()` functions are called. Show all your work.

```c
#include <stdio.h>
#include <stdlib.h>

struct node
{
    int info;
    struct node *next;
};
typedef struct node node;

void printlist (node *head)
{
    while (head != NULL)
    {
        printf("%d ",head->info);
        head = head->next;
    }
    printf("\n");
}

int main()
{
    node *head,*ptr,*ptr2;

    head = (node*)malloc(sizeof(node));
    head->next = (node*)malloc(sizeof(node));
    head->info = 12;
    head->next->info = 9;
    head->next->next = NULL;
    printlist(head->next);

    ptr = head->next;
    printlist(head);

    ptr2 = (node*)malloc(sizeof(node));
    ptr2->next = ptr;
    ptr2->info = 17;
    head -> next = ptr2;
    printlist(ptr2);
    printlist(head);
}
```
2. (20 pts) Write a function to find a peak element in an array. A peak element is an element that is greater than its neighbors. Given an input array where \(\text{num}[i] \neq \text{num}[i + 1] \), find a peak element and return its index. The array may contain multiple peaks, in that case return the index to any one of the peaks. You may assume that \(\text{num}[1] = 1 \) and \(\text{num}[n] = 1 \). So, \(\text{num}[0] \) and \(\text{num}[n - 1] \) could be peaks as well. For example, in array \([1, 2, 3, 1]\), 3 is a peak element and your function should return the index number 2.

In below function prototype, \(n \) is the size of the array

```c
int peak(int num[], int n)
{
```
3. (20 pts) Consider the following declaration of array of pointers

```c
int *data1[8];
int *data2[12];
```

Write a program fragment (for and if statements) to find out if there are two pointers in array `data1` and `data2` that point to the same location. If such pointers exist write the indexes of the arrays that point to the same location. Sample output is given below.

`data1[3] and data2[5] point to the same location`
4. (20 pts) What is the output of the following program. Show all your work.

```c
#include <stdio.h>

struct triangle
{
    float width;
    float height;
};

typedef struct triangle triangle;

int main()
{
    triangle t1={3,4};
    triangle t2={1,2};
    triangle t3={4,6};
    triangle *tptr1=&t2;
    triangle *tptr2=&t1;

    printf("1 %f %f\n",t2.width, t2.height);
    printf("2 %f %f\n",tptr2->width, tptr2->height);

    tptr1 = &t3;
    printf("3 %f %f\n",(*tptr1).width, (*tptr1).height);

    tptr2->width = 5;
    tptr1 = tptr2;

    printf("4 %f %f\n",tptr1->width, tptr1->height);

    t1 = t2;
    printf("5 %f %f\n",t1.width, t1.height);
}
```
5. (20 pts) Write a function to compute if a substring from positions i to j of a string consists of unique characters. If all the characters are different the function returns 1, otherwise it returns 0. Prototype of the function is given below.

```c
int isunique(char *str, int i, int j)
{
}
```
6. (20 pts) Span of a linked list is the difference between the largest and smallest elements in the linked list. Write a function `span()` to compute the span of a linked list. Node declaration of the linked list is given below.

```c
struct node
{
   int info;
   struct node *next;
};
typedef struct node node;
```

Span of the following list is 12-5=7.

```
head ——— 5 ——— 6 ——— 12 ——— Null
```

```c
int span(node *ptr)
{
}
```
#include <stdio.h>

int function1(int a, int b)
{
 if (a % b == 2)
 return a;
 else
 return (function1(a+b,a-b));
}

int main()
{
 int x,y;

 x = 7; y = 2;
 printf("Out1 = %d\n",function1(7,2));

 x = 8; y = 3;
 printf("Out1 = %d\n",function1(8,3));

 x = 11; y = 5;
 printf("Out1 = %d\n",function1(11,5));

}