CS 1713
Introduction to Computer Programming II
Midterm Solutions

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question 1</td>
<td></td>
</tr>
<tr>
<td>Question 2</td>
<td></td>
</tr>
<tr>
<td>Question 3</td>
<td></td>
</tr>
<tr>
<td>Question 4</td>
<td></td>
</tr>
<tr>
<td>Question 5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

NAME: __________________________

Instructions
1. Do all of the 5 problems
2. You have 70 minutes for the exam
3. Show all your work
4. Do not separate midterm papers

<table>
<thead>
<tr>
<th>Easy</th>
<th>Difficulty Level</th>
<th>Difficult</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐</td>
<td>☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐</td>
</tr>
</tbody>
</table>
1. (20 pts) Complete the following program to find the closest number to average in the array. For example, the array \{2, 4, 6, 3, 9, 10\} has average of 5.666667 and closest number to average in the array is 6. Note that closest number can be larger than or smaller than the average.

Solution:

```c
#include <stdio.h>
#include <math.h>

int main()
{
    int i;
    double num[6];
    double average;
    double sum=0;
    double closest;

    printf("Enter 6 doubles\n");
    for (i=0; i<6; i++)
        scanf("%lf", &num[i]);

    for (i=0; i<6; i++)
        sum=sum+num[i];
    average = sum/6;

    closest = num[0];
    for (i=0; i<6; i++)
        if (fabs(num[i]-average)<fabs(closest-average))
            closest = num[i];

    printf("Closest is %lf\n",closest);
    return(0);
}
```
2. (20 pts) Trace the execution of the following program? What will be the final values of array \(a \) printed?

```c
#include <stdio.h>
#include <stdlib.h>

int main()
{
    int a[7]={2,0,0,0,0,0,0};
    int i=1;

    for (i=1; i<7; i++)
    {
        if (i<3)
            a[i] = a[i-1]+i+1;
        else if (i<5)
            a[i] = a[i-2]+1;
        else
            a[i] = a[i-2]*i-2;
    }

    for (i=0; i<7; i++)
        printf("a[%d] = %d\n",i,a[i]);
}
```

Solution:

\[
\begin{align*}
 a[0] &= 2 \\
 a[1] &= 4 \\
 a[2] &= 7 \\
 a[3] &= 5 \\
 a[4] &= 8 \\
 a[5] &= 23 \\
 a[6] &= 46
\end{align*}
\]
3. (20 pts) Write a function \texttt{Powerof} to test if a parameter \(n \) is a power of another parameter \(k \) \((n = k^m \text{ for some integer } m)\). If \(n \) is a power of \(k \), then the function returns 1. Otherwise it returns 0. Function prototype and sample output of the function and description of the output is given below

\texttt{Powerof(3,5)} returns 0 since \(3^1 = 3 < 5 < 3^2 = 9 \)

\texttt{Powerof(3,9)} returns 1 since \(9 = 3^2 \)

\texttt{Powerof(2,30)} returns 0 since \(2^4 = 16 < 30 < 2^5 = 32 \)

\texttt{Powerof(2,16)} returns 1 since \(16 = 2^4 \)

\textbf{Solution:}

```c
int Powerof(int k, int n) {
    int i=1,power;
    power = k;
    while (power<n) {
        i = i + 1;
        power = power * k;
    }
    if (power == n)
        return(1);
    else
        return(0);
}
```
4. (20 pts) What is the output of the following program? Show all your work for partial credit.

```c
#include <stdio.h>

int mystery(int a, int b)
{
    return(a*b+1);
}

int mystery2(int a, int b)
{
    return(a*(b+1));
}

int main()
{
    int j,k;

    for (j=0; j<8; j++)
    {
        if (j<3)
            k = mystery(j+1,j);
        else if (j<6)
            k = mystery2(j+1,j);
        else
            k = mystery(mystery2(j,j),1);
        printf("j=%d k=%d\n",j,k);
    }

    return(0);
}
```

Solution:

j=0 k=1
k=1 k=3
j=2 k=7
j=3 k=16
j=4 k=25
j=5 k=36
j=6 k=43
j=7 k=57
5. (20 pts) Write a complete program to compute the smallest value of k for which the following sum is larger than n. Read the value of n from the user and write a loop to compute the sum. Note that n can be a floating point number.

\[
\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} > n
\]

For example for $n = 2.0$, Your program should find k to be 4 since

\[
\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = 2.08 > 2
\]

For $n = 1.6$, your program should find k to be 3 since $\frac{1}{1} + \frac{1}{2} + \frac{1}{3} = 1.83 > 1.6$

Solution:

```c
#include <stdio.h>

int main()
{
    float n;
    int i;
    float sum = 0;

    printf("Enter n\n");
    scanf("%f", &n);

    i = 0;
    while (sum < n)
    {
        i = i + 1;
        sum = sum + 1.0/i;
    }
    printf("k = %d\n", i);

    return(0);
}
```