1. **Query Processing (30 pts):** A file of 4096 blocks is to be sorted with an available buffer space of 5 blocks. Assume that reading a block has 1 unit cost and writing a block has 1 unit cost. What is the minimal cost of the sort-merge algorithm in units?

2. **Transaction Processing (40 pts):** Consider the three transactions T_1, T_2 and T_3 and the schedules S_1 and S_2 given below. Subscript denotes the transaction id performing the operation and c_i means transaction T_i commits. Draw the serializability (precedence) graph for S_1 and S_2 and state whether each schedule is serializable, strict, cascadeless and recoverable.

 - $T_1 : r_1(X); r_1(Z); w_1(X); c_1$
 - $T_2 : r_2(Z); r_2(Y); w_2(Z); w_2(Y); c_2$
 - $T_3 : r_3(X); r_3(Y); w_3(Y); c_3$
 - $S_1 : r_1(X); r_1(Z); r_3(X); r_3(Y); w_1(X); c_1; w_3(Y); c_3; r_2(Y); w_2(Z); w_2(Y); c_2$
 - $S_2 : r_1(X); r_2(Z); r_3(X); r_1(Z); r_2(Y); r_3(Y); w_1(X); c_1; w_2(Z); w_3(Y); c_3; w_2(Y); c_2$

3. **Concurrency Control (30 pts):** Consider the three transactions T_1, T_2 and T_3

 - $T_1 : r_1(X); r_1(Z); w_1(X)$
 - $T_2 : r_2(Z); r_2(Y); w_2(Z); w_2(Y)$
 - $T_3 : r_3(X); r_3(Y); w_3(Y)$

Answer the following questions

 (a) Give an execution of these transactions where two-phase locking is used for concurrency control.

 (b) Can deadlock happen when T_1, T_2 and T_3 are executed. If so, show how it can happen. If not, explain why it can not happen.