Software Configuration Guide

For Cisco 2600 Series, Cisco 3600 Series, and Cisco 3700 Series Routers

Corporate Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
 800 553-NETS (6387)
Fax: 408 526-4100

Text Part Number: OL-1957-03
Preface xi
Objectives xi
Audience xi
Organization xii
Document Conventions xii
Additional Information xiii
Related and Referenced Documents xiii
To Access Online User Documentation (PDF and HTML Formats): xiv
Access User Documentation on the Documentation CD-ROM (HTML format only): xiv

Obtaining Documentation xvi
World Wide Web xvi
Documentation CD-ROM xvii
Ordering Documentation xvii
Documentation Feedback xvii

Obtaining Technical Assistance xvii
Cisco.com xviii
Technical Assistance Center xviii
Contacting TAC by Using the Cisco TAC Website xviii
Contacting TAC by Telephone xviii

CHAPTER 1 Understanding Interface Numbering and Cisco IOS Software Basics 1-1
Understanding Interface Numbering 1-1
Cisco 2600 Series Interface Numbering 1-1
WAN and LAN Interface Numbering 1-2
Voice Interface Numbering in Cisco 2600 Series Routers 1-4
Cisco 3600 Series Interface Numbering 1-4
Cisco 3600 Series Router Slot Numbering 1-4
Cisco 3600 Series Router Unit Numbering 1-8
Cisco 3600 Series Routers Voice Interface Numbering 1-9
Cisco 3700 Series Interface Numbering 1-9
Cisco 3725 Router Slot Numbering 1-10
Cisco 3745 Router Slot Numbering 1-11
Cisco 3700 Series Routers Voice Interface Numbering 1-13
Understanding Cisco IOS Software Basics 1-13
Getting Help 1-13
Understanding Command Modes 1-14
Undoing a Command or Feature 1-15
Saving Configuration Changes 1-15
Upgrading to a New Cisco IOS Release 1-15
Where to Go Next 1-15

Chapter 2

Using the Setup Command Facility 2-1
Before Starting Your Router 2-1
Using the setup Command Facility 2-2
Configuring Global Parameters 2-2
Configuring Interface Parameters 2-6
 Ethernet Interface Configuration 2-6
 FastEthernet Interface Configuration 2-6
 Token Ring Interface Configuration 2-7
Serial Interface Configuration 2-7
 Frame Relay Encapsulation 2-8
 LAPB Encapsulation 2-8
 X.25 Encapsulation 2-9
 ATM-DXI Encapsulation 2-9
 SMDS Encapsulation 2-9
 Serial Cisco IOS Commands Generated 2-9
Asynchronous/Synchronous Serial Interface Configuration 2-10
 Synchronous Configuration 2-10
 Asynchronous Configuration 2-12
ISDN BRI Interface Configuration 2-12
 ISDN BRI Line Configuration 2-15
 ISDN BRI Provisioning by Switch Type 2-16
 Defining ISDN Service Profile Identifiers 2-17
E1/T1 ISDN PRI Configuration 2-18
 E1/T1 PRI Mode 2-18
 E1 Channelized Mode 2-18
 T1 Channelized Mode 2-21
1-Port, 4-Wire 56-kbps DSU/CSU Configuration Setup 2-22
 Choosing Circuit-Switched or Dedicated-Line Service 2-23
 Switched Mode 2-23
 Dedicated Mode 2-23
Completing the Configuration 2-24
Where to Go Next 2-25
CHAPTER 3 Configuring with the Command-Line Interface 3-1

Configuring the Host Name and Password 3-2

Verifying the Host Name and Password 3-3

Configuring 1-Port and 2-Port Ethernet Interfaces 3-3

Configuring Fast Ethernet Interfaces 3-4

Configuring Asynchronous/Synchronous Serial Network Modules or WAN Interface Cards 3-5

Configuring 16-Port and 32-Port Asynchronous Network Modules 3-9

Configuring ISDN BRI WAN Interface Cards 3-10

Configuring ISDN BRI Lines 3-12

ISDN BRI Provisioning by Switch Type 3-13

Defining ISDN Service Profile Identifiers 3-14

Configuring T1 and E1 Interfaces 3-15

Configuring T1 Interfaces 3-15

Configuring E1 Interfaces 3-16

Configuring TDM Connect (Data Pass-Through) 3-17

Configuring Codec Complexity 3-18

Configuring T1 (FT1) WAN Interface Cards 3-19

Default Configuration 3-19

Configuring ATM Interfaces 3-20

Configuring PVCs 3-21

Configuring SVCs 3-22

Configuring Inverse Multiplexing for ATM Interfaces 3-23

Configuring the ATM T1/E1 Interface 3-23

Configuring the IMA Interface 3-25

Checking the IMA Configuration 3-26

Configuring Analog Modem Interfaces 3-26

Checking the Modem Configuration 3-28

Configuring Wireless Multipoint Interfaces 3-29

Checking the Interface Configuration 3-29

Configuring 1-Port ADSL WAN Interface Card 3-29

Benefits 3-30

Restrictions 3-30

Prerequisites 3-31

Configuration Tasks 3-31

Configuring the ADSL Port on the ADSL WAN Interface Card 3-31

Verifying ATM Configuration 3-32

Configuration Examples 3-34

Configuring the NM-AIC-64, Contact Closure Network Module 3-34
Serial Communication Channels 3-35
 Serial Data Channel 3-36
 Asynchronous Craft Port 3-36
 Configuring the AIC 3-36
Configuration Tasks 3-37
 Configuring the AIC 3-38
 Accessing the AIC 3-40
 Configuring the NOC IP Address 3-40
Configuring Alarms 3-41
 Programming the Analog Contact Points 3-41
 Programming the Discrete Contact Points 3-43
Verifying the IP Address 3-43
 Troubleshooting Tips 3-45
Monitoring and Maintaining the NM-AIC-64 Contact Closure Network Module 3-45
 Software Upgrade 3-45
 Configuration Backup 3-46
 Override 3-46
Configuration Examples 3-46
Configuring the 1-Port HSSI Network Module 3-46
 Configuration Tasks 3-47
 Specify a HSSI 3-47
 Specify HSSI Encapsulation 3-47
 Invoke ATM on a HSSI Line 3-48
 Convert HSSI to Clock Master 3-48
 Disable Fair Queueing 3-48
 Configuration Examples 3-48
Configuring the Compression Network Module for the Cisco 3600 Series Routers 3-49
 Configuration Task 3-49
 Configuration Example 3-50
Configuring the Digital Modem Network Module for the Cisco 3640 Router 3-50
 Prerequisites 3-51
 Configuration Tasks 3-51
 Configure the E1/T1 Network Module for ISDN PRI 3-52
 Configure Channelized E1 ISDN PRI 3-52
 Configure Channelized T1 ISDN PRI 3-53
 Configure the ISDN D-Channel Serial Interfaces 3-53
 Configure the ISDN D-Channel Serial Interface for E1 Modules 3-54
 Configure the ISDN D-Channel Serial Interface for T1 Modules 3-54
Configure the Loopback Interface 3-55
Configure the LAN Interface 3-55
Create the Group Asynchronous Interface 3-55
Configure the ISDN Dialer Interface 3-56
Configure the Default IP Pool Information 3-57
Configure Modem Lines for Dial-In and Dial-Out 3-57
 Configure the Modem for Dial-In 3-58
 Configure the Modem for Dial-Out 3-58
Configuration Example 3-58
Configuring 1-Port G.SHDSL WAN Interface Card 3-58
Restrictions 3-60
Prerequisites 3-60
Configuration Tasks 3-60
 Configuring G.SHDSL on a Cisco Router 3-60
 Configuring ILMI on the DSLAM Connected to the ADSL WAN 3-62
 Verifying ATM Configuration 3-62
Configuration Examples 3-64
Saving Configuration Changes 3-65
Where to Go Next 3-65

CHAPTER 4

Configuring Voice-over-IP 4-1
 Voice-over-IP Prerequisites 4-1
 Configuring the Voice Interface 4-2
 Voice-over-IP Configuration Examples 4-3
 FXS-to-FXS Connection Using RSVP 4-4
 Configuration for Router RLB-1 4-4
 Configuration for Router RLB-w 4-5
 Configuration for Router R12-e 4-5
 Configuration for Router RLB-2 4-6
 Linking PBX Users with E&M Trunk Lines 4-6
 Router SJ Configuration 4-7
 Router SLC Configuration 4-8
 PSTN Gateway Access Using FXO Connection 4-8
 Router SJ Configuration 4-9
 Router SLC Configuration 4-9
 PSTN Gateway Access Using FXO Connection (PLAR Mode) 4-10
 Router SJ Configuration 4-10
 Router SLC Configuration 4-11
 Configuring Direct-Inward Dialing on a BRI Port 4-11
Appendix A

Configuration Examples A-1
Cisco 2600 Series Router Configuration Example A-1
Cisco 3631 Router Configuration Example A-6
Cisco 3725 Router Configuration Example A-10
1-Port ADSL WAN Interface Card Configuration Examples A-11
 VoATM over AAL2 on the ATM Interface Configuration Example A-12
 VoATM over AAL5 on the ATM Interface Configuration Example A-14
NM-AIC-64, Contact Closure Network Configuration Examples A-16
 AIC IP Address Configuration Example A-16
 IP Route to the AIC Configuration Examples A-20
 With an Unnumbered IP Address A-20
 Without an Unnumbered IP Address A-21
 AIC CLI Configuration for Alarms A-22
 Discrete Alarm A-22
 Analog Alarm Monitoring Current A-22
 Analog Alarm Monitoring Current Configured as a Discrete A-22
Cisco 3640 Central Site Configuration to Support ISDN and Modem Calls A-23
 Configuration in CPE Mode Example A-25
 Configuration in CO Mode Example A-27

Appendix B

Formatting the Compact Flash Memory Cards B-1
Formatting Procedures for Compact Flash Memory Cards B-1
Formatting Procedures B-1
 Determining the File System on a Compact Flash Memory Card B-1
 Formatting Compact Flash Memory as a Class B Flash File System B-3
 Formatting Compact Flash Memory as a Class C File System B-4
File and Directory Operations B-4
 Operations for Use With Class B Flash File System B-4
 Operations for Use with Class C Flash File System B-7
 File Operations for Class C Flash File System B-7
 Directory Operations for Class C Flash File System B-10
 B-12
APPENDIX C

Using the ROM Monitor C-1

Entering the ROM Monitor Mode C-1
 Configure C-1
 Verify C-1

ROM Monitor Commands C-2

ROM Monitor Syntax Conventions C-2

Command Descriptions C-3
 Debugging Commands C-5
 Configuration Register Commands C-5
 Using the show rom-monitor command C-6
 Using the upgrade rom-monitor Command C-7

Procedures for Recovering Boot and System Images C-8
 Using the xmodem Command C-8
 Using the tftpdnld Command C-8

INDEX
Preface

This preface discusses the objectives, audience, organization, and conventions of this software configuration guide, and where to get the latest version of this guide.

Objectives

After installing the router, use this guide to complete a basic router configuration using the setup command facility. It also contains information on using the Cisco IOS software to perform other configuration tasks, such as configuring a Voice-over-IP interface and other features.

This guide does not provide complete configuration instructions. Refer to the Cisco IOS configuration guides and command references for detailed configuration instructions. These publications are available on the Documentation CD-ROM that came with your router and on Cisco.com. See the “Obtaining Documentation” section on page xvi for more information.

Audience

This publication is designed for the person who will be responsible for configuring your router. This guide is intended primarily for the following audiences:

- Customers with technical networking background and experience
- System administrators who are familiar with the fundamentals of router-based internetworking, but who might not be familiar with Cisco IOS software
- System administrators who are responsible for installing and configuring internetworking equipment, and who are familiar with Cisco IOS software
Organization

The major sections of this software configuration guide include:

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>Understanding Interface Numbering and Cisco IOS Software Basics</td>
<td>Provides an overview of the interface numbering conventions for the Cisco routers. Also provides a basic understanding of the Cisco IOS software.</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Using the Setup Command Facility</td>
<td>Describes how to use the setup command facility to configure your router.</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Configuring with the Command-Line Interface</td>
<td>Describes how to use the Cisco IOS software command-line interface (CLI) to configure basic router functionality.</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Configuring Voice-over-IP</td>
<td>Describes how to configure voice network modules with recEive and transMit (E&M), Foreign Exchange Office (FXO), and Foreign Exchange Station (FXS) interfaces for your router.</td>
</tr>
<tr>
<td>Appendix A</td>
<td>Configuration Examples</td>
<td>Provides configuration examples of the Cisco 2600 series, Cisco 3600 series, and Cisco 3700 series routers.</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Appendix B, “Formatting the Compact Flash Memory Cards”</td>
<td>Provides configuration information for the Cisco Flash memory.</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Appendix C, “Using the ROM Monitor”</td>
<td>Describes how the ROM Monitor works in the Cisco 2600 series, Cisco 3600 series, and Cisco 3700 series routers.</td>
</tr>
</tbody>
</table>

Document Conventions

This publication uses the following conventions to convey instructions and information:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface font</td>
<td>Commands and keywords.</td>
</tr>
<tr>
<td>italic font</td>
<td>Variables for which you supply values.</td>
</tr>
<tr>
<td>[]</td>
<td>Keywords or arguments that appear within square brackets are optional.</td>
</tr>
<tr>
<td>{x</td>
<td>y</td>
</tr>
<tr>
<td>screen font</td>
<td>Examples of information displayed on the screen.</td>
</tr>
<tr>
<td>boldface screen font</td>
<td>Examples of information you must enter.</td>
</tr>
<tr>
<td>< ></td>
<td>Nonprinting characters, for example passwords, appear in angle brackets in contexts where italic font is not available.</td>
</tr>
<tr>
<td>[]</td>
<td>Default responses to system prompts appear in square brackets.</td>
</tr>
</tbody>
</table>
Additional Information

This guide does not contain the following:

- Network design information
- Application case studies
- Troubleshooting information
- A comprehensive reference to access services

For information about any of the above topics, refer to the following resources:

- Cisco.com
- Documentation CD-ROM
- Cisco Technical Assistance Center (TAC)

Related and Referenced Documents

The documents described here are available online and on the documentation CD-ROM that you received with your router. To be sure of obtaining the latest information, you should access the online documentation.

To print a document in its original page format, access the online document, and click on the PDF icon. You can also order printed copies of documents. See the Ordering Documentation.
To Access Online User Documentation (PDF and HTML Formats):

Access User Documentation on the Documentation CD-ROM (HTML format only):

Paths to specific documents are provided below, starting at Cisco Product Documentation.

Tip

To navigate up to the next higher level in the documentation hierarchy, click on CONTENTS in the navigation bar at the top of each page.

Table 1 Related and Referenced Documents

<table>
<thead>
<tr>
<th>Cisco Product</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco 2600 series routers</td>
<td>• Cisco 2600 Series Routers Hardware Installation Guide</td>
</tr>
<tr>
<td></td>
<td>• Cisco 2600 Series Modular Routers Quick Access Guide</td>
</tr>
<tr>
<td></td>
<td>• Cisco Network Modules Hardware Installation Guide</td>
</tr>
<tr>
<td></td>
<td>• Cisco WAN Interface Cards Hardware Installation Guide</td>
</tr>
<tr>
<td></td>
<td>• Regulatory Compliance and Safety Information</td>
</tr>
<tr>
<td>Cisco 3600 series routers</td>
<td>• Cisco 3600 Series Routers Hardware Installation Guide</td>
</tr>
<tr>
<td></td>
<td>• Cisco 3620 and Cisco 3640 Modular Access Routers Quick Start Guide</td>
</tr>
<tr>
<td></td>
<td>• Cisco 3660 Modular Access Router Quick Start Guide</td>
</tr>
<tr>
<td></td>
<td>• Cisco Network Modules Hardware Installation Guide</td>
</tr>
<tr>
<td></td>
<td>• Cisco WAN Interface Cards Hardware Installation Guide</td>
</tr>
<tr>
<td></td>
<td>• Cisco RPS Hardware Installation Guide</td>
</tr>
<tr>
<td></td>
<td>• Regulatory Compliance and Safety Information</td>
</tr>
</tbody>
</table>
Table 1 Related and Referenced Documents (continued)

<table>
<thead>
<tr>
<th>Cisco Product</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco 3700 series routers</td>
<td>• Cisco 3700 Series Routers Hardware Installation Guide</td>
</tr>
<tr>
<td></td>
<td>• Cisco 3725 and Cisco 3745 Modular Access Routers Quick Start Guide</td>
</tr>
<tr>
<td></td>
<td>• Cisco Network Modules Hardware Installation Guide</td>
</tr>
<tr>
<td></td>
<td>• Cisco WAN Interface Cards Hardware Installation Guide</td>
</tr>
<tr>
<td></td>
<td>• Regulatory Compliance and Safety Information</td>
</tr>
<tr>
<td>Cisco IOS software</td>
<td>• Cisco IOS Configuration Fundamentals Configuration Guide</td>
</tr>
<tr>
<td>Note</td>
<td>• Cisco IOS Configuration Fundamentals Command Reference</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Dial Technologies Configuration Guide</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Wide-Area Networking Configuration Guide</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS IP Configuration Guide Release 12.2</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Wide-Area Networking Command Reference</td>
</tr>
<tr>
<td></td>
<td>• Debug Command Reference</td>
</tr>
<tr>
<td></td>
<td>• System Error Messages</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Software Command Summary</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Release notes for your release</td>
</tr>
</tbody>
</table>

Refer to the modular reference publication that corresponds to the Cisco IOS software release installed on your server.
Table 1 Related and Referenced Documents (continued)

<table>
<thead>
<tr>
<th>Cisco Product</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Information about the PRI network module, refer to the 1-Port and 2-Port ISDN-PRI Network Module Configuration Note. For information on how to install an Ethernet module, refer to the 1-Port Ethernet Network Module Configuration Note or the 4-Port Ethernet Network Module Configuration Note.</td>
</tr>
<tr>
<td></td>
<td>• For information on how to correctly install and configure the Digital Network module and the PRI module, refer to the Digital Modem Network Module Configuration Note.</td>
</tr>
<tr>
<td></td>
<td>• To configure the router for voice traffic, refer to the Voice over IP Configuration document</td>
</tr>
<tr>
<td></td>
<td>• To configure DLAMs, refer to the Configuration Guide for DSLAs with NI-2.</td>
</tr>
</tbody>
</table>

Obtaining Documentation

The following sections provide sources for obtaining documentation from Cisco Systems.

World Wide Web

You can access the most current Cisco documentation on the World Wide Web at the following sites:

- http://www.cisco.com
- http://www-china.cisco.com
- http://www-europe.cisco.com
Documentation CD-ROM

Cisco documentation and additional literature are available in a CD-ROM package, which ships with your product. The Documentation CD-ROM is updated monthly and may be more current than printed documentation. The CD-ROM package is available as a single unit or as an annual subscription.

Ordering Documentation

Cisco documentation is available in the following ways:

- Registered Cisco Direct Customers can order Cisco Product documentation from the Networking Products MarketPlace:

 http://www.cisco.com/cgi-bin/order/order_root.pl

- Registered Cisco.com users can order the Documentation CD-ROM through the online Subscription Store:

 http://www.cisco.com/go/subscription

- Nonregistered Cisco.com users can order documentation through a local account representative by calling Cisco corporate headquarters (California, USA) at 408 526-7208 or, in North America, by calling 800 553-NETS(6387).

Documentation Feedback

If you are reading Cisco product documentation on the World Wide Web, you can submit technical comments electronically. Click Feedback in the toolbar and select Documentation. After you complete the form, click Submit to send it to Cisco.

You can e-mail your comments to bug-doc@cisco.com.

To submit your comments by mail, for your convenience many documents contain a response card behind the front cover. Otherwise, you can mail your comments to the following address:

Cisco Systems, Inc.
Document Resource Connection
170 West Tasman Drive
San Jose, CA 95134-9883

We appreciate your comments.

Obtaining Technical Assistance

Cisco provides Cisco.com as a starting point for all technical assistance. Customers and partners can obtain documentation, troubleshooting tips, and sample configurations from online tools. For Cisco.com registered users, additional troubleshooting tools are available from the TAC website.
Cisco.com

Cisco.com is the foundation of a suite of interactive, networked services that provides immediate, open access to Cisco information and resources at anytime, from anywhere in the world. This highly integrated Internet application is a powerful, easy-to-use tool for doing business with Cisco.

Cisco.com provides a broad range of features and services to help customers and partners streamline business processes and improve productivity. Through Cisco.com, you can find information about Cisco and our networking solutions, services, and programs. In addition, you can resolve technical issues with online technical support, download and test software packages, and order Cisco learning materials and merchandise. Valuable online skill assessment, training, and certification programs are also available.

Customers and partners can self-register on Cisco.com to obtain additional personalized information and services. Registered users can order products, check on the status of an order, access technical support, and view benefits specific to their relationships with Cisco.

To access Cisco.com, go to the following website:

http://www.cisco.com

Technical Assistance Center

The Cisco TAC website is available to all customers who need technical assistance with a Cisco product or technology that is under warranty or covered by a maintenance contract.

Contacting TAC by Using the Cisco TAC Website

If you have a priority level 3 (P3) or priority level 4 (P4) problem, contact TAC by going to the TAC website:

http://www.cisco.com/tac

P3 and P4 level problems are defined as follows:

- P3—Your network performance is degraded. Network functionality is noticeably impaired, but most business operations continue.
- P4—You need information or assistance on Cisco product capabilities, product installation, or basic product configuration.

In each of the above cases, use the Cisco TAC website to quickly find answers to your questions.

To register for Cisco.com, go to the following website:

http://www.cisco.com/register/

If you cannot resolve your technical issue by using the TAC online resources, Cisco.com registered users can open a case online by using the TAC Case Open tool at the following website:

http://www.cisco.com/tac/caseopen

Contacting TAC by Telephone

If you have a priority level 1(P1) or priority level 2 (P2) problem, contact TAC by telephone and immediately open a case. To obtain a directory of toll-free numbers for your country, go to the following website:

P1 and P2 level problems are defined as follows:

- **P1**—Your production network is down, causing a critical impact to business operations if service is not restored quickly. No workaround is available.
- **P2**—Your production network is severely degraded, affecting significant aspects of your business operations. No workaround is available.
Understanding Interface Numbering and Cisco IOS Software Basics

This chapter provides an overview of the interface numbering in the Cisco 2600 series, Cisco 3600 series, and Cisco 3700 series routers. It also describes how to use the Cisco IOS software commands.

Understanding Interface Numbering

This section contains information with which you should be familiar before you begin to configure your router for the first time, including interface numbering and what you should do before starting your router.

Cisco 2600 Series Interface Numbering

Each network interface on a Cisco 2600 series router is identified by a slot number and a unit number. Table 1-1 lists the router models and summarizes the interfaces supported on each model that are available in the Cisco 2600 series routers.

Table 1-1 Summary of Cisco 2600 Series Router Models and Interfaces

<table>
<thead>
<tr>
<th>Model</th>
<th>Ethernet (10BASE-T)</th>
<th>Token-Ring (RJ-45)</th>
<th>Fast Ethernet (10/100)</th>
<th>Network Module Slot</th>
<th>WAN Interface Card Slots</th>
<th>Advanced Integration Module Slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco 2610</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cisco 2610XM</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cisco 2611</td>
<td>2</td>
<td></td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cisco 2611XM</td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cisco 2612</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cisco 2613</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cisco 2620</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cisco 2620XM</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cisco 2621</td>
<td>2</td>
<td></td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cisco 2621XM</td>
<td>2</td>
<td></td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cisco 2650</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Chapter 1 Understanding Interface Numbering and Cisco IOS Software Basics

Understanding Interface Numbering

Note
The number and type of interfaces vary depending on the router.

Table 1-1 Summary of Cisco 2600 Series Router Models and Interfaces (continued)

<table>
<thead>
<tr>
<th>Model</th>
<th>Ethernet (10BASE-T)</th>
<th>Token-Ring (RJ-45)</th>
<th>Fast Ethernet (10/100)</th>
<th>Network Module Slot</th>
<th>WAN Interface Card Slots</th>
<th>Advanced Integration Module Slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco 2650XM</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cisco 2651</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cisco 2651XM</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cisco 2691</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WAN and LAN Interface Numbering

The Cisco 2600 series router chassis contains the following wide-area network (WAN) and local-area network (LAN) interface types:

- Built-in LAN interfaces: Ethernet, FastEthernet, Token Ring
- Two or three slots in which you can install WAN interface cards (WICs)
- One slot in which you can install a network module

The numbering format is *Interface-type Slot-number/Interface-number*. Two examples are:

- Ethernet 0/0
- Serial 1/2

The slot number is 0 for all built-in interfaces and 0 for all WIC interfaces; the slot number is 1 for network module interfaces.

Interface (port) numbers begin at 0 for each interface type, and continue from right to left and (if necessary) from bottom to top.

Figure 1-1 below shows a router of 1 RU height with:

- A WIC in each WIC slot (containing interface Serial 0/0 in physical slot W0, and interface Serial 0/1 in physical slot W1)
- A 4-serial-port network module in slot 1 (containing the following ports: Serial 1/0, Serial 1/1, Serial 1/2, and Serial 1/3)
- First built-in Ethernet interface—Ethernet 0/0
- Second built-in Ethernet interface—Ethernet 0/1, or optionally in Cisco 2612 and Cisco 2613 only: Token Ring interface 0/0
Figure 1-1 Example of 1RU Router

Figure 1-2 below shows a router of 2 RU height with:

- A WIC in each WIC slot (containing interfaces Serial 0/0 and Serial 0/1 in physical slot W0, interface Serial 0/2 in physical slot W1, and interface BRI 0/0 in physical slot W2)
- A 2-port T1 network module in slot 1 (containing the following ports: T1 1/0 and T1 1/1)
- Two built-in Ethernet 10/100 interfaces—FastEthernet 0/0 and FastEthernet 0/1

Figure 1-2 Example of a 2RU Router
Chapter 1 Understanding Interface Numbering and Cisco IOS Software Basics

Understand Interface Numbering

Note

The slot number for all WIC interfaces is always 0. (The W0 and W1 slot designations are for physical slot identification only.) Interfaces in the WICs are numbered from right to left, starting with 0/0 for each interface type, regardless of which physical slot the WICs are installed in. Some examples are:

- If physical slot W0 is empty and physical slot W1 contains a 1-port serial WIC, the interface number in the WIC is numbered Serial 0/0.
- If slot W0 contains a 2-port serial WIC and slot W1 contains a 1-port serial WIC, the interfaces in physical slot W0 are numbered Serial 0/0 and Serial 0/1, and the interface in physical slot W1 is numbered Serial 0/2.
- If slot W0 contains a 2-port serial WIC and slot W1 contains a 1-port BRI WIC, the interfaces in physical slot W0 are numbered Serial 0/0 and Serial 0/1, and the interface in physical slot W1 is numbered BRI 0/0.

Voice Interface Numbering in Cisco 2600 Series Routers

Voice interfaces are numbered differently from the WAN interfaces described in the previous section. Voice interfaces are numbered as follows:

chassis slot/voice module slot/voice interface

If a 4-channel voice network module is installed in chassis slot 1, the voice interfaces are:

- 1/0/0—Chassis slot 1/voice module slot 0/voice interface 0
- 1/0/1—Chassis slot 1/voice module slot 0/voice interface 1
- 1/1/0—Chassis slot 1/voice module slot 1/voice interface 0
- 1/1/1—Chassis slot 1/voice module slot 1/voice interface 1

Cisco 3600 Series Interface Numbering

Each individual network interface on a Cisco 3600 series router is identified by a slot number and a unit number.

Cisco 3600 Series Router Slot Numbering

A Cisco 3600 series router chassis includes up to six slots in which you can install modules. The Cisco 3600 series includes the Cisco 3660 (see Figure 1-3), Cisco 3640 (see Figure 1-4) and Cisco 3620 routers (see Figure 1-5). The Cisco 3660 has six network module slots, the Cisco 3640 has four slots, the Cisco 3620 has two slots, and the Cisco 3631 (see Figure 1-6) has four slots. You can install any module into any available slot in the chassis.
Chapter 1 Understanding Interface Numbering and Cisco IOS Software Basics

Understanding Interface Numbering

Figure 1-3 Cisco 3660 Router Rear View

Figure 1-4 Cisco 3640 Router Rear View

Figure 1-5 Cisco 3620 Router Rear View
For the Cisco 3660 router (see Figure 1-3), the slots are numbered as follows:

- Slot 0 contains fixed FastEthernet ports and is located at the top of the chassis.
- Slot 1 is at the bottom right (as viewed from the rear of the chassis), near the power supply.
- Slot 2 is at the bottom left.
- Slot 3 is at the right, above slot 1.
- Slot 4 is at the left, above slot 2.
- Slot 5 is at the right, above slot 3.
- Slot 6 is at the left, above slot 4.

For the Cisco 3620 and Cisco 3640 routers shown in Figure 1-4 and Figure 1-5, the slots are numbered as follows:

- Slot 0 is at the bottom right (as viewed from the rear of the chassis), near the power supply.
- Slot 1 is at the bottom left.
- Slot 2 is at the top right, above slot 0.
- Slot 3 is at the top left, above slot 1.

For the Cisco 3631 router shown in Figure 1-6, the slots are numbered as follows:

- Slot 0 for all built-in interfaces like the FastEthernet port at the bottom center near the Console/AUX ports.
- Slot 0 for all WAN interface card (WIC) interfaces.
- Slot 1 for network module interfaces at the bottom left.
- Slot 2 for network module interfaces at the top left, above slot 1.
Figure 1-7 shows an example of the interface numbering where the following interfaces are installed:

- A WIC in each WIC slot (containing interfaces serial 0/0 and serial 0/1 in physical slot W0, and interface serial 0/2 in physical slot W1)
- A 32-port asynchronous network module in slot 1 (containing interfaces serial 1/0 through serial 1/31)
- An alarm interface controller network module in slot 2 (internally connected to interface serial 2/0)
- One built-in Ethernet 10/100 interface—FastEthernet 0/0

The logical slot number for all WIC interfaces is always 0. (The W0 and W1 slot designations are for physical slot identification only.) Interfaces in the WICs are numbered from right to left, starting with 0/0 for each interface type, regardless of which physical slot the WICs are installed in. Some examples are:

- If physical slot W0 is empty and physical slot W1 contains a 1-port serial WIC, then the logical interface in the WIC is numbered serial 0/0.
- If physical slot W0 contains a 2-port serial WIC and slot W1 contains a 1-port serial WIC, then the logical interfaces in physical slot W0 are numbered serial 0/0 and serial 0/1 and the logical interface in physical slot W1 is numbered Serial 0/2.
- If physical slot W0 contains a 2-port serial WIC and slot W1 contains a 1-port BRI WIC, then the logical interfaces in physical slot W0 are numbered serial 0/0 and serial 0/1, and the logical interface in physical slot W1 is numbered BRI 0/0.
Some modules have two small slots, labeled W0 and W1, for WAN interface cards. For example, Figure 1-8 shows the W0 and W1 slots of the 2 Ethernet 2 WAN card slot (2E 2-slot) module. You can install WAN interface cards into the small module slots (W0 and W1). Integrated Services Digital Network (ISDN) Basic Rate Interface (BRI) WAN interface cards are keyed so that you can install them into slot W1 only. Serial WAN interface cards can be installed into either slot, W0 or W1.

Figure 1-8 WAN Interface Card Slots

![WAN Interface Card Slots](image)

Cisco 3600 Series Router Unit Numbering

Cisco 3600 series routers unit numbers identify the interfaces on the modules and WAN interface cards installed in the router. Unit numbers begin at 0 for each interface type, and continue from right to left and (if necessary) from bottom to top. Modules and WAN interface cards are identified by interface type, slot number, followed by a forward slash (/), and then the unit number; for example, Ethernet 0/0.

Note

In the Cisco 3660 router, the fixed Fast Ethernet ports are located in chassis slot 0, and are identified by:

interface type chassis slot/unit number

For example: FastEthernet 0/0

Figure 1-9 shows a router with a 2E 2-slot module in slots 0 and 1. Two serial WAN interface cards are installed in the module in slot 0. One serial and one ISDN BRI WAN interface card are installed in the module in slot 1.

As shown in Figure 1-9, the unit numbers are as follows:

- Slot 0, Ethernet interface 0, referred to as Ethernet 0/0
- Slot 0, Ethernet interface 1, referred to as Ethernet 0/1
- Slot 0, serial interface 0, referred to as serial 0/0
- Slot 0, serial interface 1, referred to as serial 0/1
- Slot 1, Ethernet interface 0, referred to as Ethernet 1/0
- Slot 1, Ethernet interface 1, referred to as Ethernet 1/1
- Slot 1, serial interface 0, referred to as serial 1/0
- Slot 1, BRI interface 0, referred to as BRI 1/0

Note

The 2E 2-slot module described in this example provides both an attachment unit interface (AUI) and 10BASE-T port. Only one of these ports can be used at a time. The module automatically detects which port, AUI or 10BASE-T, is in use.
Cisco 3600 Series Routers Voice Interface Numbering

Voice interfaces are numbered differently from WAN interfaces described in the previous section, “Cisco 3600 Series Router Unit Numbering.” Voice interfaces are numbered as follows:

```
interface type chassis slot/voice module slot/voice interface
```

If you have a 4-channel voice network module installed in slot 1 of your router, the voice interfaces will be:

- Slot 1, voice network module slot 0, voice interface 0, referred to as voice 1/0/0 (closest to chassis slot 0)
- Slot 1, voice network module slot 0, voice interface 1, referred to as voice 1/0/1
- Slot 1, voice network module slot 1, voice interface 0, referred to as voice 1/1/0
- Slot 1, voice network module slot 1, voice interface 1, referred to as voice 1/1/1 (farthest from chassis slot 0)

![Figure 1-9 Cisco 3600 Series Unit Numbers](image)

Cisco 3700 Series Interface Numbering

Each WAN and LAN interface on a Cisco 3700 series router is identified by a slot number and a unit number. The Cisco 3700 series includes the Cisco 3725 and Cisco 3745.

Cisco 3725 Router Interface Numbering

The Cisco 3725 router chassis contains the following wide-area network (WAN) and local area network (LAN) interface types:

- Two built-in FastEthernet LAN interfaces
- Three slots in which you can install WAN interface cards (WICs)
- One single-width slot (slot 1) in which you can install one network module
- One double-width slot (slot 2) in which you can install one single-width or double-width network module
Cisco 3725 Router Slot Numbering

The numbering format is Interface-type Slot-number/Interface-number. Two examples are:

- FastEthernet 0/0
- Serial 1/2.

The slot numbers are as follows:

- 0 for all built-in interfaces
- 0 for all WIC interfaces
- 1 for interfaces in the single-width network module slot
- 2 for interfaces in the double-width network module slot

Interface (port) numbers begin at 0 for each interface type, and continue from right to left and (if necessary) from bottom to top.

Figure 1-10 below shows an example of interface numbering on a Cisco 3725 router with:

- A WIC in each WIC slot (containing interfaces Serial 0/0 and Serial 0/1 in physical slot W0, interface Serial 0/2 in physical slot W1, and interface BRI 0/0 in physical slot W2)
- A 2-port T1 network module in slot 1 (containing the following ports: T1 1/0 and T1 1/1)
- A 36-port Etherswitch network module in slot 2 (containing the following ports: FastEthernet 2/0 through 2/35, and GigabitEthernet 2/0 and 2/1)
- Two built-in Ethernet 10/100 interfaces—FastEthernet 0/0 and FastEthernet 0/1

![Cisco 3725 Router Rear View](image-url)
Understanding Interface Numbering

Note
The slot number for all WIC interfaces is always 0. (The W0 and W1 slot designations are for physical slot identification only.) Interfaces in the WICs are numbered from right to left, starting with 0/0 for each interface type, regardless of which physical slot the WICs are installed in. Some examples are:

- If physical slot W0 is empty and physical slot W1 contains a 1-port serial WIC, the interface in the WIC is numbered Serial 0/0.
- If slot W0 contains a 2-port serial WIC and slot W1 contains a 1-port serial WIC, the interfaces in physical slot W0 are numbered Serial 0/0 and Serial 0/1, and the interface in physical slot W1 is numbered Serial 0/2.
- If slot W0 contains a 2-port serial WIC and slot W1 contains a 1-port BRI WIC, the interfaces in physical slot W0 are numbered Serial 0/0 and Serial 0/1, and the interface in physical slot W1 is numbered BRI 0/0.

Cisco 3745 Router Interface Numbering

The Cisco 3745 router chassis contains the following wide-area network (WAN) and local-area network (LAN) interface types:

- 2 built-in FastEthernet LAN interfaces
- 3 slots in which you can install WAN or voice interface cards
- 4 network module slots.

Cisco 3745 Router Slot Numbering

The numbering format in the Cisco 3745 router is Interface type Slot number/Interface number. Two examples are:

```
FastEthernet 0/0
Serial 1/2.
```

The slot numbers are as follows:

- 0 for all built-in interfaces
- 0 for all WIC interfaces
- 1 for the lower right network module slot
- 2 for the lower left network module slot
- 3 for the upper right network module slot
- 4 for the upper left network module slot

If double-wide network modules are installed, the slot numbers are as follows:

- 2 for the lower double-wide slot
- 4 for the upper double-wide slot

Interface (port) numbers begin at 0 for each interface type, and continue from right to left and (if necessary) from bottom to top.
Figure 1-11 shows the rear panel of the Cisco 3745 with:

- A WIC in each of the three WAN interface card slots
- A single-width network module in each of the four network module slots
- Two AC power supplies

Figure 1-11 Cisco 3745 Rear Panel

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Console port</td>
</tr>
<tr>
<td>2</td>
<td>Auxiliary port</td>
</tr>
<tr>
<td>3</td>
<td>FastEthernet 0/1</td>
</tr>
<tr>
<td>4</td>
<td>FastEthernet 0/0</td>
</tr>
<tr>
<td>5</td>
<td>Compact Flash slot</td>
</tr>
<tr>
<td>6</td>
<td>Power supplies</td>
</tr>
<tr>
<td>7</td>
<td>Network module slots</td>
</tr>
<tr>
<td>8</td>
<td>WAN or voice interface card slots</td>
</tr>
</tbody>
</table>

Note

The slot number for all WIC interfaces is always 0. (The W0, W1, and W2 slot designations are for physical slot identification only.) Interfaces in the WICs are numbered from right to left, starting with 0/0 for each interface type, regardless of which physical slot the WICs are installed in. Some examples are:

- If physical slot W0 is empty and physical slot W1 contains a 1-port serial WIC, the interface in the WIC is numbered Serial 0/0.
- If slot W0 contains a 2-port serial WIC and slot W1 contains a 1-port serial WIC, the interfaces in physical slot W0 are numbered Serial 0/0 and Serial 0/1, and the interface in physical slot W1 is numbered Serial 0/2.
- If slot W0 contains a 2-port serial WIC and slot W1 contains a 1-port BRI WIC, the interfaces in physical slot W0 are numbered Serial 0/0 and Serial 0/1, and the interface in physical slot W1 is numbered BRI 0/0.
Cisco 3700 Series Routers Voice Interface Numbering

Voice interfaces in Cisco 3725 and Cisco 3745 routers are numbered differently from the WAN interfaces described in the previous section. Voice interfaces are numbered as follows:

\[\text{chassis slot/voice module slot/voice interface} \]

If a 4-channel voice network module is installed in chassis slot 1, the voice interfaces are:

- 1/0/0—Chassis slot 1/Voice module slot 0/Voice interface 0
- 1/0/1—Chassis slot 1/Voice module slot 0/Voice interface 1
- 1/1/0—Chassis slot 1/Voice module slot 1/Voice interface 0
- 1/1/1—Chassis slot 1/Voice module slot 1/Voice interface 1

Understanding Cisco IOS Software Basics

This section describes what you need to know about the Cisco IOS software before you configure the router using the command-line interface (CLI). This chapter includes the following:

- Getting Help, page 1-13
- Understanding Command Modes, page 1-14
- Undoing a Command or Feature, page 1-15
- Saving Configuration Changes, page 1-15
- Where to Go Next, page 1-15

Understanding these concepts will save time as you begin to use the CLI. If you have never used the Cisco IOS software or need a refresher, take a few minutes to read this chapter before you proceed to the next chapter.

If you are already familiar with Cisco IOS software, proceed to Chapter 2, “Using the Setup Command Facility.”

Getting Help

Use the question mark (?) and arrow keys to help you enter commands:

- For a list of available commands, enter a question mark:

 `Router> ?`

- To complete a command, enter a few known characters followed by a question mark (with no space):

 `Router> s?`

- For a list of command variables, enter the command followed by a space and a question mark:

 `Router> show ?`

- To redisplay a command you previously entered, press the up arrow key. You can continue to press the up arrow key for more commands.
Understanding Command Modes

The Cisco IOS user interface is divided into different modes. Each command mode permits you to configure different components on your router. The commands available at any given time depend on which mode you are currently in. Entering a question mark (?) at the prompt displays a list of commands available for each command mode. Table 1-2 lists the most common command modes.

Table 1-2 Common Command Modes

<table>
<thead>
<tr>
<th>Command Mode</th>
<th>Access Method</th>
<th>Router Prompt Displayed</th>
<th>Exit Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>User EXEC</td>
<td>Log in.</td>
<td>Router></td>
<td>Use the logout command.</td>
</tr>
<tr>
<td>Privileged EXEC</td>
<td>From user EXEC mode, enter the <code>enable</code> command.</td>
<td>Router#</td>
<td>To exit to user EXEC mode, use the disable, exit, or logout command.</td>
</tr>
<tr>
<td>Global configuration</td>
<td>From the privileged EXEC mode, enter the <code>configure terminal</code> command.</td>
<td>Router (config)#</td>
<td>To exit to privileged EXEC mode, use the exit or end command, or press Ctrl-z.</td>
</tr>
<tr>
<td>Interface configuration</td>
<td>From the global configuration mode, enter the <code>interface type number</code> command, such as <code>interface serial 0/0</code>.</td>
<td>Router (config-if)#</td>
<td>To exit to global configuration mode, use the exit command. To exit directly to privileged EXEC mode, press Ctrl-z.</td>
</tr>
</tbody>
</table>

Each command mode restricts you to a subset of commands. If you are having trouble entering a command, check the prompt, and enter the question mark (?) for a list of available commands. You might be in the wrong command mode or using the wrong syntax.

In the following example, notice how the prompt changes after each command to indicate a new command mode:

```
Router> enable
Password: <enable password>
Router# configure terminal
Router(config)# interface serial 0/0
Router(config-if)# line 0
Router(config-line)# controller t1 0
Router(config-controller)# exit
Router(config)# exit
Router#
%SYS-5-CONFIG_I: Configured from console by console
```

The last message is normal and does not indicate an error. Press Return to get the `Router#` prompt.
Note

You can press **Ctrl-z** in any mode to immediately return to enable mode (**Router#**), instead of entering **exit**, which returns you to the previous mode.

Undoing a Command or Feature

If you want to undo a command you entered or disable a feature, enter the keyword **no** before most commands; for example, **no ip routing**.

Saving Configuration Changes

You need to enter the **copy running-config startup-config** command to save your configuration changes to nonvolatile random-access memory (NVRAM), so the changes are not lost if there is a system reload or power outage. For example:

```
Router# copy running-config startup-config
Building configuration...
```

It might take a minute or two to save the configuration to NVRAM. After the configuration has been saved, the following appears:

```
[OK]
Router#
```

Upgrading to a New Cisco IOS Release

To install or upgrade to a new Cisco IOS release, refer to Appendix B, “Formatting the Compact Flash Memory Cards.”

Where to Go Next

Now that you have learned some Cisco IOS software basics, you can begin to configure the router using the CLI.

Remember that:

- You can use the question mark (?) and arrow keys to help you enter commands.
- Each command mode restricts you to a set of commands. If you have difficulty entering a command, check the prompt and then enter the question mark (?) for a list of available commands. You might be in the wrong command mode or using the wrong syntax.
- To disable a feature, enter the keyword **no** before the command; for example, **no ip routing**.
- You need to save your configuration changes to NVRAM so the changes are not lost if there is a system reload or power outage.

Proceed to Chapter 2, “Using the Setup Command Facility,” to begin configuring the router.
Using the Setup Command Facility

This chapter describes how to use the setup command facility to configure your router. The setup command facility prompts you to enter information needed to start a router functioning quickly. The facility steps you through a basic configuration, including local-area network (LAN) and wide-area network (WAN) interfaces. The following sections are included:

- Before Starting Your Router, page 2-1
- Using the setup Command Facility, page 2-2
- Configuring Global Parameters, page 2-2
- Configuring Interface Parameters, page 2-6
- Completing the Configuration, page 2-24
- Where to Go Next, page 2-25

If you prefer to configure the router manually or you wish to configure a module or interface that is not included in the setup command facility, proceed to “Chapter 3, “Configuring with the Command-Line Interface,” for step-by-step instructions.

Before Starting Your Router

Before you power on your router and begin to use the setup command facility, make sure you follow these steps:

Step 1 Set up the hardware as described in the documentation appropriate to your router.

Step 2 Configure your PC terminal emulation program for 9600 baud, 8 data bits, no parity, and 1 stop bit.

Step 3 Determine which network protocols you are supporting (for example, AppleTalk, IP, Novell IPX, and so on).

Step 4 Determine the following for each network protocol:
- Addressing plan
- Which WAN protocols you will run on each interface (for example, Frame Relay, HDLC, X.25, and so on)
Using the setup Command Facility

The setup command facility displays from your PC terminal emulation program window.

To create a basic configuration for your router, do the following:

- Complete the steps in the “Configuring Global Parameters” section on page 2-2.
- Complete the steps in the “Configuring Interface Parameters” section on page 2-6 that apply to your router and network.
- Complete the steps in the “Completing the Configuration” section on page 2-24.

Note

If you make a mistake while using the setup command facility, you can exit and run the facility again. Press Ctrl-c, and type setup at the enable mode prompt (2600#).

Configuring Global Parameters

Step 1

Power on the router. The power switch is on the rear panel of the router, at the lower right corner, near the power cord.

Messages will begin to appear in your terminal emulation program window.

Caution

Do not press any keys on the keyboard until the messages stop. Any keys pressed during this time are interpreted as the first command typed when the messages stop, which might cause the router to power off and start over. It takes a few minutes for the messages to stop.

The messages look similar to the following:

Note

The messages vary, depending on the Cisco IOS software release, interface modules in place in your router, and feature set you select. The screen displays in this section are for reference only and might not exactly reflect the messages on your console.

System Bootstrap, Version 11.3(1)XA, PLATFORM SPECIFIC RELEASE SOFTWARE (fc1)
Copyright (c) 1998 by cisco Systems, Inc.
C2600 platform with 32768 Kbytes of main memory

rommon 1 b f
program load complete, entry point: 0x80008000, size: 0xef4e0
Self decompressing the image : ###
[OK]

Notice: NVRAM invalid, possibly due to write erase.
program load complete, entry point: 0x80008000, size: 0x415b20
Self decompressing the image :
###
###
[OK]

Restricted Rights Legend
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c) of the Commercial Computer Software - Restricted Rights clause at FAR sec. 52.227-19 and subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS sec. 252.227-7013.

Cisco Systems, Inc.
170 West Tasman Drive
San Jose, California 95134-1706

Cisco Internetwork Operating System Software
IOS (tm) C2600 Software (C2600-JS-M), Version 11.3(2)XA,
PLATFORM SPECIFIC RELEASE SOFTWARE (fc1)
Copyright (c) 1986-1998 by cisco Systems, Inc.
Compiled Tue 10-Mar-98 14:18 by rnapier
Image text-base: 0x80008084, data-base: 0x809CD49C
cisco 2611 (MPC860) processor (revision 0x100) with 24576K/8192K bytes of memory.
Processor board ID 04614954
M860 processor, part number 0 mask 32
Bridging software.
X.25 software, Version 3.0.0.
2 Ethernet/IEEE 802.3 interface(s)
3 Serial network interface(s)
32 terminal line(s)
DRAM configuration parity is disabled.
32K bytes of non-volatile configuration memory.
8192K bytes of processor board System flash (Read/Write)

--- System Configuration Dialog ---

At any point you may enter a question mark '?' for help.
Use ctrl-c to abort configuration dialog at any prompt.
Default settings are in square brackets '[]'.

Step 2 When the following message appears, enter yes to begin the initial configuration dialog:

Would you like to enter the initial configuration dialog? [yes/no]:

Note If you answer no to this message, you are prompted to terminate AutoInstall. AutoInstall is a procedure that configures a new router based on the configuration of an existing router.

If you terminate AutoInstall, you enter the Cisco IOS software CLI.

Note The interface numbering that appears in the next step is dependent on the type of Cisco modular router platform. This example shows a Cisco 2600 series router.
Step 3 When the following message appears, press **Return** to see the current interface summary:

First, would you like to see the current interface summary? [yes]:

Any interface listed with OK? value “NO” does not have a valid configuration

<table>
<thead>
<tr>
<th>Interface</th>
<th>IP-Address</th>
<th>OK? Method</th>
<th>Status</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet0/0</td>
<td>unassigned</td>
<td>NO unset</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>Serial0/0</td>
<td>unassigned</td>
<td>NO unset</td>
<td>up</td>
<td>down</td>
</tr>
<tr>
<td>BRI0/0</td>
<td>unassigned</td>
<td>NO unset</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>Serial0/1</td>
<td>unassigned</td>
<td>NO unset</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>Serial0/2</td>
<td>unassigned</td>
<td>NO unset</td>
<td>up</td>
<td></td>
</tr>
</tbody>
</table>

Step 4 Enter a host name for the router (this example uses 2600):

Configuring global parameters:

Enter host name [Router]: **2600**

The enable secret is a password used to protect access to privileged EXEC and configuration modes. This password, after entered, becomes encrypted in the configuration.

Step 5 Enter an enable secret password. This password is encrypted (more secure) and cannot be seen when viewing the configuration:

Enter enable secret: **xxxx**

The enable password is used when you do not specify an enable secret password, with some older software versions, and some boot images.

Step 6 Enter an enable password that is different from the enable secret password. This password is **not** encrypted (less secure) and can be seen when viewing the configuration:

Enter enable password: **guessme**

The virtual terminal password is used to protect access to the router over a network interface.

Step 7 Enter the virtual terminal password, which prevents unauthenticated access to the router through ports other than the console port:

Enter virtual terminal password: **guessagain**

Step 8 Respond to the following prompts as appropriate for your network:

Configure SNMP Network Management? [yes]:

Community string [public]:

Configure LAT? [no]:

Configure AppleTalk? [no]:

Configure DECnet? [no]:

Configure IP? [yes]:

Configure IGRP routing? [yes]:

Your IGRP autonomous system number [1]: **15**

Note If you answer **no** to IGRP, you are prompted to configure RIP.

Configure CLNS? [no]:

Configure IPX? [no]:

Configure Vines? [no]:

Configure XNS? [no]:

Configure Apollo? [no]:

Configure bridging? [no]:

Configure RIP? [no]:

Configure protocols that are **not** configured?
Step 9 Configure the ISDN switch type used by the Basic Rate Interface (BRI) module:

BRI interface needs isdn switch-type to be configured
Valid switch types are:
[0] none..........Only if you don't want to configure BRI.
[1] basic-1tr6....1TR6 switch type for Germany
[2] basic-5ess....AT&T 5ESS switch type for the US/Canada
[3] basic-dms100..Northern DMS-100 switch type for US/Canada
[4] basic-net3....NET3 switch type for UK and Europe
[5] basic-ni......National ISDN switch type
[6] basic-ts013...TS013 switch type for Australia
[7] ntt...........NTT switch type for Japan
[8] vn3...........VN3 and VN4 switch types for France
Choose ISDN BRI Switch Type [2]:

Step 10 Configure the asynchronous serial lines for the integrated modems on the modules installed in the router.
(If you want to allow users to dial in through the integrated modems, you must configure the asynchronous lines.)

Async lines accept incoming modems calls. If you will have users dialing in via modems, configure these lines.

Configure Async lines? [yes]:
Async line speed [115200]:

Note Cisco recommends that you do not change this speed.

Will you be using the modems for inbound dialing? [yes]:

Note If your asynchronous interfaces will be using the same basic configuration parameters, Cisco recommends answering yes to the next prompt. That way, you group the modems so that they can be configured as a group. Otherwise, you will need to configure each interface separately.

Would you like to put all async interfaces in a group and configure them all at one time? [yes]:
 Allow dial-in users to choose a static IP addresses? [no]:
 Configure for TCP header compression? [yes]:
 Configure for routing updates on async links? [no]:
Enter the starting address of IP local pool? [X.X.X.X]: 172.20.30.40

Note Make sure the starting and ending addresses of the IP pool are in the same subnet.
Enter the ending address of IP local pool? [X.X.X.X]: 172.20.30.88

You can configure a test user to verify that your dial-up service is working properly
What is the username of the test user? [user]:
What is the password of the test user? [passwd]:
Will you be using the modems for outbound dialing? [no]:

Configuring interface parameters:
Configuring Interface Parameters

From this point on in the setup process, the prompts you see vary depending on the network modules and WAN interface cards in place in your router. The following sections provide examples of the setup steps for each interface module. Refer to the sections appropriate to your router.

Configuration for network modules includes:

- Ethernet Interface Configuration, page 2-6
- FastEthernet Interface Configuration, page 2-6
- Token Ring Interface Configuration, page 2-7
- Serial Interface Configuration, page 2-7
- Asynchronous/Synchronous Serial Interface Configuration, page 2-10
- ISDN BRI Interface Configuration, page 2-12
- E1/T1 ISDN PRI Configuration, page 2-18
 - E1/T1 PRI Mode, page 2-18
 - E1 Channelized Mode, page 2-18
 - T1 Channelized Mode, page 2-21
- 1-Port, 4-Wire 56-kbps DSU/CSU Configuration Setup, page 2-22

When you complete the setup steps for your interface modules, go to the “Completing the Configuration” section on page 2-24 for directions on saving your configuration.

Ethernet Interface Configuration

This section contains a sample configuration for the Ethernet interface. Enter the values appropriate for your router and network. The messages you see may vary.

Do you want to configure Ethernet0/0 interface [yes]:
Configure IP on this interface? [yes]:
 IP address for this interface: 255.255.255.0
 Subnet mask for this interface [255.0.0.0]:
 Class A network is 1.0.0.0, 8 subnet bits, mask is /8
Configure IPX on this interface? [no]: y
 IPX network number [1]:
 Need to select encapsulation type
 [0] sap (IEEE 802.2)
 [1] snap (IEEE 802.2 SNAP)
 [2] arpa (Ethernet_II)
 [3] novell-ether (Novell Ethernet_802.3)
 Enter the encapsulation type [2]:

FastEthernet Interface Configuration

This section contains a sample configuration for the FastEthernet interface. Enter the values appropriate for your router and network. The messages you see may vary.

Do you want to configure FastEthernet0/0 interface [yes]:
Use the 100 Base-TX (RJ-45) connector? [yes]:
Operate in full-duplex mode? [no]:
Configure IP on this interface? [no]: yes
 IP address for this interface: 6.0.0.1
Token Ring Interface Configuration

This section contains a sample configuration for the Token Ring interface. Enter the values appropriate for your router and network. The messages you see may vary.

Do you want to configure TokenRing0/0 interface? [yes]:
Tokenring ring speed (4 or 16)? [16]:
Configure IP on this interface? [yes]:
IP address for this interface: 1.0.0.1
Subnet mask for this interface [255.0.0.0]:
Class A network is 1.0.0.0, 8 subnet bits; mask is /8
Configure IPX on this interface? [no]: y
IPX network number [1]:
Need to select encapsulation type
[0] sap (IEEE 802.2)
[1] snap (IEEE 802.2 SNAP)
[2] arpa (Ethernet_II)
[3] novell-ether (Novell Ethernet_802.3)
Enter the encapsulation type [2]:

Serial Interface Configuration

This section contains a sample configuration for the 1- or 2-port serial interface. Enter the values appropriate for your router and network. The messages you see may vary.

Do you want to configure Serial0/0 interface? [yes]:
Some encapsulations supported are
ppp/hdlc/frame-relay/lapb/atm-dxi/smds/x25
Choose encapsulation type [ppp]:

The following sections describe the prompts for each encapsulation type. For PPP and HDLC encapsulation, no further configuration is needed.

No serial cable seen.
Choose mode from (dce/dte) [dte]:

If no cable is plugged in to your router, you need to indicate whether the interface is to be used as DTE or DCE. If a cable is present, the setup command facility determines the DTE/DCE status. If the serial cable is DCE, you see the following prompt:

Serial interface needs clock rate to be set in dce mode.
The following clock rates are supported on the serial interface.
0
1200, 2400, 4800, 9600, 19200, 38400
56000, 64000, 72000, 125000, 148000, 500000
Frame Relay Encapsulation

The following lmi-types are available to be set, when connected to a frame relay switch:

- [0] none
- [1] ansi
- [2] cisco
- [3] q933a

Enter lmi-type [2]:

Note: The setup command facility only prompts for the data-link connection identifier (DLCI) number if you specify none for the Local Management Interface (LMI) type. If you accept the default or specify another LMI type, the DLCI number is provided by the specified protocol.

Enter the DLCI number for this interface [16]:

Do you want to map a remote machine’s IP address to dlci? [yes]:

IP address for the remote interface: 2.0.0.2

Do you want to map a remote machine’s IPX address to dlci? [yes]:

IPX address for the remote interface: 40.1234.5678

Serial interface needs clock rate to be set in dce mode. The following clock rates are supported on the serial interface.

0
1200, 2400, 4800, 9600, 19200, 38400
56000, 64000, 72000, 125000, 148000, 500000
800000, 1000000, 1300000, 2000000, 4000000, 8000000

choose speed from above: [2000000]: 1200

Configure IP on this interface? [yes]:

IP address for this interface: 2.0.0.1

Subnet mask for this interface [255.0.0.0]:

Class A network is 2.0.0.0, 8 subnet bits; mask is /8

If IPX is configured on the router, the setup command facility prompts for the IPX map:

Do you want to map a remote machine’s IP address to dlci? [yes]:

IP address for the remote interface: 2.0.0.1

IPX address for the remote interface: 2.0.0.2

LAPB Encapsulation

lapb circuit can be either in dce/dte mode.

Choose either from (dce/dte) [dte]:

Enter the DLCI number for this interface [16]:

Do you want to map a remote machine’s IP address to dlci? [yes]:

IP address for the remote interface: 2.0.0.2

Do you want to map a remote machine’s IPX address to dlci? [yes]:

IPX address for the remote interface: 40.0060.34c6.90ed
X.25 Encapsulation

X.25 circuit can be either in dce/dte mode.
Choose from either dce/dte [dte]:
Enter local X.25 address: 1234

We will need to map the remote X.25 station’s X.25 address
to the remote stations IP/IPX address
Enter remote X.25 address: 4321

Do you want to map the remote machine’s X.25 address to IP address? [yes]:
IP address for the remote interface: 2.0.0.2
Do you want to map the remote machine’s X.25 address to IPX address? [yes]:
IPX address for the remote interface: 40.1234.5678

Enter lowest 2-way channel [1]:
Enter highest 2-way channel [64]:
Enter frame window (R) [7]:
Enter Packet window (W) [2]:
Enter Packet size (must be powers of 2) [128]:

ATM-DXI Encapsulation

Enter VPI number [1]:
Enter VCI number [1]:

Do you want to map the remote machine’s IP address to vpi and vci’s? [yes]:
IP address for the remote interface: 2.0.0.2
Do you want to map the remote machine’s IPX address to vpi and vci’s? [yes]:
IPX address for the remote interface: 40.1234.5678

SMDS Encapsulation

Enter smds address for the local interface: c141.5556.1415

We will need to map the remote smds station’s address
to the remote stations IP/IPX address
Enter smds address for the remote interface: c141.5556.1414

Do you want to map the remote machine’s smds address to IP address? [yes]:
IP address for the remote interface: 2.0.0.2
Do you want to map the remote machine’s smds address to IPX address? [yes]:
IPX address for the remote interface: 40.1234.5678

Serial Cisco IOS Commands Generated

The following is an example of the Cisco IOS commands generated by a typical serial configuration:

```
interface Serial0/0
encapsulation ppp
clock rate 2000000
ip address 2.0.0.1 255.0.0.0
```
Asynchronous/Synchronous Serial Interface Configuration

This section contains sample configurations for an asynchronous/synchronous serial interface. Enter the values appropriate for your router and network. The messages you see may vary.

Do you want to configure Serial1/0 interface? [yes]:
Enter mode (async/sync) [sync]:

Synchronous Configuration

If you select synchronous, you see screen displays similar to the following:

Do you want to configure Serial1/0 interface? [yes]:
Enter mode (async/sync) [sync]:

Some supported encapsulations are
 ppp/hdlc/frame-relay/lapb/x25/atm-dxi/smds
Choose encapsulation type [hdlc]:

The following sections describe the prompts for each encapsulation type. For PPP and HDLC encapsulation, no further configuration is needed.

No serial cable seen.
Choose mode from (dce/dte) [dte]:

If no cable is plugged in to your router, you need to indicate whether the interface is to be used as DTE or DCE. If a cable is present, the setup command facility determines the DTE/DCE status. If the serial cable is DCE, you see the following prompt:

Configure IP on this interface? [no]: yes
Configure IP unnumbered on this interface? [no]:
 IP address for this interface: 2.0.0.0
 Subnet mask for this interface [255.0.0.0]:
 Class A network is 2.0.0.0, 0 subnet bits; mask is /8
Configure LAT on this interface? [no]:

Frame Relay Encapsulation

The following lmi-types are available to be set,
 when connected to a frame relay switch
 [0] none
 [1] ansi
 [2] cisco
 [3] q933a
Enter lmi-type [2]:

The setup command facility only prompts for the data-link connection identifier (DLCI) number if you specify none for the Local Management Interface (LMI) type. If you accept the default or specify another LMI type, the DLCI number is provided by the specified protocol.

Enter the DLCI number for this interface [16]:

Do you want to map a remote machine’s IP address to dlci? [yes]:
 IP address for the remote interface: 2.0.0.2
Do you want to map a remote machine’s IPX address to dlci? [yes]:
 IPX address for the remote interface: 40.1234.5678
Serial interface needs clock rate to be set in dce mode.
The following clock rates are supported on the serial interface.

0
1200, 2400, 4800, 9600, 19200, 38400
56000, 64000, 72000, 125000, 148000, 500000
800000, 1000000, 1300000, 2000000, 4000000, 8000000

choose speed from above: [2000000]: 1200
Configure IP on this interface? [yes]:
 IP address for this interface: 2.0.0.1
 Subnet mask for this interface [255.0.0.0]:
 Class A network is 2.0.0.0, 8 subnet bits; mask is /8

Note
If IPX is configured on the router, the setup command facility prompts for the IPX map:

Do you want to map a remote machine's IPX address to dlci? [yes]:
 IPX address for the remote interface: 40.0060.34c6.90ed

LAPB Encapsulation

lapb circuit can be either in dce/dte mode.
Choose either from (dce/dte) [dte]:

X.25 Encapsulation

x25 circuit can be either in dce/dte mode.
Choose from either dce/dte [dte]:
 Enter local x25 address: 1234

We will need to map the remote x.25 station's x25 address
to the remote stations IP/IPX address
 Enter remote x25 address: 4321

Do you want to map the remote machine's x25 address to IP address? [yes]:
 IP address for the remote interface: 2.0.0.2
Do you want to map the remote machine's x25 address to IPX address? [yes]:
 IPX address for the remote interface: 40.1234.5678

Enter lowest 2-way channel [1]:
Enter highest 2-way channel [64]:
Enter frame window (K) [7]:
Enter Packet window (W) [2]:
Enter Packet size (must be powers of 2) [128]:

ATM-DXI Encapsulation

Enter VPI number [1]:
Enter VCI number [1]:

Do you want to map the remote machine’s IP address to vpi and vci’s? [yes]:
 IP address for the remote interface: 2.0.0.2
Do you want to map the remote machine’s IPX address to vpi and vci’s? [yes]:
 IPX address for the remote interface: 40.1234.5678
SMDS Encapsulation

Enter smds address for the local interface: c141.5556.1415

We will need to map the remote smds station’s address
to the remote stations IP/IPX address
Enter smds address for the remote interface: c141.5556.1414

Do you want to map the remote machine’s smds address to IP address? [yes]:
 IP address for the remote interface: 2.0.0.2
Do you want to map the remote machine’s smds address to IPX address? [yes]:
 IPX address for the remote interface: 40.1234.5678

Asynchronous Configuration

If you select asynchronous, you see screen displays similar to the following:

Do you want to configure Serial1/1 interface? [yes]:
Enter mode (async/sync) [sync]: async
Configure IP on this interface? [yes]:
 IP address for this interface: 2.0.0.0
 Subnet mask for this interface [255.0.0.0]:
 Class A network is 2.0.0.0, 0 subnet bits; mask is /8
Configure LAT on this interface? [no]:
Configure AppleTalk on this interface? [no]:
Configure DECnet on this interface? [no]:
Configure CLNS on this interface? [no]:
Configure IPX on this interface? [no]: yes
 IPX network number [8]:
Configure Vines on this interface? [no]:
Configure XNS on this interface? [no]:
Configure Apollo on this interface? [no]:

ISDN BRI Interface Configuration

Use the System Configuration Dialog to configure an ISDN BRI interface. This configuration requires
you to enter the ISDN switch type. These switch types are shown in Table 2-1.

Table 2-1 ISDN Switch Types

<table>
<thead>
<tr>
<th>Country</th>
<th>ISDN Switch Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>basic-ts013</td>
<td>Australian TS013 switches</td>
</tr>
<tr>
<td>Europe</td>
<td>basic-ltr6</td>
<td>German 1TR6 ISDN switches</td>
</tr>
<tr>
<td></td>
<td>basic-nwnet3</td>
<td>Norwegian NET3 ISDN switches</td>
</tr>
<tr>
<td></td>
<td>basic-net3</td>
<td>NET3 ISDN switches (UK and others)</td>
</tr>
<tr>
<td></td>
<td>basic-net5</td>
<td>NET5 switches (UK and others)</td>
</tr>
<tr>
<td></td>
<td>vn2</td>
<td>French VN2 ISDN switches</td>
</tr>
<tr>
<td></td>
<td>vn3</td>
<td>French VN3 ISDN switches</td>
</tr>
<tr>
<td>Japan</td>
<td>ntt</td>
<td>Japanese NTT ISDN switches</td>
</tr>
<tr>
<td>New Zealand</td>
<td>basic-nznet3</td>
<td>New Zealand NET3 switches</td>
</tr>
</tbody>
</table>
When you reach the following prompt on the System Configuration Dialog, enter an ISDN switch type from Table 2-1:

BRI interface needs isdn switch-type to be configured

Valid switch types are:

- [0] none........Only if you don't want to configure BRI.
- [1] basic-ltr6.....LTR6 switch type for Germany
- [2] basic-5ess....AT&T 5ESS switch type for the US/Canada
- [3] basic-dms100..Northern DMS-100 switch type for US/Canada
- [4] basic-net3.....NET3 switch type for UK and Europe
- [5] basic-ni......National ISDN switch type
- [6] basic-ts013...TS013 switch type for Australia
- [7] ntt..........NTT switch type for Japan
- [8] vn3...........VN3 and VN4 switch types for France

Choose ISDN BRI Switch Type [2]:

Do you want to configure BRI0/0 interface? [yes]:

Some encapsulations supported are

ppp/hdlc/frame-relay/lapb/x25

Choose encapsulation type [ppp]:

Do you have a service profile identifiers (SPIDs) assigned? [no]: y

Enter SPID1: 12345

Enter SPID2: 12345

The setup command facility only prompts for the SPID number if you specify **basic-5ess**, **basic-ni1**, or **basic-dms100** for the switch type.

Do you want to map the remote machine's IP address in dialer map? [yes]:

- IP address for the remote interface: 2.0.0.1

Do you want to map the remote machine's IP address in dialer map? [yes]:

- IPX address of the remote interface: 40.0060.34c6.90ed

To get to 2.0.0.1 we will need to make a phone call.

Please enter the phone number to call: 1234567890

Configure IP on this interface? [yes]:

If your router has at least one configured LAN interface, you can choose to use an unnumbered IP address on the interface.

Configure IP unnumbered on this interface? [no]: y

Assign to which interface [Ethernet0/0]:

Table 2-1 ISDN Switch Types (continued)

<table>
<thead>
<tr>
<th>Country</th>
<th>ISDN Switch Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>basic-5ess</td>
<td>AT&T basic rate switches</td>
</tr>
<tr>
<td></td>
<td>basic-dms100</td>
<td>NT DMS-100 basic rate switches</td>
</tr>
<tr>
<td></td>
<td>basic-ni1</td>
<td>National ISDN-1 switches</td>
</tr>
</tbody>
</table>
Note

If your router does not have a configured LAN interface, you must use a numbered IP address.

IP address for this interface: 2.0.0.0.1
Enter the subnet mask [255.0.0.0]:

PPP Encapsulation

Would you like to enable multilink PPP [yes]:

Enter a remote hostname for PPP authentication [Router]:
Enter a password for PPP authentication:

Note

The password, which is used by the Challenge Handshake Authentication Protocol (CHAP) authentication process, is case sensitive and must match the remote router’s password exactly.

Frame Relay Encapsulation

The following lmi-types are available to be set,
when connected to a frame relay switch
[0] none
[1] ansi
[2] cisco
[3] q933a
Enter lmi-type [2]:

Note

The setup command facility only prompts for the data-link connection identifier (DLCI) number if you specify none for the Local Management Interface (LMI) type. If you accept the default or specify another LMI type, the DLCI number is provided by the specified protocol.

Enter the DLCI number for this interface [16]:

Do you want to map a remote machine’s IP address to dlc1? [yes]:
IP address for the remote interface: 2.0.0.2
Do you want to map a remote machine’s IPX address to dlc1? [yes]:
IPX address for the remote interface: 40.1234.5678

Serial interface needs clock rate to be set in dce mode.
The following clock rates are supported on the serial interface.
0
1200, 2400, 4800, 9600, 19200, 38400
56000, 64000, 72000, 125000, 148000, 50000
80000, 100000, 130000, 200000, 400000, 800000

choose speed from above: [2000000]: 1200
Configure IP on this interface? [yes]:
IP address for this interface: 2.0.0.1
Subnet mask for this interface [255.0.0.0]:
Class A network is 2.0.0.0, 8 subnet bits; mask is /8

Note

If IPX is configured on the router, the setup command facility prompts for the IPX map:

Do you want to map a remote machine’s IPX address to dlc1? [yes]:
IPX address for the remote interface: 40.0060.34c6.90ed
LAPB Encapsulation

LAPB circuit can be either in dce/dte mode
Choose either from (dce/dte) [dte]:

ATM-DXI Encapsulation

Enter VPI number [1]:
Enter VCI number [1]:
Do you want to map the remote machine's IP address to vpi and vci's? [yes]:
IP address for the remote interface: 6.0.0.1
Do you want to map the remote machine's IPX address to vpi and vci's? [yes]:
IPX address for the remote interface: 40.0060.34c6.90ed

SMDS Encapsulation

Enter smds address for the local interface: c141.5556.1415
We will need to map the remote smds station's address to the remote stations IP address
Enter smds address for the remote interface: c141.5556.1414
Do you want to map the remote machine's smds address to IP address? [yes]:
IP address for the remote interface: 2.0.0.1
Do you want to map the remote machine's smds address to IP address? [yes]:
IPX address for the remote interface: 40.0060.34c6.90ed

X.25 Encapsulation

X25 circuit can be either in dce/dte mode.
Choose from either dce/dte [dte]:
Enter local x25 address: 1234
We will need to map the remote x.25 station's x25 address
to the remote stations IP/IPX address
Do you want to map the remote machine's x25 address to IP address? [yes]:
IP address for the remote interface: 6.0.0.1
Do you want to map the remote machine's x25 address to IPX address? [yes]:
IPX address for the remote interface: 40.0060.34c6.90ed
Enter remote x25 address: 4321
Enter lowest 2-way channel [1]:
Enter highest 2-way channel [64]:
Enter frame window (K) [7]:
Enter Packet window (W) [2]:
Enter Packet size (must be powers of 2) [128]:

ISDN BRI Line Configuration

Before using a router with an ISDN BRI interface, you must order a correctly configured ISDN BRI line from your local telecommunications service provider.
The ordering process varies from provider to provider and from country to country. However, here are some general guidelines:

- Ask for two channels to be called by one number.
- Ask for delivery of calling line identification, also known as caller ID or Automatic Number Identification (ANI).
- If the router will be the only device attached to the ISDN BRI line, ask for point-to-point service and a data-only line.
• If you plan to connect another ISDN device (such as an ISDN telephone) to the ISDN BRI line through the router, ask for point-to-multipoint service (subaddressing is required) and a voice-and-data line.

ISDN BRI Provisioning by Switch Type

ISDN BRI provisioning refers to the types of services provided by the ISDN BRI line. Although provisioning is performed by your ISDN BRI service provider, you must tell the provider what you want. Table 2-2 lists the provisioning you should order for the router based on switch type.

Table 2-2 ISDN Provisioning by Switch Type

<table>
<thead>
<tr>
<th>Switch Type</th>
<th>Provisioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>5ESS Custom BRI</td>
<td>For data only</td>
</tr>
<tr>
<td></td>
<td>2 B channels for data</td>
</tr>
<tr>
<td></td>
<td>Point to point</td>
</tr>
<tr>
<td></td>
<td>Terminal type = E</td>
</tr>
<tr>
<td></td>
<td>1 directory number (DN) assigned by service provider</td>
</tr>
<tr>
<td></td>
<td>MTERM = 1</td>
</tr>
<tr>
<td></td>
<td>Request delivery of calling line ID on Centrex lines</td>
</tr>
<tr>
<td></td>
<td>Set speed for ISDN calls to 56 kbps outside local exchange</td>
</tr>
<tr>
<td>5ESS Custom BRI</td>
<td>For voice and data</td>
</tr>
<tr>
<td></td>
<td>(Use these values only if you have an ISDN telephone connected.)</td>
</tr>
<tr>
<td></td>
<td>2 B channels for voice or data</td>
</tr>
<tr>
<td></td>
<td>MultiPoint</td>
</tr>
<tr>
<td></td>
<td>Terminal type = D</td>
</tr>
<tr>
<td></td>
<td>2 directory numbers assigned by service provider</td>
</tr>
<tr>
<td></td>
<td>2 service profile identifiers (SPIPs) required, assigned by service provider</td>
</tr>
<tr>
<td></td>
<td>MTERM = 2</td>
</tr>
<tr>
<td></td>
<td>Number of call appearances = 1</td>
</tr>
<tr>
<td></td>
<td>Display = No</td>
</tr>
<tr>
<td></td>
<td>Ringing/idle call appearances = idle</td>
</tr>
<tr>
<td></td>
<td>Autohold= no</td>
</tr>
<tr>
<td></td>
<td>Onetouch = no</td>
</tr>
<tr>
<td></td>
<td>Request delivery of calling line ID on Centrex lines</td>
</tr>
<tr>
<td></td>
<td>Set speed for ISDN calls to 56 kbps outside local exchange</td>
</tr>
<tr>
<td></td>
<td>Directory number 1 can hunt to directory number 2</td>
</tr>
</tbody>
</table>
Table 2-2 ISDN Provisioning by Switch Type (continued)

<table>
<thead>
<tr>
<th>Switch Type</th>
<th>Provisioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>5ESS National ISDN (NI-1) BRI</td>
<td>Terminal type = A</td>
</tr>
<tr>
<td></td>
<td>2 B channels for voice and data</td>
</tr>
<tr>
<td></td>
<td>2 directory numbers assigned by service provider</td>
</tr>
<tr>
<td></td>
<td>2 SPIDs required; assigned by service provider</td>
</tr>
<tr>
<td></td>
<td>Set speed for ISDN calls to 56 kbps outside local exchange</td>
</tr>
<tr>
<td></td>
<td>Directory number 1 can hunt to directory number 2</td>
</tr>
<tr>
<td>DMS-100 BRI</td>
<td>2 B channels for voice and data</td>
</tr>
<tr>
<td></td>
<td>2 directory numbers assigned by service provider</td>
</tr>
<tr>
<td></td>
<td>2 SPIDs required; assigned by service provider</td>
</tr>
<tr>
<td></td>
<td>Functional signaling</td>
</tr>
<tr>
<td></td>
<td>Dynamic terminal endpoint identifier (TEI) assignment</td>
</tr>
<tr>
<td></td>
<td>Maximum number of keys = 64</td>
</tr>
<tr>
<td></td>
<td>Release key = no, or key number = no</td>
</tr>
<tr>
<td></td>
<td>Ringing indicator = no</td>
</tr>
<tr>
<td></td>
<td>EKTS = no</td>
</tr>
<tr>
<td></td>
<td>PVC = 2</td>
</tr>
<tr>
<td></td>
<td>Request delivery of calling line ID on Centrex lines</td>
</tr>
<tr>
<td></td>
<td>Set speed for ISDN calls to 56 kbps outside local exchange</td>
</tr>
<tr>
<td></td>
<td>Directory number 1 can hunt to directory number 2</td>
</tr>
</tbody>
</table>

Defining ISDN Service Profile Identifiers

Some service providers assign service profile identifiers (SPIDs) to define the services subscribed to by an ISDN device. If your service provider requires SPIDs, your ISDN device cannot place or receive calls until it sends a valid SPID to the service provider when initializing the connection. A SPID is usually a seven-digit telephone number plus some optional numbers, but service providers may use different numbering schemes. SPIDs have significance at the local access ISDN interface only; remote routers are never sent the SPID.

Currently, only DMS-100 and NI-1 switch types require SPIDs. Two SPIDs are assigned for the DMS-100 switch type, one for each B channel. The AT&T 5ESS switch type may support SPIDs, but Cisco recommends that you set up that ISDN service without SPIDs.

If your service provider assigns you SPIDs, you must define these SPIDs on the router. To define SPIDs and the local directory number (LDN) on the router for both ISDN BRI B channels, use the following `isdn spid` commands:

```
Router(config-if)# isdn spid1 spid-number [ldn]
```

```
Router(config-if)# isdn spid2 spid-number [ldn]
```

Note

Although the LDN is an optional parameter in the command, you may need to enter it so the router can answer calls made to the second directory number.
E1/T1 ISDN PRI Configuration

This section contains a sample configuration for the channelized E1/T1 ISDN PRI interface. Enter the values appropriate for your router and network. The messages you see may vary.

The following ISDN switch types are available:
- [0] none............IF you do not want to configure ISDN
- [1] primary-4ess....AT&T 4ESS switch type for US and Canada
- [2] primary-5ess....AT&T 5ESS switch type for US and Canada
- [3] primary-dms100..Northern Telecom switch type for US and Canada
- [4] primary-net5.....European switch type for NET5
- [5] primary-ni......National ISDN Switch type for the U.S
- [6] primary-ntt.....Japan switch type
- [7] primary-ts014...Australian switch type

Choose ISDN PRI Switch Type [2]:

Configuring controller T1 1/0 in pri or channelized mode
Do you want to configure this interface controller? [no]:
Will you be using PRI on this controller? [yes]:

E1/T1 PRI Mode

The following is an example of a E1/T1 PRI mode configuration using the setup command facility:

The following framing types are available:
 - esf | sf

Enter the framing type [esf]:

The following linecode types are available:
 - ami | b8zs

Enter the line code type [b8zs]:
Enter number of time slots [24]:

Do you want to configure Serial1/0:23 interface? [yes]:

Configuring the PRI D-channel
Would you like to enable multilink PPP? [yes]:
Configure IP on this interface? [no]: y
Configure IP unnumbered on this interface? [no]: y
Assign to which interface [Ethernet0/0]:

All users dialing in through the PRI will need to be authenticated using CHAP. The username and password are case sensitive.
Enter more username and passwords for PPP authentication? [no]: y
Enter the username used for dial-in CHAP authentication [Router]: Enter the PPP password of the user dialling in on PRI:
Enter more username and passwords for PPP authentication? [no]:

E1 Channelized Mode

The following is an example of an E1 channelized mode configuration using the setup command facility:

The following framing types are available:
 - no-crc4 | crc4

Enter the framing type [crc4]:

The following linecode types are available:
 - ami | hdb3

Enter the line code type [hdb3]:
Do you want to configure Serial1/1:0 interface?: [Yes]:

Configuring the Channelized E1/T1 serial channels

Some encapsulations supported are
 ppp/hdlc/frame-relay/lapb/atm-dxi/smds/x25
Choose encapsulation type [ppp]:
Configure IP on this interface? [no]: y
Configure IP unnumbered on this interface? [no]:
 IP address for this interface: 3.0.0.1
 Subnet mask for this interface [255.0.0.0]:
 Class A network is 3.0.0.0, 8 subnet bits; mask is /8

Note
The following sections describe the prompts for each encapsulation type. No further configuration is needed for HDLC encapsulation.

PPP Encapsulation

Would you like to enable multilink PPP [yes]:
Enter a remote hostname for PPP authentication [Router]:
Enter a password for PPP authentication:

Note
The password, which is used by the Challenge Handshake Authentication Protocol (CHAP) authentication process, is case sensitive and must match the remote router’s password exactly.

Frame Relay Encapsulation

The following lmi-types are available to be set,
 when connected to a frame relay switch
 [0] none
 [1] ansi
 [2] cisco
 [3] q933a
Enter lmi-type [2]:

Note
The setup command facility only prompts for the data-link connection identifier (DLCI) number if you specify none for the Local Management Interface (LMI) type. If you accept the default or specify another LMI type, the DLCI number is provided by the specified protocol.

Enter the DLCI number for this interface [16]:

Do you want to map a remote machine’s IP address to dlc? [yes]:
 IP address for the remote interface: 2.0.0.2
Do you want to map a remote machine’s IPX address to dlc? [yes]:
 IPX address for the remote interface: 40.1234.5678

Serial interface needs clock rate to be set in dce mode.
The following clock rates are supported on the serial interface.
 0
 1200, 2400, 4800, 9600, 19200, 38400
 56000, 64000, 72000, 125000, 148000, 500000
 800000, 1000000, 1300000, 2000000, 4000000, 8000000
choose speed from above: [2000000]: 1200
Configure IP on this interface? [yes]:
 IP address for this interface: 2.0.0.1
 Subnet mask for this interface [255.0.0.0]:
 Class A network is 2.0.0.0, 8 subnet bits; mask is /8

If IPX is configured on the router, the setup command facility prompts for the IPX map:

Do you want to map a remote machine's IPX address to dlc? [yes]:
 IPX address for the remote interface: 40.0060.34c6.90ed

LAPB Encapsulation

 lapb circuit can be either in dce/dte mode
 Choose either from (dce/dte) [dte]:

ATM-DXI Encapsulation

 Enter VPI number [1]:
 Enter VCI number [1]:
 Do you want to map the remote machine's IP address to vpi and vci's? [yes]:
 IP address for the remote interface: 6.0.0.1
 Do you want to map the remote machine's IPX address to vpi and vci's? [yes]:
 IPX address for the remote interface: 40.0060.34c6.90ed

SMDS Encapsulation

 Enter smds address for the local interface: c141.5556.1415
 We will need to map the remote smds station's address to the remote stations IP address
 Enter smds address for the remote interface: c141.5556.1414
 Do you want to map the remote machine's smds address to IP address? [yes]:
 IP address for the remote interface: 2.0.0.1
 Do you want to map the remote machine's smds address to IP address? [yes]:
 IPX address for the remote interface: 40.0060.34c6.90ed

X.25 Encapsulation

 x25 circuit can be either in dce/dte mode.
 Choose from either dce/dte [dte]:
 Enter local x25 address: 1234
 We will need to map the remote x.25 station's x25 address
 to the remote stations IP/IPX address
 Do you want to map the remote machine's x25 address to IP address? [yes]:
 IP address for the remote interface: 6.0.0.1
 Do you want to map the remote machine's x25 address to IPX address? [yes]:
 IPX address for the remote interface: 40.0060.34c6.90ed
 Enter remote x25 address: 4321
 Enter lowest 2-way channel [1]:
 Enter highest 2-way channel [64]:
 Enter frame window (K) [7]:
 Enter Packet window (W) [2]:
 Enter Packet size (must be powers of 2) [128]:

Note

If IPX is configured on the router, the setup command facility prompts for the IPX map:
T1 Channelized Mode

The following is an example of a T1 channelized mode configuration using the setup command facility:

```
The following framing types are available:
  esf | sf
Enter the framing type [esf]:

The following linecode types are available:
  ami | b8zs
Enter the line code type [b8zs]:

T1 is capable of being configured for channel 1-24
Enter number of time slots [24]: 3
Configure more channel groups? [no]: y
Enter number of time slots [21]: 3
Configure more channel groups? [no]: y
Enter number of time slots [18]: 3
Configure more channel groups? [no]: y
Enter number of time slots [15]:
```

Note: The following sections describe the prompts for each encapsulation type. No further configuration is needed for HDLC encapsulation.

PPP Encapsulation

```
Would you like to enable multilink PPP [yes]:

Enter a remote hostname for PPP authentication [Router]:
Enter a password for PPP authentication:
```

Note: The password, which is used by the Challenge Handshake Authentication Protocol (CHAP) authentication process, is case sensitive and must match the remote router’s password exactly.

Frame Relay Encapsulation

```
The following lmi-types are available to be set,
when connected to a frame relay switch
  [0] none
  [1] ansi
  [2] cisco
  [3] q933a
Enter lmi-type [2]:
```

Note: The setup command facility only prompts for the data-link connection identifier (DLCI) number if you specify none for the Local Management Interface (LMI) type. If you accept the default or specify another LMI type, the DLCI number is provided by the specified protocol.

```
Enter the DLCI number for this interface [16]:
Do you want to map a remote machine’s IP address to dlc1? [yes]:
  IP address for the remote interface: 2.0.0.2
Do you want to map a remote machine’s IPX address to dlc1? [yes]:
  IPX address for the remote interface: 40.1234.5678
```
Serial interface needs clock rate to be set in dce mode. The following clock rates are supported on the serial interface.

0
1200, 2400, 4800, 9600, 19200, 38400
56000, 64000, 72000, 125000, 148000, 500000
800000, 1000000, 1300000, 2000000, 4000000, 8000000

choose speed from above: [2000000]: 1200
Configure IP on this interface? [yes]:
IP address for this interface: 200.0.0.1
Subnet mask for this interface [255.0.0.0]:
Class A network is 200.0.0.0, 8 subnet bits; mask is /8

If IPX is configured on the router, the setup command facility prompts for the IPX map:
Do you want to map a remote machine's IPX address to dlc\i? [yes]:
IPX address for the remote interface: 40.0060.34c6.90ed

LAPB Encapsulation

lapb circuit can be either in dce/dte mode
Choose either from (dce/dte) [dte]:

ATM-DXI Encapsulation

Enter VPI number [1]:
Enter VCI number [1]:
Do you want to map the remote machine's IP address to vpi and vci's? [yes]:
IP address for the remote interface: 6.0.0.1
Do you want to map the remote machine's IPX address to vpi and vci's? [yes]:
IPX address for the remote interface: 40.0060.34c6.90ed

SMDS Encapsulation

Enter smds address for the local interface: c141.5556.1415

We will need to map the remote smds station's address to the remote stations IP address
Enter smds address for the remote interface: c141.5556.1414

Do you want to map the remote machine's smds address to IP address? [yes]:
IP address for the remote interface: 2.0.0.1
Do you want to map the remote machine's smds address to IP address? [yes]:
IPX address for the remote interface: 40.0060.34c6.90ed

1-Port, 4-Wire 56-kbps DSU/CSU Configuration Setup

This section describes using setup command facility to configure a 1-port, 4-wire 56-kbps DSU/CSU WAN interface card. It discusses the following:

- Choosing Circuit-Switched or Dedicated-Line Service
- Switched Mode
- Dedicated Mode
Choosing Circuit-Switched or Dedicated-Line Service

The switched-56 WAN interface card is configured for dedicated or leased-line service by default, but it can also be configured for circuit-switched service. Depending on the type of data transmissions you typically use, you can configure the switched-56 WAN interface card for circuit-switched or dedicated-line service.

Generally, circuit-switched service is ideal for short duration data transmissions or as an alternative route if a dedicated line fails. For example, circuit-switched service is ideal for sending electronic mail messages or doing such tasks as updating inventory and ordering records from one network database to another at the end of each day.

Dedicated service is ideal for heavy network traffic. Dedicated service is ideal if you need a constant network connection or you need connection for more than eight hours per day.

Switched Mode

The following is an example of a 1-port, 4-wire 56-kbps DSU/CSU switched-mode configuration using the setup command facility:

Do you want to configure Serial0/0 interface? [yes]:
 Some encapsulations supported are
 ppp/hdlc/frame-relay/lapb/atm-dxi/smds/x25
Choose encapsulation type [ppp]:

Switched 56k interface may either be in switched/Dedicated mode
Choose from either (switched/dedicated) [switched]:

The following switched carrier types are to be set when in switched mode
(at&t, sprint or other)
Choose carrier (at&t/sprint/other) [other]:

Do you want to map the remote machine's ip address in dialer map? [yes]:
 IP address for the remote interface : 1.0.0.2
Do you want to map the remote machine's ipx address in dialer map? [yes]:
 IPX address for the remote interface : 40.0060.34c6.90ed

Note

The setup command facility will ask for only one telephone number for both IP and IPX (if enabled).

Please enter the phone number to call : 1234567890
Configure IP on this interface? [yes]:
 IP address for this interface: 1.0.0.1
Subnet mask for this interface [255.0.0.0] :
 Class A network is 1.0.0.0, 8 subnet bits; mask is /8

Dedicated Mode

The following is an example of a 1-port, 4-wire 56-kbps DSU/CSU dedicated-mode configuration using the setup command facility:

Do you want to configure Serial0/0 interface? [yes]:

Some encapsulations supported are
 ppp/hdlc/frame-relay/lapb/atm-dxi/smds/x25
Choose encapsulation type [ppp]:

Switched 56k interface may either be in switched/Dedicated mode
Choose from either (switched/dedicated) [switched]: dedi
Completing the Configuration

When you have provided all the information prompted for by the setup command facility, the configuration appears. Some examples of the configurations of the Cisco 2600 Series, Cisco 3600 series, and Cisco 3700 series routers are shown in Appendix A, “Configuration Examples.”

To complete your router configuration, do the following:

Step 1 A setup command facility prompt asks if you want to save this configuration.

If you answer no, the configuration information you entered is not saved, and you return to the router enable prompt (2600#). Type setup to return to the System Configuration Dialog.

If you answer yes, the configuration is saved and you are returned to the EXEC prompt (2600>).

Use this configuration? {yes/no} : yes
Building configuration...
Use the enabled mode 'configure' command to modify this configuration.

Press RETURN to get started:

%LINK-3-UPDOWN: Interface Ethernet0/0, changed state to up
%LINK-3-UPDOWN: Interface Ethernet0/1, changed state to up
%LINK-3-UPDOWN: Interface Serial0/0, changed state to up
%LINK-3-UPDOWN: Interface Serial0/1, changed state to down
%LINK-3-UPDOWN: Interface Serial0/2, changed state to down
%LINK-3-UPDOWN: Interface Serial1/0, changed state to up
%LINK-3-UPDOWN: Interface Serial1/1, changed state to down
%LINK-3-UPDOWN: Interface Serial1/2, changed state to down

<Additional messages omitted.>
Step 2 When the messages stop displaying on your screen, press **Return** to get the `2600>` prompt.

Note If you see the next message, it means that no other AppleTalk routers were found on the network attached to the port.

```
%AT-6-ONLYROUTER: Ethernet0/0: AppleTalk port enabled; no neighbors found
```

Step 3 The `2600>` prompt indicates that you are now at the command-line interface (CLI) and you have just completed a basic router configuration. However, this is *not* a complete configuration. At this point you have two choices:

- Run the **setup** command facility again and create another configuration. Enter the following:

  ```
  2600> enable
  Password: password
  2600# setup
  ```

- Modify the existing configuration or configure additional features with the CLI as described in Chapter 3, “Configuring with the Command-Line Interface.”

Where to Go Next

At this point you can proceed to the following:

- “Chapter 3, “Configuring with the Command-Line Interface,” to learn how to use the CLI to configure additional features.

- The Cisco IOS software configuration guide and command reference publications for more advanced configuration topics. These publications are available on Cisco.com, the Documentation CD-ROM that came with your router, or you can order printed copies. For more information, refer to “Obtaining Documentation.”
Configuring with the Command-Line Interface

This chapter describes how to use the Cisco IOS software command-line interface (CLI) to configure basic router functionality, including:

- Configuring the Host Name and Password, page 3-2
- Configuring 1-Port and 2-Port Ethernet Interfaces, page 3-3
- Configuring Fast Ethernet Interfaces, page 3-4
- Configuring Asynchronous/Synchronous Serial Network Modules or WAN Interface Cards, page 3-5
- Configuring 16-Port and 32-Port Asynchronous Network Modules, page 3-9
- Configuring ISDN BRI WAN Interface Cards, page 3-10
- Configuring T1 and E1 Interfaces, page 3-15
- Configuring T1 (FT1) WAN Interface Cards, page 3-19
- Configuring ATM Interfaces, page 3-20
- Configuring Inverse Multiplexing for ATM Interfaces, page 3-23
- Configuring Analog Modem Interfaces, page 3-26
- Configuring Wireless Multipoint Interfaces, page 3-29
- Configuring 1-Port ADSL WAN Interface Card, page 3-29
- Configuring the NM-AIC-64, Contact Closure Network Module, page 3-34
- Configuring the 1-Port HSSI Network Module, page 3-46
- Configuring the Compression Network Module for the Cisco 3600 Series Routers, page 3-49
- Configuring the Digital Modem Network Module for the Cisco 3640 Router, page 3-50
- Configuring G.SHDSL on a Cisco Router, page 3-60
- Saving Configuration Changes, page 3-65
- Where to Go Next, page 3-65

Follow the procedures in this chapter to configure the router manually, or if you want to change the configuration after you have run the setup command facility Using the Setup Command Facility, page 2-1.
This chapter does not describe every configuration possible—only a small portion of the most commonly used configuration procedures. For advanced configuration topics, refer to the Cisco IOS configuration guide and command reference publications. These publications are available on the Documentation CD-ROM that came with your router, on the World Wide Web from Cisco’s home page, or you can order printed copies separately.

Note
If you skipped the previous chapter, Chapter 2, “Using the Setup Command Facility,” and you have never configured a Cisco router, go back to that chapter and read it now. The chapter contains important information you need to successfully configure your router.

Configuring the Host Name and Password

One of the first configuration tasks you might want to do is configure the host name and set an encrypted password. Configuring a host name allows you to distinguish multiple Cisco routers from each other. Setting an encrypted password allows you to prevent unauthorized configuration changes.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router> enable Password: password Router#</td>
<td>Enter enable mode. Enter the password. You have entered enable mode when the prompt changes to Router#.</td>
</tr>
<tr>
<td>Step 2 Router# configure terminal Enter configuration commands, one per line. End with CNTL/Z. Router(config)#</td>
<td>Enter global configuration mode. You have entered global configuration mode when the prompt changes to Router(config)#.</td>
</tr>
<tr>
<td>Step 3 Router(config)# hostname Router Router(config)#</td>
<td>Change the name of the router to a meaningful name. Substitute your host name for Router.</td>
</tr>
<tr>
<td>Step 4 Router(config)# enable secret guessme</td>
<td>Enter an enable secret password. This password provides access to privileged EXEC mode. When a user types enable at the EXEC prompt (Router>), they must enter the enable secret password to gain access to configuration mode. Substitute your enable secret for guessme.</td>
</tr>
<tr>
<td>Step 5 Router(config)# line con 0</td>
<td>Enter line configuration mode to configure the console port. When you enter line configuration mode, the prompt changes to Router(config-line)#.</td>
</tr>
<tr>
<td>Router(config-line)# exec-timeout 0 0</td>
<td>Prevent the router’s EXEC facility from timing out if you do not type any information on the console screen for an extended period.</td>
</tr>
<tr>
<td>Router(config-line)# exit Router(config)#</td>
<td>Exit back to global configuration mode.</td>
</tr>
</tbody>
</table>
Verifying the Host Name and Password

To verify that you configured the correct host name and password:

Step 1 Enter the `show config` command:

```
Router(config)# show config
Using 1888 out of 126968 bytes
!
version XX.X
.
.
!
hostname Router
!
enable secret 5 $1$60L4$X2JYOwoDc0.kgJllo0/w8/
.
.
```

Check the host name and encrypted password displayed near the top of the command output.

Step 2 Exit global configuration mode and attempt to re-enter it using the new enable password:

```
Router# exit
.
.
Router con0 is now available
Press RETURN to get started.
Router> enable
Password: guessme
Router#
```

Tip If you are having trouble, check the following:

- Caps Lock is off.
- You entered the correct passwords. Passwords are case sensitive.

Configuring 1-Port and 2-Port Ethernet Interfaces

You can configure Ethernet interfaces manually by entering Cisco IOS commands on the command line. This method, called configuration mode, provides the greatest power and flexibility.

Timesaver Before you begin, disconnect all WAN cables from the router to keep it from trying to run the AutoInstall process. The router tries to run AutoInstall whenever you power it on, if there is a WAN connection on both ends and the router does not have a valid configuration file stored in nonvolatile random-access memory (NVRAM) (for instance, when you add a new interface). It can take several minutes for the router to determine that AutoInstall is not connected to a remote Transmission Control Protocol/Internet Protocol (TCP/IP) host.
Configuring Fast Ethernet Interfaces

Before you begin configuring the Ethernet interface, make sure you:

- Connect a console to the router.
- Power on the router.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Router> enable
Password: password
Router#</td>
<td>Enter enable mode. Enter the password. You have entered enable mode when the prompt changes to Router#.</td>
</tr>
<tr>
<td>2</td>
<td>Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#</td>
<td>Enter global configuration mode. You have entered global configuration mode when the prompt changes to Router(config)#.</td>
</tr>
<tr>
<td>3</td>
<td>Router# ip routing
Router# appletalk routing
Router# ipx routing</td>
<td>Enable routing protocols as required for your global configuration. This example uses IP routing, AppleTalk routing, and Internetwork Packet Exchange (IPX) routing.</td>
</tr>
<tr>
<td>4</td>
<td>Router(config)# interface ethernet 0/0
Router(config-if)#</td>
<td>Enter the interface configuration mode. You have entered interface configuration mode when the prompt changes to Router(config-if)#.</td>
</tr>
<tr>
<td>5</td>
<td>Router(config-if)# ip address 172.16.74.3 255.255.255.0</td>
<td>Assign the IP address and subnet mask to the interface.</td>
</tr>
<tr>
<td>6</td>
<td>Router(config-if)# appletalk static cable-range 3-3
Router(config-if)# appletalk zone ZZEth
Router(config-if)# ipx network B005</td>
<td>Configure routing protocols on the interface. You must have previously enabled these protocols as part of global configuration. In this example, AppleTalk and IPX are being configured on the interface.</td>
</tr>
<tr>
<td>7</td>
<td>Router(config-if)# exit</td>
<td>Exit back to global configuration mode. Repeat Step 4 through Step 6 if your router has more that one LAN interface that you need to configure.</td>
</tr>
<tr>
<td>8</td>
<td>Router(config)# Ctrl-z
Router#</td>
<td>When you finish configuring interfaces, return to enable mode.</td>
</tr>
</tbody>
</table>

Configuring Fast Ethernet Interfaces

To configure a Fast Ethernet interface, use the configuration software provided with your router or network module, if any. Otherwise, for greatest power and flexibility use configuration mode (manual configuration). In this mode, you enter Cisco IOS commands at the router prompt.

Note

Before you begin, disconnect all WAN cables from the router to keep it from trying to run the AutoInstall process. The router tries to run AutoInstall whenever you power it on if there is a WAN connection on both ends and the router does not have a valid configuration file stored in NVRAM (for instance, when you add a new interface). It can take several minutes for the router to determine that AutoInstall is not connected to a remote Transmission Control Protocol/Internet Protocol (TCP/IP) host.
This section describes basic configuration, including enabling the interface and specifying IP routing. Depending on your own requirements and the protocols you plan to route, you might also need to enter other configuration commands.

Before you begin configuring the interfaces, make sure you:

- Connect a console to the router.
- Power on the router.

Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router> enable</td>
<td>Enter enable mode. Enter the password. You have entered enable mode when the prompt changes to Router#.</td>
</tr>
<tr>
<td>Step 2 Router# configure terminal</td>
<td>Enter global configuration mode. You have entered global configuration mode when the prompt changes to Router(config)#.</td>
</tr>
<tr>
<td>Step 3 Router# ip routing</td>
<td>Enable routing protocols as required for your global configuration. This example uses IP routing, AppleTalk routing, and Internetwork Packet Exchange (IPX) routing.</td>
</tr>
<tr>
<td>Step 4 Router(config)# interface fastethernet 0/0</td>
<td>Enter interface configuration mode. You have entered interface configuration mode when the prompt changes to Router(config-if)#.</td>
</tr>
<tr>
<td>Step 5 Router(config-if)# ip address 172.16.74.3 255.255.255.0</td>
<td>Assign an IP address and subnet mask to the interface.</td>
</tr>
<tr>
<td>Step 6 Router(config-if)# appletalk static cable-range 3-3</td>
<td>Configure routing protocols on the interface. You must have previously enabled these protocols as part of global configuration. In this example, AppleTalk and IPX are being configured on the interface.</td>
</tr>
<tr>
<td>Step 6 Router(config-if)# appletalk zone ZZEth</td>
<td>Exit back to global configuration mode. Repeat Step 4 through Step 6 if your router has more than one interface that you need to configure.</td>
</tr>
<tr>
<td>Step 6 Router(config-if)# ipx network B005</td>
<td>When you finish configuring interfaces, return to enable mode.</td>
</tr>
</tbody>
</table>

Configuring Asynchronous/Synchronous Serial Network Modules or WAN Interface Cards

You can configure the serial interfaces on your asynchronous/synchronous serial network module or WAN interface card manually by entering Cisco IOS commands on the command line. This method, called configuration mode, provides the greatest power and flexibility.
Before you begin, disconnect all WAN cables from the router to keep it from trying to run the AutoInstall process. The router tries to run AutoInstall whenever you power it ON, if there is a WAN connection on both ends and the router does not have a valid configuration file stored in nonvolatile random-access memory (NVRAM) (for instance, when you add a new interface). It can take several minutes for the router to determine that AutoInstall is not connected to a remote Transmission Control Protocol/Internet Protocol (TCP/IP) host.

Before you begin configuring the asynchronous/synchronous serial interface, make sure you:
- Connect a console to the router.
- Power on the router.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router> enable</td>
<td>Enter enable mode. Enter the password.</td>
</tr>
<tr>
<td></td>
<td>You have entered enable mode when the prompt changes to Router#.</td>
</tr>
<tr>
<td>Step 2 Router# configure terminal</td>
<td>Enter global configuration mode. You have entered global configuration mode when the prompt changes to Router(config)#.</td>
</tr>
<tr>
<td>Step 3 Router# ip routing</td>
<td>Enable routing protocols as required for your global configuration. This example uses IP routing, AppleTalk routing, and Internetwork Packet Exchange (IPX) routing.</td>
</tr>
<tr>
<td>Step 4 Router(config)# interface serial 0/0</td>
<td>Enter the interface configuration mode. You have entered interface configuration mode when the prompt changes to Router(config-if)#.</td>
</tr>
<tr>
<td>Step 5 Router(config-if)# ip address 172.16.74.1 255.255.255.0</td>
<td>Assign the IP address and subnet mask to the interface.</td>
</tr>
<tr>
<td>Step 6 Router(config-if)# appletalk static cable-range 5-5</td>
<td>Configure routing protocols on the interface. You must have previously enabled these protocols as part of global configuration. In this example, AppleTalk and IPX are being configured on the interface.</td>
</tr>
<tr>
<td>Step 7 Router(config-if)# physical-layer async</td>
<td>All serial ports are initially configured as synchronous. Enter this command if you want to configure the port as asynchronous.</td>
</tr>
<tr>
<td>Step 8 Router(config-if)# async mode dedicated</td>
<td>Configure asynchronous parameters according to your needs.</td>
</tr>
<tr>
<td>Step 9 Router(config-if)# line async <#></td>
<td>Configure the asynchronous line setting.</td>
</tr>
<tr>
<td>Step 10 Router(config-if)# half-duplex timer dcd-drop-delay 100</td>
<td>Specify the time that the interface waits in controlled carrier mode. See Table 3-1 for a list of half-duplex timer commands.</td>
</tr>
</tbody>
</table>
Step 11

```bash
Router(config-if)# clockrate 7200
```

To use a port in DCE mode, connect a DCE cable and set the internal transmit clock signal (TXC) speed in bits per second. See Table 3-2 through Table 3-5 for a list of clock rate settings for your specific interface. (For ports used in DTE mode, the router automatically uses the external timing signal.)

Step 12

```bash
Router(config-if)# dce-terminal-timing-enable
```

When a port is operating in DCE mode, the default operation is for the DCE to send serial clock transmit (SCT) and serial clock receive (SCR) clock signals to the DTE, and for the DTE to return a serial clock transmit external (SCTE) signal to the DCE.

If the DTE does not return SCTE, enter this command to configure the DCE port to use its own clock signal.

Step 13

```bash
Router(config-if)# invert-txc
```

Routers that use long cables might experience high error rates when operating at higher transmission speeds, because the clock and data signals can shift out of phase.

If a DCE port is reporting a high number of error packets, inverting the clock using this command can often correct the shift.

Step 14

```bash
Router(config-if)# nrzi-encoding
```

All serial interfaces support both nonreturn to zero (NRZ) and nonreturn to zero inverted (NRZI) formats. NRZ is the default; NRZI is commonly used with EIA/TIA-232 connections in IBM environments. To enable NRZI encoding on an interface, enter this command.

Step 15

```bash
Router(config-if)# exit
```

Exit back to global configuration mode.

Repeat Step 4 through Step 14 if your router has more that one serial interface that you need to configure.

Step 16

```bash
Router(config)# Ctrl-z
```

When you finish configuring interface, return to enable mode.
Table 3-1 Half-Duplex Timer Commands

<table>
<thead>
<tr>
<th>Timer</th>
<th>Syntax</th>
<th>Default Setting (Milliseconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTS delay(^1)</td>
<td>half-duplex timer cts-delay</td>
<td>100</td>
</tr>
<tr>
<td>CTS drop timeout</td>
<td>half-duplex timer cts-drop-timeout</td>
<td>5000</td>
</tr>
<tr>
<td>DCD drop delay</td>
<td>half-duplex timer dcd-drop-delay</td>
<td>100</td>
</tr>
<tr>
<td>DCD transmission start delay</td>
<td>half-duplex timer dcd-txstart-delay</td>
<td>100</td>
</tr>
<tr>
<td>RTS(^2) drop delay</td>
<td>half-duplex timer rts-drop-delay</td>
<td>100</td>
</tr>
<tr>
<td>RTS timeout</td>
<td>half-duplex timer rts-timeout</td>
<td>2000</td>
</tr>
<tr>
<td>Transmit delay</td>
<td>half-duplex timer transmit-delay</td>
<td>0</td>
</tr>
</tbody>
</table>

1. CTS = Clear To Send.
2. RTS = Request To Send.

Table 3-2 Clock Rate Settings for 1-Port/2-Port Serial WAN Interface Card in Synchronous Mode

<table>
<thead>
<tr>
<th>Timer (bits per second)</th>
<th>Syntax (bits per second)</th>
<th>Default Setting (bits per second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>38400</td>
<td>148000</td>
</tr>
<tr>
<td>2400</td>
<td>56000</td>
<td>500000</td>
</tr>
<tr>
<td>4800</td>
<td>57600</td>
<td>800000</td>
</tr>
<tr>
<td>9600</td>
<td>64000</td>
<td>1000000</td>
</tr>
<tr>
<td>14400</td>
<td>72000</td>
<td>1300000</td>
</tr>
<tr>
<td>19200</td>
<td>115200</td>
<td>2000000</td>
</tr>
<tr>
<td>28800</td>
<td>125000</td>
<td>4000000</td>
</tr>
<tr>
<td>32000</td>
<td>128000</td>
<td>1480000</td>
</tr>
</tbody>
</table>

Table 3-3 Clock Rate Settings for 1-Port/2-Port Serial WAN Interface Card in Asynchronous Mode

<table>
<thead>
<tr>
<th>Timer (bits per second)</th>
<th>Syntax (bits per second)</th>
<th>Default Setting (bits per second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>28800</td>
<td>72000</td>
</tr>
<tr>
<td>2400</td>
<td>32000</td>
<td>115200</td>
</tr>
<tr>
<td>4800</td>
<td>38400</td>
<td>125000</td>
</tr>
<tr>
<td>9600</td>
<td>56000</td>
<td>128000</td>
</tr>
<tr>
<td>14400</td>
<td>57600</td>
<td>128000</td>
</tr>
<tr>
<td>19200</td>
<td>64000</td>
<td></td>
</tr>
</tbody>
</table>
Configuring 16-Port and 32-Port Asynchronous Network Modules

You can configure the asynchronous interface manually by entering Cisco IOS commands on the command line. This method, called configuration mode, provides the greatest power and flexibility.

Timesaver

Before you begin, disconnect all WAN cables from the router to keep it from trying to run the AutoInstall process. The router tries to run AutoInstall whenever you power it ON, if there is a WAN connection on both ends and the router does not have a valid configuration file stored in nonvolatile random-access memory (NVRAM) (for instance, when you add a new interface). It can take several minutes for the router to determine that AutoInstall is not connected to a remote Transmission Control Protocol/Internet Protocol (TCP/IP) host.

Before you begin configuring the asynchronous interface, make sure you:

- Connect a console to the router.
- Power on the router.

Table 3-4 Clock Rate Settings for 2-Port Asynchronous/Synchronous Serial WAN Interface Card

<table>
<thead>
<tr>
<th>Timer (bits per second)</th>
<th>Syntax (bits per second)</th>
<th>Default Setting (bits per second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>28800</td>
<td>72000</td>
</tr>
<tr>
<td>2400</td>
<td>32000</td>
<td>115200</td>
</tr>
<tr>
<td>4800</td>
<td>38400</td>
<td>125000</td>
</tr>
<tr>
<td>9600</td>
<td>56000</td>
<td>128000</td>
</tr>
<tr>
<td>14400</td>
<td>57600</td>
<td></td>
</tr>
<tr>
<td>19200</td>
<td>64000</td>
<td></td>
</tr>
</tbody>
</table>

Table 3-5 Clock Rate Settings for 4-Port/8-Port Asynchronous/Synchronous Serial Network Module

<table>
<thead>
<tr>
<th>Timer (bits per second)</th>
<th>Syntax (bits per second)</th>
<th>Default Setting (bits per second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>19200</td>
<td>64000</td>
</tr>
<tr>
<td>1200</td>
<td>28800</td>
<td>72000</td>
</tr>
<tr>
<td>2400</td>
<td>32000</td>
<td>115200</td>
</tr>
<tr>
<td>4800</td>
<td>38400</td>
<td>128000</td>
</tr>
<tr>
<td>9600</td>
<td>56000</td>
<td></td>
</tr>
<tr>
<td>14400</td>
<td>57600</td>
<td></td>
</tr>
</tbody>
</table>
Configuring ISDN BRI WAN Interface Cards

You can configure the interfaces on your BRI WAN interface card manually by entering Cisco IOS commands on the command line. This method, called configuration mode, provides the greatest power and flexibility.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enter enable mode. Enter the password.</td>
</tr>
<tr>
<td>Router> enable</td>
<td>You have entered enable mode when the prompt changes to Router#.</td>
</tr>
<tr>
<td>Password: password</td>
<td></td>
</tr>
<tr>
<td>Router#</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enter global configuration mode. You have entered global configuration</td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td>mode when the prompt changes to Router(config)#.</td>
</tr>
<tr>
<td>Enter configuration commands, one per line.</td>
<td></td>
</tr>
<tr>
<td>End with CNTL/Z.</td>
<td></td>
</tr>
<tr>
<td>Router(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Enable routing protocols as required for your global configuration.</td>
</tr>
<tr>
<td>Router# ip routing</td>
<td>This example uses IP routing, AppleTalk routing, and Internetwork</td>
</tr>
<tr>
<td>Router# appletalk routing</td>
<td>Packet Exchange (IPX) routing.</td>
</tr>
<tr>
<td>Router# ipx routing</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Enter the interface configuration mode and specify the asynchronous</td>
</tr>
<tr>
<td>Router(config)# interface async 45</td>
<td>interface to configure. You have entered interface configuration mode</td>
</tr>
<tr>
<td>Router(config-if)#</td>
<td>when the prompt changes to Router(config-if)#.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Assign the IP address and subnet mask to the interface.</td>
</tr>
<tr>
<td>Router(config-if)# ip address 172.16.74.1</td>
<td></td>
</tr>
<tr>
<td>255.255.255.0</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Configure routing protocols on the interface. You must have previously</td>
</tr>
<tr>
<td>Router(config-if)# appletalk static</td>
<td>enabled these protocols as part of global configuration. In this</td>
</tr>
<tr>
<td>cable-range 5-5</td>
<td>example, AppleTalk and IPX are being configured on the interface.</td>
</tr>
<tr>
<td>Router(config-if)# appletalk zone ZZAsync</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ipx network B003</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>Configure asynchronous parameters according to your needs.</td>
</tr>
<tr>
<td>Router(config-if)# async mode dedicated</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# async default routing</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# line async 45</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# speed 115200</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>Return to the global configuration mode and repeat Step 4 through Step</td>
</tr>
<tr>
<td>Router(config-if)# exit</td>
<td>7 if your router has more than one interface that you need to</td>
</tr>
<tr>
<td></td>
<td>configure.</td>
</tr>
<tr>
<td>Step 9</td>
<td>Return to enable mode.</td>
</tr>
<tr>
<td>Router(config)# Ctrl-z</td>
<td></td>
</tr>
<tr>
<td>Router#</td>
<td></td>
</tr>
</tbody>
</table>
Before you begin configuring the BRI interface, make sure you:

- Connect a console to the router.
- Power on the router.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | Router> enable
Password: password
Router# | Enter enable mode. Enter the password.
You have entered enable mode when the prompt changes to Router#. |
| Step 2 | Router# configure terminal
Enter configuration commands, one per line.
End with CNTL/Z.
Router(config)# | Enter global configuration mode. You have entered global configuration mode when the prompt changes to Router(config)#. |
| Step 3 | Router(config)# isdn switch-type basic-5ess | Enter an ISDN switch type. See Table 3-5 for a list of ISDN switch types.
Note Switch types configured in interface configuration mode override this setting for the configured interface. |
| Step 4 | Router(config)# ip routing
Router(config)# appletalk routing
Router(config)# ipx routing | Enable routing protocols as required for your global configuration. This example uses IP routing, AppleTalk routing, and Internetwork Packet Exchange (IPX) routing. |
| Step 5 | Router(config)# interface bri 0/0
Router(config-if)# | Enter the interface configuration mode. You have entered interface configuration mode when the prompt changes to Router(config-if)#. |
| Step 6 | Router(config-if)# ip address 172.16.74.2 255.255.255.0
Router(config-if)# isdn switch-type basic-5ess | Assign the IP address and subnet mask to the interface.
If you are configuring this interface for voice, enter the switch type instead of an IP address. |
| Step 7 | Router(config-if)# appletalk static
cable-range 5-5
Router(config-if)# appletalk zone ZZBRI
Router(config-if)# ipx network B004
Router(config-if)# isdn incoming-voice modem | Configure routing protocols on the interface. You must have previously enabled these protocols as part of global configuration. In this example, AppleTalk and IPX are being configured on the interface.
If you are configuring this router for voice, use the `isdn incoming-voice modem` command. |
Chapter 3 Configuring with the Command-Line Interface

Configuring ISDN BRI WAN Interface Cards

Table 3-6 ISDN Switch Types

<table>
<thead>
<tr>
<th>Country</th>
<th>ISDN Switch Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>basic-ts013</td>
<td>Australian TS013 switches</td>
</tr>
<tr>
<td>Europe</td>
<td>basic-1tr6</td>
<td>German 1TR6 ISDN switches</td>
</tr>
<tr>
<td></td>
<td>basic-nwnet3</td>
<td>Norwegian NET3 ISDN switches (phase 1)</td>
</tr>
<tr>
<td></td>
<td>basic-net3</td>
<td>NET3 ISDN switches (UK and others)</td>
</tr>
<tr>
<td></td>
<td>vn2</td>
<td>French VN2 ISDN switches</td>
</tr>
<tr>
<td></td>
<td>vn3</td>
<td>French VN3 ISDN switches</td>
</tr>
<tr>
<td>Japan</td>
<td>ntt</td>
<td>Japanese NTT ISDN switches</td>
</tr>
<tr>
<td>New Zealand</td>
<td>basic-nznet3</td>
<td>New Zealand NET3 switches</td>
</tr>
<tr>
<td>North America</td>
<td>basic-5ess</td>
<td>AT&T basic rate switches</td>
</tr>
<tr>
<td></td>
<td>basic-dms100</td>
<td>NT DMS-100 basic rate switches</td>
</tr>
<tr>
<td></td>
<td>basic-nil1</td>
<td>National ISDN-1 switches</td>
</tr>
</tbody>
</table>

Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Router(config-if)# exit</td>
<td>Exit back to global configuration mode. Repeat Step 5 through Step 7 if your router has more than one BRI interface that you need to configure.</td>
</tr>
<tr>
<td>9</td>
<td>Router(config-if)# memory-size iomem 40</td>
<td>By default, the router allocates 25 percent of DRAM to shared memory (used for data transmitted or received by network modules and WAN interface cards). If your router includes 16 or more ISDN BRI interfaces, you must increase the amount of shared memory by entering the <code>memory-size iomem</code> command. This example increases shared memory from 25 percent to 40 percent.</td>
</tr>
<tr>
<td>10</td>
<td>Router(config)# Ctrl-z</td>
<td>When you finish configuring interfaces, return to enable mode.</td>
</tr>
</tbody>
</table>

Configuring ISDN BRI Lines

Before using a router with an ISDN BRI interface, you must order a correctly configured ISDN BRI line from your local telecommunications service provider.
The ordering process varies from provider to provider and from country to country; however, here are some general guidelines:

- Ask for two channels to be called by one number.
- Ask for delivery of calling line identification, also known as caller ID or Automatic Number Identification (ANI).
- If the router will be the only device attached to the ISDN BRI line, ask for point-to-point service and a data-only line.
- If you plan to connect another ISDN device (such as an ISDN telephone) to the ISDN BRI line through the router, ask for point-to-multipoint service (subaddressing is required) and a voice-and-data line.

ISDN BRI Provisioning by Switch Type

ISDN BRI provisioning refers to the types of services provided by the ISDN BRI line. Although provisioning is performed by your ISDN BRI service provider, you must tell the provider what you want. Table 3-7 lists the provisioning you should order for your router.

<table>
<thead>
<tr>
<th>Switch Type</th>
<th>Provisioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>5ESS Custom BRI</td>
<td>For data only:</td>
</tr>
<tr>
<td></td>
<td>2 B channels for data</td>
</tr>
<tr>
<td></td>
<td>Point to point</td>
</tr>
<tr>
<td></td>
<td>Terminal type = E</td>
</tr>
<tr>
<td></td>
<td>1 directory number (DN) assigned by service provider</td>
</tr>
<tr>
<td></td>
<td>MTERM = 1</td>
</tr>
<tr>
<td></td>
<td>Request delivery of calling line ID on Centrex lines</td>
</tr>
<tr>
<td></td>
<td>Set speed for ISDN calls to 56 kbps outside local exchange</td>
</tr>
<tr>
<td>5ESS Custom BRI</td>
<td>For voice and data:</td>
</tr>
<tr>
<td></td>
<td>(Use these values only if you have an ISDN telephone connected.)</td>
</tr>
<tr>
<td></td>
<td>2 B channels for voice or data</td>
</tr>
<tr>
<td></td>
<td>Multipoint</td>
</tr>
<tr>
<td></td>
<td>Terminal type = D</td>
</tr>
<tr>
<td></td>
<td>2 directory numbers assigned by service provider</td>
</tr>
<tr>
<td></td>
<td>2 service profile (SPIPs) required, assigned by service provider</td>
</tr>
<tr>
<td></td>
<td>MTERM = 2</td>
</tr>
<tr>
<td></td>
<td>Number of cal appearances = 1</td>
</tr>
<tr>
<td></td>
<td>Display = No</td>
</tr>
<tr>
<td></td>
<td>Ringing/idle call appearances = 1</td>
</tr>
<tr>
<td></td>
<td>Autohold = no</td>
</tr>
<tr>
<td></td>
<td>Onetouch = no</td>
</tr>
<tr>
<td></td>
<td>Request delivery of calling line ID on Centrex lines</td>
</tr>
<tr>
<td></td>
<td>Set speed for ISDN calls to 56 kbps outside local exchange</td>
</tr>
<tr>
<td></td>
<td>Directory number 1 can hunt to directory number 2</td>
</tr>
</tbody>
</table>
Defining ISDN Service Profile Identifiers

Some service providers assign service profile identifiers (SPIDs) to define the services to which an ISDN device subscribes. If your service provider requires SPIDs, your ISDN device cannot place or receive calls until it sends a valid SPID to the service provider when initializing the connection. A SPID is usually a seven-digit telephone number plus some optional numbers, but service providers might use different numbering schemes. SPIDs have significance at the local access ISDN interface only; remote routers are never sent the SPID.

Currently, only DMS-100 and NI-1 switch types require SPIDs. Two SPIDs are assigned for the DMS-100 switch type, one for each B channel. The AT&T 5ESS switch type might support SPIDs, but Cisco recommends that you set up that ISDN service without SPIDs.

If your service provider assigns you SPIDs, you must define these SPIDs on the router. To define SPIDs and the local directory number (LDN) on the router for both ISDN BRI B channels, use the following `isdn spid` commands:

```plaintext
Router (config-if)# isdn spid1 spid-number [ldn]
Router (config-if)# isdn spid2 spid-number [ldn]
```

Although the LDN is an optional parameter in the command, you might need to enter it so the router can answer calls made to the second directory number.

For further information on configuring ISDN, see the chapters “Configuring ISDN” and “Configuring DDR” in the "Wide-Area Networking Configuration Guide" publication, for your Cisco IOS software release.
Configuring T1 and E1 Interfaces

To configure an ISDN PRI interface or T1/E1 multiflex trunk interface, use the configuration software provided with your router or network module, if any. Otherwise, for greatest power and flexibility use configuration mode (manual configuration). In this mode, you enter Cisco IOS commands at the router prompt.

Before you begin, disconnect all WAN cables from the router to keep it from trying to run the AutoInstall process. The router tries to run AutoInstall whenever you power it on if there is a WAN connection on both ends and the router does not have a valid configuration file stored in NVRAM (for instance, when you add a new interface). It can take several minutes for the router to determine that AutoInstall is not connected to a remote Transmission Control Protocol/Internet Protocol (TCP/IP) host.

This section describes basic configuration, including enabling the interface and specifying IP routing. Depending on your own requirements and the protocols you plan to route, you might also need to enter other configuration commands.

Before you begin configuring the interfaces, make sure you:

- Connect a console to the router.
- Power on the router.

Configuring T1 Interfaces

Use the following procedure to configure a new T1, CT1/PRI or CT1/PRI-CSU interface or to change the configuration of an existing interface.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 1 | Router> enable
Password: password
Router# | Enter enable mode. Enter the password. You have entered enable mode when the prompt changes to Router#.
| 2 | Router# configure terminal
Enter configuration commands, one per line.
End with CNTL/Z.
Router(config)# | Enter global configuration mode. You have entered global configuration mode when the prompt changes to Router(config)#.
| 3 | Router# ip routing
Router# appletalk routing
Router# ipx routing | Enable routing protocols as required for your global configuration. This example uses IP routing, AppleTalk routing, and Internetwork Packet Exchange (IPX) routing.
| 4 | Router(config)# controller t1 1/0 | Select the CT1/PRI interface to configure. This example configures a T1 interface in slot 1 and unit 0.
| 5 | Router(config-controller)# clock source line | Specify which end of the circuit provides clocking. The clock source should be set to use internal clocking only for testing the network or if the full T1 line is used as the channel group. Only one end of the T1 line should be set to internal. |
Configuring T1 and E1 Interfaces

Use the following procedure to configure a new E1 or CE1/PRI interface (balanced or unbalanced) or to change the configuration of an existing interface.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
Router> enable
Password: password
Router# | Enter enable mode. Enter the password. You have entered enable mode when the prompt changes to Router#.
| **Step 2**
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# | Enter global configuration mode. You have entered global configuration mode when the prompt changes to Router(config)#.
| **Step 3**
Router# ip routing
Router# appletalk routing
Router# ipx routing | Enable routing protocols as required for your global configuration. This example uses IP routing, AppleTalk routing, and Internetwork Packet Exchange (IPX) routing.
| **Step 4**
Router(config)# controller e1 1/0 | Select the CE1/PRI interface to configure. This example configures an E1 interface in slot 1 and unit 0.
| **Step 5**
Router(config-controller)# framing crc4 | Specify the framing type.
| **Step 6**
Router(config-controller)# linecode hdb3 | Specify the line code format.
Chapter 3 Configuring with the Command-Line Interface

Configuring TDM Connect (Data Pass-Through)

For multiflex trunk interfaces using the time-division multiplexing (TDM) connect function, you can use the connect command to connect two groups of DS0 timeslots from two controllers.

To configure TDM connect, complete the following steps in controller configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | **To configure a TDM channel group for T1:**
| a. Router(config-controller)# tdm-group tdm-group-no timeslot timeslot-list [type {e&m | fxs [loop-start | ground-start] | fxo [loop-start | ground-start]}] | Configure a TDM channel group for T1. If configuring cross-connect for data traffic only, do not specify the type option. The type option only applies if the mode cas command is enabled. | | | |
| b. Router(config-controller)# tdm-group tdm-group-no timeslot timeslot-list [type {e&m | fxs [loop-start | ground-start] | fxo [loop-start | ground-start] | fxs-melcas | fxo-melcas | e&m-melcas}] | Configure a TDM channel group for E1. The “melcas” options are supported only on E1 and apply to the Mercury Exchange Limited (MEL) Channel Associated Signaling (CAS) standard, used primarily in the United Kingdom. The MEL options help preserve CAS integrity on the line. If configuring cross-connect for data traffic only, do not specify the type option. The type option only applies if the mode cas command is enabled. |
| **Step 7** | Router(config-controller)# channel-group 0 timeslots 1,3-5,7 | Specify the channel group and time slots to be mapped. For multiflex trunk interfaces, only channel 0 can be configured. |
| **Step 8** | Router(config-controller)# interface serial 1/0:0 | Configure each channel group as a virtual serial interface. Specify the E1 interface, unit number, and channel group to modify. |
| **Step 9** | Router(config-if)# ip address 10.1.15.1 255.255.255.0 | Assign an IP address and subnet mask to the interface. |
| **Step 10** | Router(config-if)# appletalk static cable-range 3-3 Router(config-if)# appletalk zone ZZEth Router(config-if)# ipx network B005 | Configure routing protocols on the interface. You must have previously enabled these protocols as part of global configuration. In this example, AppleTalk and IPX are being configured on the interface. |
| **Step 11** | Router(config-if)# exit | Exit back to global configuration mode. Return to Step 4 if your router has more than one CE1/PRI interface that you need to configure. |
| **Step 12** | Router(config)# Ctrl-z | When you finish configuring interfaces, return to enable mode. |
Configuring Codec Complexity

The number of channels that an HDV network module can support depends on the number of PVDMs that are installed and the complexity level of the codecs (vocoders) needed to support the required compression method. The HDV network module supports the following number of channels:

- Up to 6 channels per PVDM (up to 30 channels for cards with 5 PVDMs installed) for high complexity codecs (vocoders) that support the following services: G.711, G.726, G.729, G.723.1, G.728, and fax relay
- Up to 12 channels per PVDM (up to 60 channels for cards with 5 PVDMs installed) for medium complexity codecs (vocoders) that support the following services: G.711, G.726, G.729a, and fax relay

Each HDV network module can support only one type of compression complexity (either high or medium), although HDV network modules with different compression complexity types can be installed in the same router.

Use the following procedure to configure the codec (vocoder) complexity on your HDV network module.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | Router> enable
Password: password
Router#
Enter enable mode. Enter the password.
You have entered enable mode when the prompt changes to Router#.
| **Step 2** | Router# configure terminal
Enter configuration commands, one per line.
End with CNTL/Z.
Router(config)#
Enter global configuration mode. You have entered global configuration mode when the prompt changes to Router(config)#.
| **Step 3** | Router(config)# voice-card {0-4}
Select the voice card to configure.
| **Step 4** | Router(config-voicecard)# codec complexity {high | medium}
Specify the compression complexity for the voice card. One complexity type is allowed per router.
| **Step 5** | Router(config-voicecard)# exit
Exit back to global configuration mode.
Return to Step 3 if your router has more than one voice card that you need to configure.
| **Step 6** | Router(config)# Ctrl-z
When you finish configuring interfaces, return to enable mode.
| **Step 2** | Router(config-controller)# exit
Exit controller configuration mode.
| **Step 3** | Router(config)# connect id controller-1 tdm-group-no-1 controller-2 tdm-group-no-2
Configure cross-connect pass-through between two controllers.

Chapter 3 Configuring with the Command-Line Interface
Configuring T1 (FT1) WAN Interface Cards

The 1-port T1 and fractional (FT1) WAN interface card includes an integrated data service unit/channel service unit (DSU/CSU) and can be configured either for full T1 service at 1.544 Mbps or for fractionalized T1 service. You can configure the interfaces on your T1 WAN interface card manually by entering Cisco IOS commands on the command line. This method, called configuration mode, provides the greatest power and flexibility.

Timesaver

Before you begin, disconnect all WAN cables from the router to keep it from trying to run the AutoInstall process. The router tries to run AutoInstall whenever you power it ON, if there is a WAN connection on both ends and the router does not have a valid configuration file stored in nonvolatile random-access memory (NVRAM) (for instance, when you add a new interface). It can take several minutes for the router to determine that AutoInstall is not connected to a remote Transmission Control Protocol/Internet Protocol (TCP/IP) host.

Before you begin configuring the BRI interface, make sure you:

- Connect a console to the router.
- Power on the router.

Default Configuration

The Cisco IOS software provides the following default configuration for CSU/DSU- and T1-specific parameters:

```
service-module t1 clock source line
service-module t1 data-coding normal
service-module t1 timeslots all speed 64
service-module t1 framing esf
service-module t1 lbo none
service-module t1 linecode b8zs
no service-module t1 remote-alarm-enable
service-module t1 remote-loopback
no service-module t1 fdl
```

To change this configuration, enter commands in configuration mode, as described in the next section. To view the current configuration, enter the `show service-module serial slot/port` command. For further information about these commands, refer to the Cisco IOS configuration guides and command references.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
 - Router> enable
 - Password: password
 - Router# | Enter enable mode. Enter the password. You have entered enable mode when the prompt changes to `Router#`. |
| **Step 2**
 - Router# configure terminal
 - Enter configuration commands, one per line. End with CNTL/Z.
 - Router(config)# | Enter global configuration mode. You have entered global configuration mode when the prompt changes to `Router(config)#`. |
Configuring ATM Interfaces

To configure an ATM interface, you must use configuration mode (manual configuration). In this mode, you enter Cisco IOS commands at the router prompt.

Note
Before you begin, disconnect all WAN cables from the router to keep it from trying to run the AutoInstall process. The router tries to run AutoInstall whenever you power it on if there is a WAN connection on both ends and the router does not have a valid configuration file stored in nonvolatile random-access memory (NVRAM) (for instance, when you add a new interface). It can take several minutes for the router to determine that AutoInstall is not connected to a remote Transmission Control Protocol/Internet Protocol (TCP/IP) host.

This section describes basic configuration, including enabling the interface and specifying IP routing. Depending on your own requirements and the protocols you plan to route, you might also need to enter other configuration commands.

Configuring ATM Interfaces

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Router# <code>ip routing</code>
Router# <code>appletalk routing</code>
Router# <code>ipx routing</code></td>
<td>Enable routing protocols as required for your global configuration. This example uses IP routing, AppleTalk routing, and Internetwork Packet Exchange (IPX) routing.</td>
</tr>
<tr>
<td>4</td>
<td>Router(config)# <code>interface serial 0/0</code>
Router(config-if)#</td>
<td>Enter the interface configuration mode. You have entered interface configuration mode when the prompt changes to <code>Router(config-if)#</code>.</td>
</tr>
<tr>
<td>5</td>
<td>Router(config-if)# <code>ip address 172.16.74.2 255.255.255.0</code></td>
<td>Assign the IP address and subnet mask to the interface.</td>
</tr>
<tr>
<td>6</td>
<td>Router(config-if)# <code>no keepalive</code>
Router(config-if)# <code>appletalk static cable-range 5-5</code>
Router(config-if)# <code>appletalk zone ZZ</code>
Router(config-if)# <code>ipx network B004</code></td>
<td>Configure routing protocols on the interface. You must have previously enabled these protocols as part of global configuration. In this example, AppleTalk and IPX are being configured on the interface.</td>
</tr>
<tr>
<td>7</td>
<td>Router(config-if)# <code>service-module t1 framing sf</code>
Router(config-if)# <code>service-module t1 linecode ami</code></td>
<td>Enter the framing type and linecode type. In this example, the framing type specified is <code>sf</code> (Superframe) and the linecode specified is <code>ami</code>.</td>
</tr>
<tr>
<td>8</td>
<td>Router(config-if)# <code>service-module t1 timeslots 1-20 speed 64</code></td>
<td>If you are using fractional T1 service, enter the time slot range and speed. In this example, the time slot range specified is from 1 to 20, and the speed specified is 64 kbps.</td>
</tr>
<tr>
<td>9</td>
<td>Router(config-if)# <code>exit</code></td>
<td>Exit back to global configuration mode. Repeat Step 4 through Step 8 if your router has more than one interface that you need to configure.</td>
</tr>
<tr>
<td>10</td>
<td>Router(config)# <code>Ctrl-z</code>
Router#</td>
<td>When you finish configuring interfaces, return to enable mode.</td>
</tr>
</tbody>
</table>
To configure the ATM interface with PVCs, follow this procedure:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
</tbody>
</table>
Router> enable
Password: password
Router# | Enter enable mode. Enter the password.
You have entered enable mode when the prompt changes to Router#. |
| **Step 2** |
Router# configure terminal
Enter configuration commands, one per line.
End with CNTL/Z.
Router(config)# | Enter global configuration mode. You have entered global configuration mode when the prompt changes to Router(config)#. |
| **Step 3** |
Router# ip routing
Router# applenew routing
Router# ipx routing | Enable routing protocols as required for your global configuration. This example uses IP routing, AppleTalk routing, and Internetwork Packet Exchange (IPX) routing. |
| **Step 4** |
Router(config)# interface atm 1/0
Router(config-if)# | Enter interface configuration mode. You have entered interface configuration mode when the prompt changes to Router(config-if)#. |
| **Step 5** |
Router(config-if)# ip address 192.168.74.3
255.255.255.0 | Assign an IP address and subnet mask to the interface. |
| **Step 6** |
Router(config-if)# applenew static
cable-range 3-3
Router(config-if)# applenew zone ZZEth
Router(config-if)# ipx network B005 | Configure routing protocols on the interface. You must have previously enabled these protocols as part of global configuration. In this example, AppleTalk and IPX are being configured on the interface. |
| **Step 7** |
Router(config-if)# pvc 0/100 | Configure a new ATM PVC. Enter interface-ATM-VC configuration mode. The PVC command has the format pvc [name] vpi/vci [ilmi|qsaal] You have entered interface-ATM-VC configuration mode when the prompt changes to Router(config-if-atm-vc). |
| **Step 8** |
Router(config-if-atm-vc)# protocol ip 200.200.200.2 broadcast | Map the PVC to an address. |
| **Step 9** |
Router(config-if-atm-vc)# exit | Exit back to global configuration mode.
Repeat Step 4 through Step 8 if your router has more than one interface that you need to configure. |
| **Step 10** |
Router(config)# Ctrl-z | When you finish configuring interfaces, return to enable mode. |
Configuring SVCs

To configure the ATM interface with switched virtual circuits (SVCs), follow this procedure:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router> <code>enable</code>
Password: password
Router#</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router# <code>configure terminal</code>
Enter configuration commands, one per line.
End with CNTL/Z.
Router(config)#</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router# <code>ip routing</code>
Router# <code>appletalk routing</code>
Router# <code>ipx routing</code></td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config)# <code>interface atm 1/0</code>
Router(config-if)#</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-if)# <code>pvc 0/5 qsaal</code></td>
</tr>
<tr>
<td>Step 6</td>
<td>Router(config-if-atm-vc)# <code>exit</code></td>
</tr>
<tr>
<td>Step 7</td>
<td>Router(config-if)# <code>pvc 0/6 ilmi</code></td>
</tr>
<tr>
<td>Step 8</td>
<td>Router(config-if-atm-vc)# <code>exit</code></td>
</tr>
<tr>
<td>Step 9</td>
<td>Router(config-if)# <code>ip address 192.168.74.3 255.255.255.0</code></td>
</tr>
<tr>
<td>Step 10</td>
<td>Router(config-if)# <code>appletalk static</code>
cable-range 3-3
Router(config-if)# <code>appletalk zone ZZEth</code>
Router(config-if)# <code>ipx network B005</code></td>
</tr>
<tr>
<td>Step 11</td>
<td>Router(config-if)# <code>svc nsap</code>
BC.CDEF.01.234567.890A.BCDE.F012.3456.7890.1234.12</td>
</tr>
<tr>
<td>Step 12</td>
<td>Router(config-if-atm-vc)# <code>protocol ip</code>
200.200.200.2 broadcast</td>
</tr>
<tr>
<td>Step 13</td>
<td>Router(config-if-atm-vc)# <code>exit</code></td>
</tr>
<tr>
<td>Step 14</td>
<td>Router(config)# <code>Ctrl-z</code></td>
</tr>
</tbody>
</table>
Configuring Inverse Multiplexing for ATM Interfaces

To configure an inverse multiplexing for ATM (IMA) interface, you must use configuration mode (manual configuration). In this mode, you enter Cisco IOS commands at the router prompt.

Note

Before you begin, disconnect all WAN cables from the router to keep it from trying to run the AutoInstall process. The router tries to run AutoInstall whenever you power it on, if there is a WAN connection on both ends and the router does not have a valid configuration file stored in nonvolatile random-access memory (NVRAM) (for instance, when you add a new interface). It can take several minutes for the router to determine that AutoInstall is not connected to a remote Transmission Control Protocol/Internet Protocol (TCP/IP) host.

This section describes basic configuration, including enabling the interface and specifying IP routing. Depending on your own requirements and the protocols you plan to route, you might also need to enter other configuration commands.

Note

The T1/E1 physical layer information is configured underneath an interface called interface atm.

The ATM interfaces (representing the individual T1/E1 interfaces) are automatically created depending on the configuration of the individual T1/E1 interfaces. You cannot directly add or delete these interfaces.

Each port can be used as an independent T1/E1 ATM port with all the properties and functionality of ATM interfaces. When the port becomes part of an IMA group, its ATM functionality ceases. At the same time, the IMA group can use ATM commands.

Note

On the 8-port E1 or T1 network module, only four ATM layer interfaces can be operational at the same time. All the interfaces can be activated (configured as “no shutdown”) but only four at a time can be operational and pass network traffic.

Configuring the ATM T1/E1 Interface

To configure the ATM interface, follow this procedure:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router> enable
 Password: password
 Router#</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router# configure terminal
 Enter configuration commands, one per line. End with CNTL/Z.
 Router(config)#</td>
</tr>
</tbody>
</table>
Configuring Inverse Multiplexing for ATM Interfaces

Step 3
- **Command:** `Router# ip routing`
 `Router# appletalk routing`
 `Router# ipx routing`
- **Purpose:** Enable routing protocols as required for your global configuration. This example uses IP routing, AppleTalk routing, and Internetwork Packet Exchange (IPX) routing.

Step 4
- **Command:** `Router(config)# interface atm 1/0`
 `Router(config-if)#`
- **Purpose:** Enter interface configuration mode. You have entered interface configuration mode when the prompt changes to `Router(config-if)#`.

Step 5
- **Command:** `Router(config-if)# ima clock line`
- **Purpose:** Enter the transmit clock mode for the selected ATM interface. The choices are `internal`, `line`, or `loop`. The default is `line`.

Step 6
- **Command:** `Router(config-if)# cablelength short 133`
- **Purpose:** For T1 interfaces only, specify the cable length (`short` or `long`) followed by the length in feet. You can view the acceptable cable lengths by including the `?` option after the `long` or `short` commands.

Step 7
- **Command:** `Router(config-if)# loopback local`
- **Purpose:** Specify the loopback type for this ATM interface by entering the `loopback` command followed by one of the following: `line`, `local`, `payload`, `remote`. You can view command descriptions by including the `?` option after the `loopback` command.

Step 8
- **Command:** `Router(config-if)# impedance 120-ohm`
- **Purpose:** For E1 interfaces only, specify the impedance value for this ATM interface by entering the `impedance` command followed by one of the following: `120-ohm`, `75-ohm`. You can view command descriptions by including the `?` option after the `impedance` command.
 - **Note:** Your response must match the physical cable connected to the ATM port: Enter `75 ohm` for coaxial unbalanced cable, or `120 ohm` for twisted-pair balanced cable. A response of `no impedance` selects the default of `120 ohm`.

Step 9
- **Command:** `Router(config-if)# no shutdown`
- **Purpose:** Enable the ATM interface by canceling the shutdown state.

Step 10
- **Command:** `Router(config-if)# Ctrl-z`
- **Purpose:** When you finish configuring interfaces, return to enable mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 3 | Router# ip routing
 Router# appletalk routing
 Router# ipx routing | Enable routing protocols as required for your global configuration. This example uses IP routing, AppleTalk routing, and Internetwork Packet Exchange (IPX) routing. |
| Step 4 | Router(config)# interface atm 1/0
 Router(config-if)# | Enter interface configuration mode. You have entered interface configuration mode when the prompt changes to `Router(config-if)#`. |
| Step 5 | Router(config-if)# ima clock line | Enter the transmit clock mode for the selected ATM interface. The choices are `internal`, `line`, or `loop`. The default is `line`. |
| Step 6 | Router(config-if)# cablelength short 133 | For T1 interfaces only, specify the cable length (`short` or `long`) followed by the length in feet. You can view the acceptable cable lengths by including the `?` option after the `long` or `short` commands. |
| Step 7 | Router(config-if)# loopback local | Specify the loopback type for this ATM interface by entering the `loopback` command followed by one of the following: `line`, `local`, `payload`, `remote`. You can view command descriptions by including the `?` option after the `loopback` command. |
| Step 8 | Router(config-if)# impedance 120-ohm | For E1 interfaces only, specify the impedance value for this ATM interface by entering the `impedance` command followed by one of the following: `120-ohm`, `75-ohm`. You can view command descriptions by including the `?` option after the `impedance` command.
 - **Note:** Your response must match the physical cable connected to the ATM port: Enter `75 ohm` for coaxial unbalanced cable, or `120 ohm` for twisted-pair balanced cable. A response of `no impedance` selects the default of `120 ohm`. |
| Step 9 | Router(config-if)# no shutdown | Enable the ATM interface by canceling the shutdown state. |
| Step 10 | Router(config-if)# Ctrl-z | When you finish configuring interfaces, return to enable mode. |
Configuring the IMA Interface

To configure the IMA interface, follow this procedure:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | Router> enable
Password: password
Router#
Enter enable mode. Enter the password.
You have entered enable mode when the prompt changes to Router#. |
| **Step 2** | Router# configure terminal
Enter configuration commands, one per line.
End with CNTL/Z.
Router(config)#
Enter global configuration mode. You have entered global configuration mode when the prompt changes to Router(config)#. |
| **Step 3** | Router# ip routing
Router# appletalk routing
Router# ipx routing
Enable routing protocols as required for your global configuration. This example uses IP routing, AppleTalk routing, and Internetwork Packet Exchange (IPX) routing. |
| **Step 4** | Router(config)# interface atm 1/0
Router(config-if)#
Enter interface configuration mode. You have entered interface configuration mode when the prompt changes to Router(config-if)#. |
| **Step 5** | Router(config-if)# ima-group 2
Assign the ATM interface to an IMA group (numbered from 0 to 3). The interface is now assigned to a group and ATM functionality is no longer available for the individual link. |
| **Step 6** | Router(config-if)# no shutdown
Enable the individual link by canceling the shutdown state.
Note The no shutdown command at this point activates the individual ATM link. If this command is omitted, the ATM link is added to the group but is “inhibited” at the IMA protocol level. This would prevent it from carrying network traffic.
Repeat Step 4 through Step 6 if your router has more than one interface that you need to configure. |
| **Step 7** | Router(config-if)# interface atm2/ima3
Create the IMA group interface.
Note The group interface is deleted with the no interface atm 2/ima 3 command. |
| **Step 8** | Router(config-if)# ima clock-mode common
Select the transmit clock mode for the selected IMA group. The choices are common or independent. |
| **Step 9** | Router(config-if)# ima differential-delay-maximum 75
Enter the maximum differential delay in milliseconds for the selected IMA group. |
| **Step 10** | Router(config-if)# ima active-links-minimum 2
Enter the minimum number of links that need to be operational for the selected IMA group. |
Configuring Analog Modem Interfaces

To configure an analog modem interface, use the configuration software provided with your router or modem network module, if any. Otherwise, use configuration mode (manual configuration). In this mode, you enter Cisco IOS commands at the router prompt.

Before you begin, disconnect all WAN cables from the router to keep it from trying to run the AutoInstall process. The router tries to run AutoInstall whenever you power it on if there is a WAN connection on both ends and the router does not have a valid configuration file stored in NVRAM (for instance, when you add a new interface). It can take several minutes for the router to determine that AutoInstall is not connected to a remote Transmission Control Protocol/Internet Protocol (TCP/IP) host.

This section describes basic configuration, including enabling the interface and specifying IP routing. Depending on your own requirements and the protocols you plan to route, you might also need to enter other configuration commands.
This section does not describe modem AT commands. For information about these commands, see the *AT Command Set and Register Summary for Analog Modem Network Modules* publication on Cisco.com, or Documentation CD-ROM.

Before you begin configuring the interfaces, make sure you:
- Connect a console to the router.
- Power on the router.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enter enable mode. Enter the password. You have entered enable mode when the prompt changes to <code>Router#</code>.</td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Password: password</td>
<td></td>
</tr>
<tr>
<td><code>Router#</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enter global configuration mode. You have entered global configuration mode when the prompt changes to <code>Router(config)#</code>.</td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Enter configuration commands, one per line. End with CNTL/Z.</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)#</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Enable routing protocols as required for your global configuration. This example uses IP routing, AppleTalk routing, and Internetwork Packet Exchange (IPX) routing.</td>
</tr>
<tr>
<td><code>Router(config)# ip routing</code></td>
<td></td>
</tr>
<tr>
<td><code>Router# appletalk routing</code></td>
<td></td>
</tr>
<tr>
<td><code>Router# ipx routing</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>You can configure asynchronous interfaces either individually or as a group. This command selects an individual interface to configure. The prompt changes to <code>Router(config-if)#</code>.</td>
</tr>
<tr>
<td><code>Router(config)# interface async 45</code></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)#</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Assign an IP address and subnet mask to the interface.</td>
</tr>
<tr>
<td><code>Router(config-if)# ip address 172.16.74.1 255.255.255.0</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Assign asynchronous interfaces to a group so you can configure them together.</td>
</tr>
<tr>
<td><code>Router(config)# interface group-async 1</code></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>Configure the asynchronous interface group as unnumbered and assign the IP address of the Ethernet interface to the group.</td>
</tr>
<tr>
<td><code>Router(config-if)# ip unnumbered ethernet 0</code></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>Define the pool of addresses at the global level.</td>
</tr>
<tr>
<td><code>Router(config-if)# peer default ip address pool default</code></td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>Define the group range of the interface. This command defines the range as all modems in slot 0.</td>
</tr>
<tr>
<td><code>Router(config-if)# group-range 1 16</code></td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>Configure routing protocols on the interface or group. You must have previously enabled these protocols as part of global configuration. In this example, AppleTalk and IPX are being configured on the interface.</td>
</tr>
<tr>
<td><code>Router(config-if)# appletalk static cable-range 3-3</code></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# appletalk zone ZZEth</code></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# ipx network B005</code></td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>Configure asynchronous parameters according to your needs.</td>
</tr>
<tr>
<td><code>Router(config-if)# async mode interactive</code></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# async default routing</code></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# encapsulation ppp</code></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# ppp authentication chap pap</code></td>
<td></td>
</tr>
</tbody>
</table>
Checking the Modem Configuration

After configuring the new modem interface, you can perform the following tests to verify that the new interface is operating correctly:

- To verify your group interface configuration, enter the `show interface async` command.
- To display a summary for all modem lines, enter the `show line` command.
- To display a summary for a single modem line, enter the `show line number` command.

If an interface is down and you configured it as up, or if the displays indicate that the hardware is not functioning properly, make sure that the new interface is properly connected and configured. To check other parts of the configuration, refer to “Saving Configuration Changes, page 3-65.”

Table 3-8 Modem Country Codes

<table>
<thead>
<tr>
<th>Country Codes</th>
<th>Country Codes</th>
<th>Country Codes</th>
<th>Country Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>argentina</td>
<td>Finland</td>
<td>japan</td>
<td>saudi-arabia</td>
</tr>
<tr>
<td>austria</td>
<td>France</td>
<td>korea</td>
<td>singapore</td>
</tr>
<tr>
<td>belgium</td>
<td>Greece</td>
<td>mexico</td>
<td>spain</td>
</tr>
<tr>
<td>brazil</td>
<td>hong-kong</td>
<td>netherlands</td>
<td>sweden</td>
</tr>
<tr>
<td>canada</td>
<td>hungary</td>
<td>new-zealand</td>
<td>switzerland</td>
</tr>
<tr>
<td>chile</td>
<td>india</td>
<td>norway</td>
<td>taiwan</td>
</tr>
<tr>
<td>china</td>
<td>indonesia</td>
<td>peru</td>
<td>thailand</td>
</tr>
<tr>
<td>colombia</td>
<td>ireland</td>
<td>philippines</td>
<td>united-kingdom</td>
</tr>
<tr>
<td>czech-republic</td>
<td>israel</td>
<td>poland</td>
<td>usa</td>
</tr>
<tr>
<td>Denmark</td>
<td>italy</td>
<td>portugal</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Wireless Multipoint Interfaces

The configuration process for the fixed wireless multipoint subscriber-unit is automated. For information about the following optional configuration tasks, see the *Multipoint Wireless Support for the Cisco 2600 and Cisco 3600 Series Routers* feature module:

- Specifying an alternative boot location
- Configuring cable loss
- Configuring RF loopback

Checking the Interface Configuration

After configuring the new interface, you can perform the following tests to verify that the new interface is operating correctly:

- Display the router hardware configuration with the `show version` command. Check that the list includes the new interface.
- Display all network modules and their interfaces with the `show controllers` command.
- Specify an interface with the `show interfaces [type slot/port]` command and verify that the first line of the display shows the interface with the correct slot and port number, and that the interface and line protocol are in the correct state, up or down.
- Display the protocols configured for the entire router and for individual interfaces with the `show protocols` command. If necessary, return to configuration mode to add or remove protocol routing on the router or its interfaces.
- Display the running configuration with the `show running-config` command, and the configuration stored in NVRAM using the `show startup-config` command.
- Use the `ping` command to send an echo request to a specified IP address. Each returned signal is displayed as an exclamation point (!) on the console; each signal that is not returned before the timeout is displayed as a period (.). A series of exclamation points (!!!!!) indicates a good connection; a series of periods (.....) or the message “timed out” or “failed” indicate that the connection failed.

If an interface is down and you configured it as up, or if the displays indicate that the hardware is not functioning properly, make sure that the new interface is properly connected and configured.

Configuring 1-Port ADSL WAN Interface Card

The ADSL WAN interface card is a 1-port WAN interface card (WIC) for the Cisco 2600 series and Cisco 3600 series routers. The card provides asymmetric digital subscriber line (ADSL) high-speed digital data transfer between a single customer premises equipment (CPE) subscriber and the central office.

The ADSL WIC is compatible with the Alcatel Digital Subscriber Loop Access Multiplexer (DSLAM) and the Cisco 6130, Cisco 6160, and Cisco 6260 DSLAMs with Flexi-line cards. It supports Asynchronous Transfer Mode (ATM) Adaptation Layer 2 (AAL2) and AAL5 for the Cisco 2600 series and Cisco 3600 series platforms for both voice and data service.

The general topology is shown in Figure 3-1.
ADSL is a last-mile access technology, which has an asymmetrical data rate running over a single copper wire pair.

Benefits

- Enables business class broadband service with voice integration, scalable performance, flexibility, and security.
- Aggregates both ADSL and other transport options into a single box.
- Provides both POTS and ADSL high-speed digital data transmissions between the customer premises equipment (CPE) and the central office (CO).
- Supports ITU G.992.1 (or G.DMT, which specifies full-rate ADSL).
- Supports and complies with ANSI T1.413 issue 2, and ITU G.992.1 (G.DMT for full-rate ADSL).
- Supports ATM AAL2 and AAL5 services on the Cisco 2600 series and Cisco 3600 series platforms.
- Supports applications (including VoATM voice), ATM class of service, variable bit rate-nonreal time [VBR-NRT], variable bit rate-real time [VBR-rt], and unspecified bit rate [UBR]) and up to 23 virtual circuits on a WIC.
- Provides ATM traffic management to enable service providers to manage their core ATM network infrastructures.

Restrictions

- The ADSL WAN interface card does not support dual latency. When the ADSL link is intended to support both voice and data traffic simultaneously, the link should be configured for either all fast-path data or all interleave data with an interleave depth of zero to insure that latency is minimized. In addition, the total supported data rate must be reduced to adjust for the reduced coding gain, which is usually present with high-latency traffic.
- The ADSL WAN interface card does not support available bit rate (ABR) class of service (CoS).
- For the Cisco 2600 series routers, the ADSL WAN interface card should be inserted only into on-board WIC slots or 2W network modules. This card does not function properly in older network modules.
- For the Cisco 3600 series routers, the ADSL WAN interface card should be inserted only into onboard WIC slots or 2W, 1FE2W, 2FE2W, or 1FE1R2W network modules. This card does not function properly in older network modules.
- When using AAL2, analog voice is not supported. Voice calls should come through a digital voice card, such as the NM-HDV.
- VoATM is supported in both AAL2 and AAL5 modes on the Cisco 2600 series and Cisco 3600 series routers.
VoATM AAL2 and AAL5 are supported only if voice and data use separate permanent virtual circuits (PVCs).

VoATM AAL2 supports digital voice (T1/E1) only, while VoATM AAL5 supports both analog and digital voice.

VoIP is not supported unless the ADSL WIC carries only voice traffic (with no data). The QoS features necessary for VoIP and data sharing the same PVC, or different PVCs on the same interface, are not supported yet. These features include LLQ, LFI, and tx-ring tuning.

Prerequisites

A 1-Port ADSL WIC must be installed in the router to match the DSL service to be configured.

Configuration Tasks

See the following sections for configuration tasks for this feature. Each task in the list is identified as either required or optional:

- Configuring the ADSL Port on the ADSL WAN Interface Card (required)
- Verifying ATM Configuration (optional)

Features used on the ADSL WAN interface card must also be configured on the DSLAM. See the documentation for the specific DSLAM for information about configuring features.

Configuring the ADSL Port on the ADSL WAN Interface Card

To configure an ADSL port on the ADSL WAN interface card, complete the following steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router> configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# interface atm slot/port</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# ip address IP-address</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# pvc [name] vpi/vci</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-if-vc)# protocol ip IP-address</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router(config-if-vc)# vbr-rt peak-rate average-rate burst</td>
</tr>
</tbody>
</table>

- peak rate—Peak information rate (PIR)
- average rate—Average information rate (AIR)
- burst—Burst size in cells
Chapter 3 Configuring with the Command-Line Interface

Configuring 1-Port ADSL WAN Interface Card

Step 7

Router(config-if-vc)#

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>encapsulation {aal2</td>
<td>aal5ciscopp</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>• aal2—AAL2</td>
<td></td>
</tr>
<tr>
<td>• aal5ciscopp—Cisco PPP over AAL5</td>
<td></td>
</tr>
<tr>
<td>• aal5mux—AAL5+MUX</td>
<td></td>
</tr>
<tr>
<td>• aal5nlpid—AAL5+NLPIID</td>
<td></td>
</tr>
<tr>
<td>• aal5snap—AAL5+LLC/SNAP (the default)</td>
<td></td>
</tr>
</tbody>
</table>

Step 8

Router(config-if-vc)# exit

Exit from interface-atm-vc configuration mode.

Step 9

Router(config-if)#

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>dsl operating-mode {ansi-dmt</td>
<td>auto</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>• ansi-dmt—ANSI full rate mode per T1.413 (ITU G.DMT Issue 1)</td>
<td></td>
</tr>
<tr>
<td>• auto—Automatic detection mode</td>
<td></td>
</tr>
<tr>
<td>• itu-dmt—ITU full rate mode (ITU G.DMT Issue 1)</td>
<td></td>
</tr>
<tr>
<td>• splitterless—G.lite mode per ITU G.992.2</td>
<td></td>
</tr>
</tbody>
</table>

⚠️ **Caution**

This command is for testing or lab environments only. Using a configuration other than the default configuration for the DSL operating mode can lead to unpredictable behavior on the ADSL line.

Step 10

Router(config-if)# no shutdown

Activate the ATM interface.

Step 11

Router(config-if)# exit

Exit from ATM interface configuration mode.

Step 12

Router(config)# exit

Exit from global configuration mode.

Step 13

Router# show interface atm 1/0

Verify the ATM interface configuration.

Verifying ATM Configuration

Use the following commands to verify configuration:

- To verify current configuration and to view the status for all controllers, use the `show running-config` command.
- To view ATM controller statistics, use the `show controllers atm slot/port` command.
- To verify the PVC status, use the `show atm vc` command. Make sure that active PVCs are up.
- To help identify ATM-related events as they are generated, use the `debug atm events` command.
- To indicate what interfaces are having trouble, use the `debug atm errors` command.
- To identify an entry for the ATM interface you configured and to show an entry for the ATM slot/port you configured, use the `show ip route` command.
- To display the configured list of ATM static maps to remote hosts on an ATM network, use the `show atm map` command.
• To view the status of ATM interface, use the `show interface atm slot/port` command. Make sure that ATM slot/port and line protocol is up, as shown in the following example:

```
Router# show interface atm 1/0
ATM 1/0 is up, line protocol is up
  Hardware is DSLSAR (with Alcatel ADSL Module)
  MTU 4470 bytes, sub MTU 4470, BW 800 Kbit, DLY 2560 usec,
   reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ATM, loopback not set
Keepalive not supported
Encapsulation(s): AAL5 AAL2, PVC mode
24 maximum active VCs, 256 VCs per VP, 2 current VCCs
VC idle disconnect time: 300 seconds
Last input never, output 00:00:01, output hang never
Last clearing of "show interface" counters 03:16:00
Queueing strategy: fifo
Output queue 0/40, 0 drops; input queue 0/75, 0 drops
30 second input rate 0 bits/sec, 0 packets/sec
30 second output rate 0 bits/sec, 0 packets/sec
2527 packets input, 57116 bytes, 0 no buffer
Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
10798 packets output, 892801 bytes, 0 underruns
0 output errors, 0 collisions, 0 interface resets
0 output buffer failures, 0 output buffers swapped out
```

```
Router# show atm vc

<table>
<thead>
<tr>
<th>VCD /</th>
<th>VPI</th>
<th>VCI</th>
<th>Type</th>
<th>Encaps</th>
<th>SC</th>
<th>Kbps</th>
<th>Kbps</th>
<th>Cells</th>
<th>Sts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/0.3</td>
<td>2</td>
<td>9</td>
<td>36</td>
<td>PVC</td>
<td>MUX</td>
<td>UBR</td>
<td>800</td>
<td>UP</td>
<td></td>
</tr>
<tr>
<td>1/0.2</td>
<td>1</td>
<td>9</td>
<td>37</td>
<td>PVC</td>
<td>SNAP</td>
<td>UBR</td>
<td>800</td>
<td>UP</td>
<td></td>
</tr>
</tbody>
</table>
```

```
Router# show controllers atm 1/0

Interface ATM1/0 is up
  Hardware is DSLSAR (with Alcatel ADSL Module)
IDB: 62586758 Instance:62588E054 reg_dsllsars:3C810000 wic_regs:3C810080
PHY Inst:625881490 Ser0Inst:62573074 Ser1Inst:6257CDB8 us_bwidth:800
Slot: 1
  Unit: 1
  Subunit: 0
  pkt Size:4496
VCPerVP:256
  max_vp: 256
  max_vc: 65536
  total vc: 2
rct_size:65536
  vpivcibit:16
  connTblVCI:8
  vpi_bits:8
vpvc_sel:3
  enabled: 0
  throttled:0

WIC Register Value Notes
---------------------- -------- ---------------
FPGA Dev ID (LB) 0x44 'D'
FPGA Dev ID (UB) 0x53 'S'
FPGA Revision 0x99
WIC Config Reg 0x45 WIC / VIC select = WIC;
CTRL addr bit 8 = 1;
OK LED on;
LOOPBACK LED off;
CD LED on;
WIC Config Reg2 0x07 Gen bus error on bad ADSL access
Int 0 Enable Reg 0x03 ADSL normal interrupt enabled
ADSL error interrupt enabled
```
Chapter 3 Configuring with the Command-Line Interface

Configuration Examples

Examples of the following configurations are described in Appendix A, “Configuration Examples,” on page A-1:

- VoATM over AAL2 on the ATM Interface Configuration Example, page A-12
- VoATM over AAL5 on the ATM Interface Configuration Example, page A-14

Configuring the NM-AIC-64, Contact Closure Network Module

The Alarm Interface Card Network Module (AICNM) is an optional card that expands network management capabilities for customer-defined alarms. The AIC has its own CPU that communicates with the router and external media through serial communication channels. The AIC reduces service provider and enterprise operating costs by providing a flexible, low-cost network solution for migrating existing data communications networks (DCNs) to IP-based DCNs. The AIC provides its users with a single “box” solution because it can be configured in the same router along with other operation, alarm, maintenance, and provisioning (OAMP) interfaces.

More than one AIC can be installed per router. For example, a Cisco 3662 can have up to five AICs, and its sixth NM slot can be used for router communication. The Cisco 3640 can have up to three AICs, with the fourth NM slot reserved for communication, and so forth.

The AIC provides a total of 64 alarm inputs. Eight of the 64 points are software configurable for measuring either analog inputs or discrete inputs. The remaining 56 points are fixed to measure discrete points only. The AIC also provides 16 control relay outputs.

The discrete alarm input can be activated through ground or negative battery input. The negative battery range is -36V to -72V. The analog alarm is software configurable for either DC voltage or current. It can measure voltage from -60 to 60V or current from 0 to 20mA, but the configurable range is 4 mA to 20mA. The standard 16 control relays can be configured to turn on or turn off an external device.

The AIC’s 64 input contact points can control and monitor network elements and other non-intelligent interfaces, permitting the detection and report of alarms such as the following:

- Network element alarm states
- Building security (door and window open and close)
- Fire and smoke indication
- Building environmental (temperature and humidity)
- Utility power readings

When an event occurs, such as a door alarm or an open gate, the AIC maps the simple discrete and analog alarms to preprogrammed intelligent messages and transports the messages to destinations in the IP network, typically to a Network Operations Center (NOC). These messages are generated either in Transaction Language 1 (TL1) or in Simple Network Management Protocol (SNMP), which are used by a NOC’s Operations Support System (OSS).

When the AIC is incorporated into the Cisco DCN solution platforms, all the AIC’s contact-closure alarms are routed and reported through the same network and systems as the intelligent network elements (NEs). This facilitates continued use of the existing OSS and its associated networks. A Cisco router with an AIC sends TL1 or SNMP messages to the OSS autonomously or in response to TL1 or SNMP commands from the OSS, as shown in Figure 3-2. TL1 supports two sessions, with the port numbers 5011 and 5012, respectively, and SNMP supports four sessions.
Serial Communication Channels

As illustrated in Figure 3-3, the AIC has two serial communications channels that provide different types of interfaces to Cisco IOS software:

- Serial data channel
- Asynchronous craft port

Figure 3-3 OS Boundary into the AIC
Serial Data Channel

The serial data channel supports all TCP/IP traffic to and from the AIC. This includes communication over IP with NOCs and data centers. The channel consists of one physical interface that provides support for the following applications:

- Telnet
- TL1
- TFTP
- SNMP

The Cisco IOS software assigns an IP address to the AIC for use by the serial data channel. To route traffic, the serial data channel uses IP over synchronous High-Level Data Link Control (HDLC). All IP packets coming to the Cisco router with a destination IP address that matches the AIC’s IP address are forwarded to the serial data channel using IP over HDLC.

Asynchronous Craft Port

The asynchronous craft port supports Telnet to the AIC’s port number. This Telnet method, called local-CLI, is useful for debugging when remote Telnet to the AIC’s IP address (remote-CLI) is not applicable. For more information, see the “Configuring the NOC IP Address” section on page 3-40.

The asynchronous craft port also supports an AIC boot sequence, similar to the ROM monitor in Cisco IOS software, which allows the user to recover from a corrupted software image or configuration. See the “Override” section on page 3-46.

Configuring the AIC

From a top-level view, AIC configuration involves assigning an IP address to the AIC using Cisco IOS commands and setting up alarm configurations with either TL1 or the AIC command-line interface (CLI). The flexible TL1 and AIC CLI permit a broad range of alarm configuration scenarios. The following are examples of alarm configurations that can be programmed with the AIC CLI:

Configuring a Discrete Alarm

```
enable
cfg terminal
alarm 1
description "west door"
normally closed
description normal "door closed"
description alarm "door open"
level 2
exit
```
Configuring an Analog Alarm as an Analog Monitoring Voltage

```plaintext
enable
config terminal
alarm 57
description "tank level"
description normal "full"
description low "low"
description low-low "empty"
analog voltage 2.5 30 60 60
exit
```

Configuring an Analog Alarm as a Discrete Monitoring Current

```plaintext
enable
config terminal
alarm 58
description "east door"
discrete current-loop 0.0 3.2 5.9
exit
```

Configuring an Analog Alarm as a Discrete Monitoring Voltage

```plaintext
enable
config terminal
alarm 58
description "backup battery"
discrete voltage 9.0 high
exit
```

Configuring an Analog Alarm to Act Like a Discrete Alarm (Minimal Configuration Method)

```plaintext
enable
config terminal
alarm 59
discrete
exit
```

Configuration Tasks

See the following sections for configuration tasks for the AIC feature. Each task in the list is identified as either required or optional:

- Configuring the AIC, page 3-38 (required)
 - Entering Alarm Configuration Mode and Configuring the AIC IP Address, page 3-38
 - Configuring the IP Route to the AIC, page 3-38
- Configuring the NOC IP Address, page 3-40 (optional)
- Configuring Alarms, page 3-41 (optional)
Configuring the AIC

Cisco IOS commands are used for configuring the AIC IP address and the IP routing to the AIC NM. After the IP address and the IP routing are set, alarm configurations can then be set up with either TL1 or the AIC command-line interface. See the “Configuring the NOC IP Address” section on page 3-40 or the “Configuring Alarms” section on page 3-41 for more information.

The following sections describe how to configure the AIC IP address and the IP Routing to the AIC NM.

Entering Alarm Configuration Mode and Configuring the AIC IP Address

Enter alarm configuration mode and configure the AIC IP address, beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Router# show run</td>
<td>Determines if the AIC is installed correctly in the router. If the AIC has been installed correctly, then the following appears: interface serialslot/port where the slot is the slot in which the AIC is inserted, and the port is 0.</td>
</tr>
<tr>
<td>2</td>
<td>Router# configure terminal</td>
<td>Starts the configuration session.</td>
</tr>
<tr>
<td>3</td>
<td>Router(config)# alarm-interface slot</td>
<td>Enters the AIC interface mode, specifying the slot number into which the AIC is installed.</td>
</tr>
<tr>
<td>4</td>
<td>Router(config-aic)# ip address ip-address mask</td>
<td>Enters the IP address of the AIC. Entering a mask is optional, because the IP address does not use a subnet address.</td>
</tr>
<tr>
<td>5</td>
<td>Router(config-aic)# reset</td>
<td>Resets the AIC. Changing the IP configuration may not take until the next time the card is started. The reset command restarts the card.</td>
</tr>
<tr>
<td>6</td>
<td>Router(config-aic)# exit</td>
<td>Exits the AIC interface mode.</td>
</tr>
</tbody>
</table>

Configuring the IP Route to the AIC

There are many ways to configure IP routing to the AIC. Below are two methods. The first method, shown in Table 3-10, uses an unnumbered IP address. It is used when an administrator wants to assign an IP address that is already known to the router, such as an address that is one of the addresses in the subnet of a FastEthernet IP address.

The second method, shown in Table 3-11, does not use an unnumbered IP address and is used when there is a subnet available to the serial interface and to the AIC. Usually this subnet is small with a subnet mask such as 255.255.255.252.

Configure IP routing to the AIC, beginning in global configuration mode:
Table 3-10 Configuring IP Routing to the AIC with an Unnumbered IP Address

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Step 1</td>
<td>Router(config)# ip route network-number network-mask {IP address</td>
</tr>
<tr>
<td>2</td>
<td>Step 2</td>
<td>Router(config)# interface serial slot/port Enter serial interface mode. Enter the slot in which the AIC is installed and port 0.</td>
</tr>
<tr>
<td>3</td>
<td>Step 3</td>
<td>Router(config-if)# ip unnumbered type interface-number Enable IP processing on the serial interface to the AIC without assigning an explicit IP address to the interface. The type and interface-number arguments indicate another interface on which the router has an assigned IP address. The other interface cannot be an unnumbered interface, because only an interface that has its own IP address can be used to “lend” its IP to the serial port. Enter, for example: Router(config-if)# ip unnumbered FastEthernet 0/0</td>
</tr>
<tr>
<td>4</td>
<td>Step 4</td>
<td>Router(config-if)# exit Exit serial interface mode.</td>
</tr>
</tbody>
</table>

Table 3-11 Configuring IP Routing to the AIC without an Unnumbered IP Address

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Step 1</td>
<td>Router(config)# interface serial slot/port Enter the serial interface mode. Enter the slot in which the AIC is installed and the port 0.</td>
</tr>
<tr>
<td>2</td>
<td>Step 2</td>
<td>Router(config-if)# ip address ip-address network-mask Specify the IP address and mask of the router’s serial interface to the AIC. For example: Router(config)# ip route 10.5.5.1 255.255.255.0</td>
</tr>
<tr>
<td>3</td>
<td>Step 3</td>
<td>Router(config-if)# exit Exits the serial interface mode.</td>
</tr>
</tbody>
</table>
Accessing the AIC

Remote-CLI and local-CLI are the two methods for accessing the AIC:

- Remote-CLI involves telneting to the IP address of the AIC. For example:

  ```
  telnet 10.5.5.2
  ```

- Local-CLI involves accessing the asynchronous craft port by telneting to the IP address of the router and the AIC’s TCP port number. For example:

  ```
  telnet 10.2.130.105 2001
  ```

 where 10.2.130.105 is the router’s IP address and 2001 is on slot 0 of the AIC.

 The AIC’s TCP port number depends on the slot number in which the AIC is installed. As shown in Table 3-12, the Cisco IOS software reserves the first line of each slot for the asynchronous craft port.

<table>
<thead>
<tr>
<th>Slot Number</th>
<th>Terminal Line Number for the AIC’s Asynchronous Craft Port</th>
<th>TCP Port Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2001</td>
</tr>
<tr>
<td>1</td>
<td>33</td>
<td>2033</td>
</tr>
<tr>
<td>2</td>
<td>65</td>
<td>2065</td>
</tr>
<tr>
<td>3</td>
<td>97</td>
<td>2097</td>
</tr>
<tr>
<td>4</td>
<td>129</td>
<td>2129</td>
</tr>
<tr>
<td>5</td>
<td>161</td>
<td>2161</td>
</tr>
<tr>
<td>6</td>
<td>193</td>
<td>2193</td>
</tr>
</tbody>
</table>

Configuring the NOC IP Address

Configure up to four NOC IP addresses to which the AIC will send SNMP messages, beginning in global configuration mode:

![Note](image)

The `aic` command-line prompt indicates that either TL1 or AIC CLI commands must be used.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>aic(config)# snmp</code></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>aic(config)# noc ip-address {number} ip-address</code></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>aic(config)# exit</code></td>
</tr>
</tbody>
</table>
Configuring Alarms

After the AIC and NOC IP addresses have been configured, you can configure alarms by programming the AIC’s discrete and analog contact points. These tasks can be performed on-site or by Telneting as described in the “Accessing the AIC” section on page 3-40.

Alarms are configured using either TL1 or AIC CLI. Information about TL1 commands can be found in the Telcordia Technology (formerly Bellcore) document *Network Maintenance: Network Element and Transport Surveillance Messages*, GR-833-CORE, Issue 5, November 1996. For a reference of security-related commands (ACT-USER and CANC-USER) refer to Telcordia Technology’s *Operations Applications Messages-Network Element and Network System Security Admin Messages*, TR-NWT-000835, Issue 2, January 1993. The following TL1 messages and commands are supported by the AIC:

- **TL1 Messages**
 - REPT-ALM-ENV
 - REPT-ALM-EQPT
 - REPT-EVT

- **TL1 Commands**
 - ACT-USER
 - CANC-USER
 - OPR-EXT-CONT
 - RLS-EXT-CONT
 - RTRV-ALM
 - RTRV-ALM-ENV
 - RTRV-ATTR
 - RTRV-ATTR-CONT
 - RTRV-ATTR-ENV
 - RTRV-ATTR-LOG
 - RTRV-HDR
 - RTRV-LOG
 - RTRV-EXT-CONT
 - SET-ATTR-ENV
 - SET-ATTR-EQPT
 - SET-ATTR-LOG
 - STA-LOG
 - STP-LOG

Programming the Analog Contact Points

Alarm points 57 through 64 are analog inputs, which are configurable as discrete inputs. When configured as an analog input, the user must select whether the point is monitoring voltage or current. The user must also define five ranges by selecting four values for a point monitoring voltage or six ranges for a point monitoring current. For current-monitoring points, the lowest and highest values define the
range of possible values. (Valid values are from –9999999.9 to 9999999.9.) For voltage-monitoring alarms, the range of possible values is always –60V to 60V. The other four values must be within the defined range, and they partition the range into low-low, low, high, and high-high ranges. Except for the normal range, each range is associated with an alarm condition.

Analog points have four unique alarm states. Each alarm state has its own alarm description string. Only one alarm state per point may be active at any given time. In other words, when a threshold is crossed, the previous alarm state is cleared and the new alarm state is active.

When an analog input is configured as discrete, the user must select whether the point is monitoring voltage or current. Similar to the analog configuration, the user must also select the range of acceptable values for a current-monitoring alarm. (Valid values are from –9999999.9 to 9999999.9.) The voltage range is always –60V to 60V. The user must define the threshold that will cause the alarm condition and whether the normal state of the alarm is the higher or lower range.

Note

For the current analog point, the lower boundary is 4 mA and the upper boundary is 20 mA. For example,

```
analog current-loop 10 13 16 17 20 26
```

has 16 units between 10 and 26. If the AIC measures 4 mA, then it will factor that the point is registering at the lower boundary. The AIC will interpret 13 as 7 mA, 16 as 10 mA, 17 as 11 mA, 20 as 14 mA, and 26 as the upper boundary, which is 20 mA.

Following are examples:

Point 57 is monitoring the ambient temperature of a building and the sensor range is –20 to 75 degrees Celsius. Below 0 degrees is a critical alarm, 0 to 10 degrees is a major alarm, 10 to 35 degrees is the normal range, 35 to 45 degrees is a minor alarm, and above 45 degrees is a major alarm. The configuration for this point follows:

```
alarm 57
analog current-loop –20 0 10 35 45 75
level low-low 1
level low 2
level high 3
level high-high 2
```

Point 58 is monitoring a fuel tank level with a resistive sensor. Below –46 volts is a critical alarm, –46 to –40 volts is a minor alarm, and above –40 volts is the normal range. This is a unidirectional alarm, so the high thresholds are set equal to the high bound (since this threshold cannot be crossed). The configuration for this point follows:

```
alarm 58
analog voltage –46 –40 60 60
level low-low 1
level low 3
```

Point 59 is monitoring a battery bank. Below –42 volts is a critical alarm and above –42 volts is the normal range. The configuration for this point follows:

```
alarm 59
discrete voltage –42 high
level 1
```
Programming the Discrete Contact Points

The discrete alarms do not require as much programming as the analog alarms. The AIC CLI commands available are the following:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>Reversal option</td>
</tr>
<tr>
<td>exit</td>
<td>Exits current mode</td>
</tr>
<tr>
<td>description</td>
<td>Sets the description. If no is set, then the description is not required.</td>
</tr>
<tr>
<td>normally</td>
<td>Sets the alarm’s normal state to closed. If the no option is used, the normal state is set to open. This command applies only to points 1 - 56.</td>
</tr>
<tr>
<td>level</td>
<td>Sets the alarm’s level to the specified level.</td>
</tr>
</tbody>
</table>

Verifying the IP Address

To verify that the correct AIC IP address and IP route was entered, use the show run command. Below are samples of before-configuration and after-configuration show run command outputs:

```
interface Serial5/0
  ip unnumbered FastEthernet0/0
  !
  ip route 10.2.130.102 255.255.255.255 Serial5/0
  !
  alarm-interface 5
  ip address 10.2.130.102

*******Before Configuration show run Output*******
version 12.1
no service single-slot-reload-enable
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname uut2-3660
!
logging rate-limit console 10 except errors
!
ip subnet-zero
!
!
no ip finger
no ip domain-lookup
!
call rsvp-sync
cns event-service server
!
!
interface FastEthernet0/0
  ip address 10.2.130.2 255.255.0.0
duplex auto
speed auto
no cdp enable
```
interface Serial5/0
 no ip address
!
ip kerberos source-interface any
ip classless
ip route 0.0.0.0 0.0.0.0 10.2.0.1
ip http server
!
no cdp run
!
!
dial-peer cor custom
!
line con 0
 exec-timeout 0 0
 transport input none
line 161
 no exec
 transport preferred none
 transport input telnet
 transport output none
 stopbits 1
 line aux 0
 line vty 0 4
 password lab
 login
!
end

*****After Configuration show run Output******

version 12.1
no service single-slot-reload-enable
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname uut2-3660
!
logging rate-limit console 10 except errors
no logging console
!
ip subnet-zero
!
!
no ip finger
no ip domain-lookup
!
call rsvp-sync
cns event-service server
!
interface FastEthernet0/0
 ip address 10.2.130.2 255.255.0.0
duplex auto
 speed auto
 no cdp enable
!
interface Serial5/0
 ip unnumbered FastEthernet0/0
!
ip kerberos source-interface any
ip classless
ip route 0.0.0.0 0.0.0.0 10.2.0.1
ip route 10.2.130.102 255.255.255.255 Serial5/0
ip http server
!
no cdp run
!
!
alarm-interface 5
 ip address 10.2.130.102
!
dial-peer cor custom
!
!
line con 0
 exec-timeout 0 0
 transport input none
line 161
 no exec
 transport preferred none
 transport input telnet
 transport output none
 stopbits 1
line aux 0
line vty 0 4
 password lab
 login
!
end

Troubleshooting Tips

If no alarm messages are sent for an unusually long period of time, ping the AIC address to check for connectivity.

Monitoring and Maintaining the NM-AIC-64 Contact Closure Network Module

The AIC provides a TFTP client for software upgrade and configuration image transfer. The methods for both actions, as well as how to override the existing software or configuration, are described below.

Software Upgrade

When upgrading software, the AIC must be reset to run the new software. The AIC provides a protected (login required) command for software download. When the user invokes this command with the TFTP server address as a parameter, the AIC connects to the IP address and, via TFTP, retrieves the software image file. After verifying that the software has been transferred successfully, the AIC replaces its running software with the newly downloaded software.

In the case of incompatible versions of Cisco IOS and AIC software, the Cisco IOS software recognizes the difference and displays this information to the user. The user makes the decision whether to upgrade or downgrade either the Cisco IOS or AIC software or to take no corrective action.
Configuration Backup

The AIC CLI provides commands for storing and restoring configurations. Users can transfer the current configuration of the AIC to or from the TFTP server whose address is given as a parameter to the `get config` command. When a configuration file is transferred from the server to the AIC, the AIC takes on the new configuration.

The configuration is stored as a list of commands (script) that can be applied to the CLI of an AIC for configuration.

Two other useful commands are the `get image` and `put config` commands. Use the `get image` command to get a new image, and the `put config` command to back up the configuration to the TFTP server.

Backup is not automatic, but the AIC reminds the user, on logout, to back up the configuration.

Override

In the case that bad software is resident on the AIC or that the configured administrator password is lost, the AIC provides a method for recovering the card. Upon booting, the AIC begins a countdown, visible at the AIC local CLI (Craft Port). If an ASCII character is received on that local CLI channel (DSCC4 channel 2) during this countdown, the AIC enters a mode in which a limited CLI is available. At this limited CLI, available over the Craft Port only, no login is necessary. The user may enter commands for software upgrade and configuration transfer. The new configuration takes effect upon a reset of the AIC card.

After interrupting the countdown, the user will see an AIC Boot[: prompt. From this prompt, the user can enter “?” to see the available commands, “g” to get a new application image, or “d” to delete the current configuration and return to the defaults. (All commands require a carriage return.) In the case of the `get` command, the user will be prompted for the name of the file, the IP address of the TFTP server, and a confirmation.

Configuration Examples

The following configuration examples are shown in Appendix A, “Configuration Examples”:

- AIC IP Address Configuration Example, page A-16
- IP Route to the AIC Configuration Examples, page A-20
 - With an Unnumbered IP Address, page A-20
 - Without an Unnumbered IP Address, page A-21

Configuring the 1-Port HSSI Network Module

The Cisco 3600 series 1-port high-speed serial interface (HSSI) network module provides full-duplex connectivity at Synchronous Optical Network (SONET) OC-1/STS-1 (51.840 Mhz), T3 (44.736 MHz), and E3 (34.368 MHz) rates in conformance with the EIA/TIA-612 and EIA/TIA-613 specifications. The actual rate of the interface depends on the external data service unit (DSU) and the type of service to which it is connected. This 1-port HSSI network module can reach speeds of up to 52 Mbps in unidirectional traffic with 1,548-byte packets and 4,250 packets per second. Asynchronous Transfer Mode (ATM), High-Level Data Link Control (HDLC), Point-to-Point Protocol (PPP), Frame Relay, and Switched Multi-Megabit Data Service (SMDS) WAN services are all fully supported.
The 1-port HSSI network module provides the following benefits:

- Supports speeds up to 52 Mbps
- Supports a range of connectivity options: ATM, Frame Relay, PPP, and SMDS
- Supports EIA/TIA-612 and EIA/TIA-613 specifications at T3, E3, SONET OC1/STS-1 and NXT1 subrates

Configuration Tasks

Perform the tasks in the following sections to configure a HSSI interface. The first task is required; the remaining tasks are optional.

- Specify a HSSI, page 3-47
- Specify HSSI Encapsulation, page 3-47
- Invoke ATM on a HSSI Line, page 3-48
- Convert HSSI to Clock Master, page 3-48
- Disable Fair Queueing, page 3-48

Specify a HSSI

To specify a HSSI and enter interface configuration mode, perform the following tasks in global configuration mode:

<table>
<thead>
<tr>
<th>Task</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin interface configuration.</td>
<td><code>interface hssi slot/port</code></td>
</tr>
</tbody>
</table>

Specify HSSI Encapsulation

The HSSI supports the serial encapsulation methods, except for X.25-based encapsulations. The default method is HDLC. You can define the encapsulation method by performing the following task in interface configuration mode:

<table>
<thead>
<tr>
<th>Task</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configure HSSI encapsulation.</td>
<td>`encapsulation {atm-dxi</td>
</tr>
</tbody>
</table>

For information about PPP, see the “Configure SLIP and PPP” chapter of the Cisco IOS Release 11.3 *Access Services Configuration Guide* and the “Configure PPP for Wide-Area Networking” chapter of the Cisco IOS Release 11.3 *Wide-Area Networking Configuration Guide*.
Invoke ATM on a HSSI Line

If you have an ATM DSU, you can invoke ATM over a HSSI line by mapping an ATM virtual path identifier (VPI) and virtual channel identifier (VCI) to a DXI frame address. ATM-DXI encapsulation defines a data exchange interface that allows a DTE (such as a router) and a DCE (such as an ATM DSU) to cooperate to provide a User-Network Interface (UNI) for ATM networks.

To invoke ATM over a serial line, perform the following tasks in interface configuration mode:

<table>
<thead>
<tr>
<th>Task</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify the encapsulation method.</td>
<td>encapsulation atm-dxi</td>
</tr>
<tr>
<td>Map a given VPI and VCI to a DXI frame address.</td>
<td>dxi map protocol address vpi vci [broadcast]</td>
</tr>
</tbody>
</table>

Convert HSSI to Clock Master

You can convert the HSSI interface into a 45-MHz clock master by performing the following task in interface configuration mode:

<table>
<thead>
<tr>
<th>Task</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convert the HSSI interface into a 51.84-MHz clock master.</td>
<td>hssi internal-clock</td>
</tr>
</tbody>
</table>

Disable Fair Queueing

Disabling fair queuing will dramatically improve fast switching rates over the HSSI. To disable fair queuing, perform the following task in interface configuration mode:

<table>
<thead>
<tr>
<th>Task</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disable fair queueing.</td>
<td>no fair-queue</td>
</tr>
</tbody>
</table>

For more information about configuring HSSI interfaces, refer to the “Configuring Serial Interfaces” chapter in the Cisco IOS Release 11.3 Configuration Fundamentals Configuration Guide.

Configuration Examples

The following example shows how to configure a 1-port HSSI network module on a Cisco 3600 series router. Both sides of the network connection need to be configured:

```
interface hssi 0/0
 ip address 10.1.1.1 255.255.255.0
 hssi internal-clock
 no fair-queue
 no shutdown

interface hssi 1/0
 ip address 10.1.1.2 255.255.255.0
 hssi internal-clock
 no fair-queue
 no shutdown
```
In this example:

- The `interface hssi` command specifies a HSSI interface and changes the configuration mode from global to interface.
- The `ip address` command assigns an IP address to this interface.
- The `hssi internal-clock` command sets the HSSI clock source.
- The `no fair-queue` command disables fair queuing, which is enabled by default. This optimizes HSSI performance.
- The `no shutdown` command enables the port.

Configuring the Compression Network Module for the Cisco 3600 Series Routers

Cisco 3640 and Cisco 3620 routers now support a compression port module that provides high-performance, hardware-based data compression using simultaneous Stacker compression algorithms. Independent full-duplex compression and decompression capabilities are used on point-to-point (PPP) encapsulated packets.

A router’s central processing unit is generally reserved for tasks such as creating and maintaining routing tables, not performing compression duties. When a hardware compression port module is used in a router, all compression activity is offloaded from the router’s central processing unit. This kind of hardware configuration is needed for routers that require B-channel compression for multiple WAN connections, such as two ISDN PRI interfaces carrying 46 B channels. Signaling over the D channel is not compressed. One compression port module supports up to 128 WAN interfaces.

WAN or serial connections have limited bandwidth and greatly benefit from compressed data. For example, a hardware compression card that achieves 2:1 compression can compress 500 bytes of data down to 250 bytes. Transmission time is reduced by 50 percent. A line that transmits at 56 kbps without compress transmits at 112 kbps with compression. An achieved compression ratio or rate is dependent on the type of file being compressed. Graphics files, sound files, and text files all have different compression requirements and results.

A hardware card can compress and decompress outgoing and incoming data. For negotiated compression configured between two routers, the incoming compressed data sent by the remote router is decompressed by the receiving or local compression card.

Configuration Task

You can configure point-to-point compression on interfaces that use PPP encapsulation. Compression reduces the size of a PPP frame via lossless data compression. PPP encapsulations support Stacker and Predictor compression algorithms, but the compression port module installed in Cisco 3600 series routers support only Stacker compression over PPP encapsulations.

If the majority of your traffic is already compressed files, do not use compression. A hardware compression card should be used if the router’s main processor CPU load exceeds 40 percent. To display the CPU load, use the `show process cpu` EXEC command.
To configure compression over PPP, perform the following tasks in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 interface serial number</td>
<td>Specify a serial interface.</td>
</tr>
<tr>
<td>Step 2 encapsulate ppp</td>
<td>Enable encapsulation of a single protocol on the serial line.</td>
</tr>
<tr>
<td>Step 3 compress stac</td>
<td>Enable compression on a specified WAN interface.</td>
</tr>
</tbody>
</table>

Configuration Example

The following example enables hardware compression and PPP encapsulation on serial interface 3/1. Although the Serial interface in slot 3/1 is configured with the `compress stac` command, the actual data compression takes place in the hardware compression card inserted in a different slot.

```
Router(config)# interface serial 3/1
Router(config-if)# encapsulate ppp
Router(config-if)# compress stac
Router(config-if)# exit
Router(config)#
```

Configuring the Digital Modem Network Module for the Cisco 3640 Router

The Digital Modem Network Module for the Cisco 3640 is a high-density digital network module containing 6, 12, 18, 24, or 30 digital (MICA) modems. These modems provide a direct digital connection to an Integrated Services Digital Network (ISDN) Primary Rate Interface (PRI) channel. This digital modem network module allows the access server to support a mix of both digital data calls (ISDN) and analog modem calls over a single digital network interface.

Depending on the modem license you purchase with your Cisco 3640, the modems on the Digital Modem Network Module are either manageable or not manageable by Cisco IOS software commands. If the license you purchase includes this modem management capability, you can use the modem management commands to gather call and performance statistics at any time, even if there is an active call on the modem.

The Digital Modem Network Module for the Cisco 3640 provides the following benefits:

- Enables you, as the Enterprise customer, to support a mix of digital (ISDN) and POTS analog modem calls over a single digital network interface.
- Modem management commands enable you to gather call and performance statistics.
- Supports 56 kbps modem connections via the K56 Flex and V.90 standards when the portware for these standards becomes available.
Prerequisites

Before you can configure a modem interface, complete the following prerequisite tasks:

- Install a PRI network module and another module (such as Ethernet) to provide connectivity to the LAN. Digital modem network modules do not provide physical network interfaces of their own, but instead handle analog calls passing through the PRI network module. The PRI module is capable of concurrently handling digital ISDN data and remote voice-channel (analog) modem connections. The digital modem module provides a pool of available modems that can be used for both incoming and outgoing calls.

For information on how to correctly install a PRI network module, refer to the 1-Port and 2-Port ISDN-PRI Network Module Configuration Note. For information on how to install an Ethernet module, refer to the 1-Port Ethernet Network Module Configuration Note or the 4-Port Ethernet Network Module Configuration Note. For other modules, refer to the specific configuration notes pertaining to them.

- The PRI module must be hardware revision -03; earlier revisions are incompatible with digital modem modules. For more information, refer to the “Software and Hardware Requirements” section in the Digital Modem Network Module Configuration Notes.

- Install the Digital Modem Network Module in a chassis slot. For information on how to correctly install this network module, refer to the “Installing a Digital Modem Network Module in a Chassis Slot” section in the Digital Modem Network Module Configuration Note.

- Complete basic device configuration, including host name, username, protocol, and security configuration.

- Make sure that you have the following information:
 - ISDN PRI Switch type
 - T1 (or E1) information, such as line code and framing type
 - Channel-group information and time-slot mapping

Configuration Tasks

Complete the following tasks to configure the digital modem module interfaces:

- Configure the E1/T1 Network Module for ISDN PRI, page 3-52
- Configure the ISDN D-Channel Serial Interfaces, page 3-53
- Configure the Loopback Interface, page 3-55
- Configure the LAN Interface, page 3-55
- Create the Group Asynchronous Interface, page 3-55
- Configure the ISDN Dialer Interface, page 3-56
- Configure the Default IP Pool Information, page 3-57
- Configure Modem Lines for Dial-In and Dial-Out, page 3-57

These tasks are described in the following sections.
Configure the E1/T1 Network Module for ISDN PRI

The first step in configuring a digital modem interface is to configure ISDN PRI on either a channelized T1 or E1 controller, depending on the ISDN service in your area. The ISDN PRI network modules can have either one or two ports; if the ISDN PRI module installed in your device has two ports, you need to apply the following procedure to both ports.

Configure Channelized E1 ISDN PRI

To configure ISDN PRI on a channelized E1 controller, perform the following tasks, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>isdn switch-type switch type</td>
<td>Select a service provider switch type that accommodates PRI. Table 3-12 shows a list of supported switch types.</td>
</tr>
<tr>
<td>controller el slot/unit</td>
<td>Specify a controller type and define its location in the Cisco 3640.</td>
</tr>
<tr>
<td>framing crc4</td>
<td>Define the framing characteristics as cyclic redundancy check 4 (CRC4).</td>
</tr>
<tr>
<td>linecode hdb3</td>
<td>Define the line code as high-density bipolar 3 (HDB3).</td>
</tr>
<tr>
<td>pri-group [timeslots range]</td>
<td>Configure ISDN PRI. This command specifies the time slots on the T1 line to be allocated to PRI service.</td>
</tr>
</tbody>
</table>

The values used in this procedure for the framing and linecode commands are examples only. Use the framing type and line encoding specified by your E1 service provider.

<table>
<thead>
<tr>
<th>Country</th>
<th>ISDN Switch Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>primary-ts01</td>
</tr>
<tr>
<td>Europe</td>
<td>primary-net5</td>
</tr>
<tr>
<td>Japan</td>
<td>primary-ntt</td>
</tr>
<tr>
<td>North America</td>
<td>primary-4ess</td>
</tr>
<tr>
<td></td>
<td>primary-5ess</td>
</tr>
<tr>
<td></td>
<td>primary-dms100</td>
</tr>
</tbody>
</table>

For more information about configuring ISDN PRI on a channelized E1 controller, refer to the “Configure ISDN PRI” section of the Cisco IOS Release 11.3 Dial Solutions Configuration Guide.
Configure Channelized T1 ISDN PRI

To configure ISDN PRI on a channelized T1 controller, perform the following tasks, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>isdn switch-type switch type</td>
<td>Select a service provider switch type that accommodates PRI. Table 3-12 shows a list of supported switch types.</td>
</tr>
<tr>
<td>controller t1 slot/unit</td>
<td>Specify a controller type and define its location in the Cisco 3640.</td>
</tr>
<tr>
<td>clock source line</td>
<td>Specify the clock source for the selected module.</td>
</tr>
<tr>
<td>framing esf</td>
<td>Define the framing characteristics as extended superframe format (ESF).</td>
</tr>
<tr>
<td>linecode b8zs</td>
<td>Define the line code as binary 8 zero substitution (B8ZS)</td>
</tr>
<tr>
<td>pri-group [timeslots range]</td>
<td>Configure ISDN PRI. This command specifies the time slots on the T1 line to be allocated to PRI service.</td>
</tr>
</tbody>
</table>

Note
The values used in this procedure for the framing and linecode commands are examples only. Use the framing type and line encoding specified by your E1 service provider.

For more information about configuring ISDN PRI on a channelized T1 controller, refer to the “Configure ISDN PRI” section of the Cisco IOS Release 11.3 Dial Solutions Configuration Guide.

Note
Any router configured for ISDN support must be connected to the same switch type on all of its ISDN interfaces.

Configure the ISDN D-Channel Serial Interfaces

When you configure ISDN PRI on the channelized E1 or channelized T1 controller, you create a corresponding D-channel serial interface used to carry signaling messages for that PRI group. For E1 serial interfaces, slot/port 0:15 is the D-channel. For T1 modules, serial interface 0:23 is the D-channel. You must configure this signaling interface to receive incoming and modem calls.

As mentioned, the PRI Network Module for the Cisco 3600 series can have either one or two ports. Because of this, you might have multiple D-channels to configure.
Configure the ISDN D-Channel Serial Interface for E1 Modules

To configure the ISDN D-channel serial interface for E1 modules, perform the following tasks, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface Serial slot/port:15</td>
<td>Specify the D-channel of the first PRI line and switch to the interface configuration mode.</td>
</tr>
<tr>
<td>no ip address</td>
<td>Disable IP processing on this interface.</td>
</tr>
<tr>
<td>encapsulation ppp</td>
<td>Set the Point-to-Point Protocol (PPP) as the encapsulation method used by this interface.</td>
</tr>
<tr>
<td>isdn incoming-voice modem</td>
<td>Configure all incoming voice calls to go to the modems.</td>
</tr>
<tr>
<td>dialer rotary-group number</td>
<td>Create a rotary dialer group.</td>
</tr>
<tr>
<td>dialer-group number</td>
<td>Assign the D-channel interface(s) to the defined rotary dialer group.</td>
</tr>
<tr>
<td>no fair-queue</td>
<td>Disable fair weighted queuing for this interface.</td>
</tr>
<tr>
<td>no cdp enable</td>
<td>Disable Cisco Discovery Protocol (CDP) on this interface.</td>
</tr>
</tbody>
</table>

For more information about configuring E1 ISDN D-channel serial interfaces, refer to the “Configure ISDN PRI” section in the Cisco IOS Release 11.3 Dial Solutions Configuration Guide.

Configure the ISDN D-Channel Serial Interface for T1 Modules

To configure the ISDN D-channel serial interface for T1 modules, perform the following tasks, beginning in the global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface Serial slot/port:23</td>
<td>Specify the D-channel of the first PRI line and switch to the interface configuration mode.</td>
</tr>
<tr>
<td>no ip address</td>
<td>Disable IP processing on this interface.</td>
</tr>
<tr>
<td>encapsulation ppp</td>
<td>Set the Point-to-Point Protocol (PPP) as the encapsulation method used by this interface.</td>
</tr>
<tr>
<td>isdn incoming-voice modem</td>
<td>Configure all incoming voice calls to go to the modems.</td>
</tr>
<tr>
<td>dialer rotary-group number</td>
<td>Create a rotary dialer group.</td>
</tr>
<tr>
<td>dialer-group number</td>
<td>Assign the D-channel interface(s) to the defined rotary dialer group.</td>
</tr>
<tr>
<td>no fair-queue</td>
<td>Disable fair weighted queuing for this interface.</td>
</tr>
<tr>
<td>no cdp enable</td>
<td>Disable CDP on this interface.</td>
</tr>
</tbody>
</table>
For more information about configuring T1 ISDN D-channel serial interfaces, refer to the “Configure ISDN PRI” section in the Cisco IOS Release 11.3 Dial Solutions Configuration Guide.

Configure the Loopback Interface

The loopback 0 interface is the interface dial-in users access when dialing in to the network. Usually, all dial-in users are assigned to a single IP subnet. This subnet can be identified with the loopback 0 interface, a logical interface whose network number can be borrowed by each asynchronous dial-in interface.

To configure the loopback 0 interface, perform the following tasks, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>interface Loopback number</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip address ip-address ip-address mask</td>
</tr>
</tbody>
</table>

Configure the LAN Interface

The next task you need to perform is to configure the LAN interfaces on your Cisco 3600 series router. For the purpose of this procedure, we are showing how to configure an Ethernet interface. If the interface you are configuring is different, refer to the “Configuring LAN Interfaces” chapter in the Cisco IOS Release 11.3 Configuration Fundamentals Configuration Guide or to the configuration notes that shipped with your module.

To configure an Ethernet interface, perform the following tasks, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>interface ethernet slot/port</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip address ip-address ip-address mask</td>
</tr>
<tr>
<td>Step 3</td>
<td>no shutdown</td>
</tr>
</tbody>
</table>

Note
The Ethernet and loopback interfaces should be on different subnets.

Create the Group Asynchronous Interface

A group asynchronous interface is a parent interface that applies protocol characteristics to specified, associated asynchronous interfaces. After you create a group asynchronous interface, all associated asynchronous interfaces (called members) can be configured through it. Group asynchronous interfaces can speed configuration time and help you maintain interface configuration consistency.
To configure a group asynchronous interface, perform the following tasks, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>interface group-async number</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip unnumbered Loopback number</td>
</tr>
<tr>
<td>Step 3</td>
<td>encapsulation ppp</td>
</tr>
<tr>
<td>Step 4</td>
<td>async mode interactive</td>
</tr>
<tr>
<td>Step 5</td>
<td>peer default ip address pool name</td>
</tr>
<tr>
<td>Step 6</td>
<td>no cdp enable</td>
</tr>
<tr>
<td>Step 7</td>
<td>group-range start-range end-range</td>
</tr>
</tbody>
</table>

For more information about group asynchronous interfaces, refer to the “Asynchronous Configuration Task List” section of the Cisco IOS Release 11.3 Dial Solutions Configuration Guide.

Configure the ISDN Dialer Interface

The ISDN dialer interface is the parent interface that holds the central protocol characteristics for the ISDN D channels that are part of the dialer-rotary group. To configure the ISDN dialer interface, perform the following tasks, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>interface Dialer number</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip unnumbered Loopback number</td>
</tr>
<tr>
<td>Step 3</td>
<td>no ip mroute-cache</td>
</tr>
<tr>
<td>Step 4</td>
<td>encapsulation ppp</td>
</tr>
<tr>
<td>Step 5</td>
<td>peer default ip address pool name</td>
</tr>
</tbody>
</table>
Configuring the Digital Modem Network Module for the Cisco 3640 Router

Configure the Default IP Pool Information

You need to set a range of IP addresses in the default IP pool. These IP addresses are used for dial-in users. To set the range of addresses, perform the following task in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>ip pool local default low-ip-address [high-ip-address]</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip default gateway number</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip classless</td>
</tr>
</tbody>
</table>

Configure Modem Lines for Dial-In and Dial-Out

The final task in configuring the MICA digital modem network modules is to configure the modem lines for dial-in and dial-out.
Configure the Modem for Dial-In

To configure the modem lines for dial-in, perform the following tasks, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 line start-range end-range</td>
<td>Select the modem lines for dial-in and switch to the line configuration mode.</td>
</tr>
<tr>
<td>Step 2 autoselect during-login</td>
<td>Set the router to display a login prompt to modem callers.</td>
</tr>
<tr>
<td>Step 3 autoselect ppp</td>
<td>Set the router to shift automatically to PPP mode if it detects an incoming PPP packet.</td>
</tr>
<tr>
<td>Step 4 modem inout</td>
<td>Configure the line for both incoming and outgoing calls.</td>
</tr>
</tbody>
</table>

Configure the Modem for Dial-Out

To configure the modem lines for dial-out, perform the following tasks, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 line start-range end-range</td>
<td>Select the modem lines for dial-out and switch to the line configuration mode.</td>
</tr>
<tr>
<td>Step 2 rotary number</td>
<td>Set the router to use previously-defined rotary group.</td>
</tr>
<tr>
<td>Step 3 transport input telnet</td>
<td>Configure the router to accept inbound Telnet connections.</td>
</tr>
</tbody>
</table>

This configuration procedure ensures that a user trying to dial out using Telnet is connected to the first free line in the rotary group.

Configuration Example

Refer to the Appendix A, “Cisco 3640 Central Site Configuration to Support ISDN and Modem Calls” for an example of the configuration.

Configuring 1-Port G.SHDSL WAN Interface Card

This section describes how to configure the Multirate Symmetrical High-Speed Digital Subscriber Line (G.SHDSL) feature supported on the 1-port G.SHDSL WAN interface card (WIC) (WIC-1SHDSL) on Cisco 2600 series and Cisco 3600 series routers in Cisco IOS Release 12.2(4)T.

This section includes the following sections:
- Restrictions, page 3-60
- Prerequisites, page 3-60
G.SHDSL is ATM-based, multirate, high-speed (up to 2.3 MB), symmetrical digital subscriber line digital data transfer between a single customer premises equipment (CPE) subscriber and a central office.

G.SHDSL is supported on the G.SHDSL WAN interface card, a 1-port WAN interface card (WIC) for Cisco 2600 series and Cisco 3600 series routers.

The G.SHDSL WIC is compatible with the Cisco 6015, Cisco 6130, Cisco 6160, and Cisco 6260 Digital Subscriber Line Access Multiplexers (DSLAMs). The DSLAM must be equipped with G.SHDSL line cards that are compatible with the DSL service to be configured.

The G.SHDSL WIC supports ATM Adaptation Layer 2 (AAL2), ATM Adaptation Layer 5 (AAL5), and various classes of quality of service (QoS) for both voice and data service.

Listed below are some benefits of this feature:

- Enables business-class broadband service with voice integration, scalable performance, flexibility, and security.
- Aggregates G.SHDSL and other transport options into a single box.
- Provides G.SHDSL high-speed digital data transmissions between customer premises equipment (CPE) and the central office (CO), or between routers located within a customer site.
- Supports ITU G.991.2 (SHDSL).
- Supports ANSI T1.601 (BRI), ANSI T1.410 (DDS), and ANSI T1.403 (T1 carrier).
- Supports AAL2 and AAL5 services and applications (including voice), ATM class of service (constant bit rate [CBR], variable bit rate-nonreal time [VBR-nrt], variable bit rate-real time [VBR-rt], and unspecified bit rate [UBR and UBR+]), and up to 23 virtual circuits on a WIC in Cisco 2600 series and Cisco 3600 series routers.
- Provides ATM traffic management and quality of service (QoS) features to enable service providers to manage their core ATM network infrastructures.

This feature is supported on the following router platforms:

- Cisco 2610
- Cisco 2611
- Cisco 2612
- Cisco 2613
- Cisco 2620
- Cisco 2621
- Cisco 2650
- Cisco 2651
- Cisco 3620
- Cisco 3640
- Cisco 3661
- Cisco 3662
Restrictions

- The ADSL WAN does not support dual latency. When the DSL link is intended to support both voice and data traffic simultaneously, the total supported data rate must be reduced to adjust for the reduced coding gain, which is usually present with high-latency traffic.
- The ADSL WAN does not support Dying Gasp in ANSI T1.413 Issue 2.
- The ADSL WAN does not support available bit rate (ABR) class of service (CoS).
- The ADSL WAN should be inserted only into onboard WIC slots or 1FE2W, 2W, 1FE1R, 2FE2W network modules. This WIC is not supported in old combination network modules.

Prerequisites

A G.SHDSL WIC must be installed in the router to match the DSL service to be configured. A compatible G.SHDSL line card must be installed in the DSLAM.

Configuration Tasks

See the following sections for configuration tasks for this feature. Each task in the list is identified as either required or optional:

- Configuring G.SHDSL on a Cisco Router, page 3-60 (required)
- Configuring ILMI on the DSLAM Connected to the ADSL WAN, page 3-62 (optional)
- Verifying ATM Configuration, page 3-62 (optional)

Configuring G.SHDSL on a Cisco Router

To configure G.SHDSL service on a Cisco router containing a G.SHDSL WIC, complete the following steps, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface atm 1/0 Enters ATM configuration mode for interface ATM 0 in slot 1.</td>
</tr>
<tr>
<td></td>
<td>Note</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ip-address IP-address Assigns an IP address to the DSL ATM interface.</td>
</tr>
</tbody>
</table>
Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 3 | Router(config-if)# atm ilmi-keepalive seconds | (Optional) Enables Integrated Local Management Interface (ILMI) keepalives.
If you enable ILMI keepalives without specifying the seconds, the default time interval is 3 seconds. |
| 4 | Router(config-if)# pvc [name] vpi/vci | Enters atm-virtual-circuit (interface-atm-vc) configuration mode, and configures a new ATM permanent virtual circuit (PVC) by assigning a name (optional) and VPI/VCI numbers.
The default traffic shaping is UBR; the default encapsulation is AAL5+LLC/SNAP. |
| 5 | Router(config-if-vc)# protocol ip IP-address | (Optional) Enables IP connectivity and create a point-to-point IP address for the virtual circuit (VC). |
| 6 | Router(config-if-vc)# vbr-rt peak-rate average-rate burst | (Optional) Configures the PVC for real-time variable bit rate (VBR) traffic shaping.
- **Peak rate**—Peak information rate (PIR)
- **Average rate**—Average information rate (AIR)
- **Burst**—Burst size in cells |
| 7 | Router(config-if-vc)# encapsulation {aal1 | aal2 | aal5ciscoppp | aal5mux | aal5nlpid | aal5snap} | (Optional) Configures the ATM adaptation layer (AAL) and encapsulation type.
- **aal1**—AAL1
- **aal2**—AAL2
- **aal5ciscoppp**—Cisco PPP over AAL5
- **aal5mux**—AAL5+MUX
- **aal5nlpid**—AAL5+NLPID
- **aal5snap**—AAL5+LLC/SNAP (the default) |
| 8 | Router(config-if-vc)# exit | Exits from interface-atm-vc configuration mode. |
| 9 | Router(config-if)# dsl operating-mode {gshdsl symmetric annex {A | B}} | Configures the DSL interface to operate in a specified DSL mode:
- **gshdsl**—Configures multirate, high-speed DSL per ITU G.991.2
- **symmetric**—Configures symmetrical mode per ITU G.992.1.
- **annex**—Configures the regional operating parameters.
- **A**—Sets the operating parameters for North America. This value is the default.
- **B**—Sets the operating parameters for Europe.
The default is **gshdsl symmetric annex A** |
Configuring 1-Port G.SHDSL WAN Interface Card

Chapter 3 Configuring with the Command-Line Interface

Configuring ILMI on the DSLAM Connected to the ADSL WAN

The ILMI protocol allows DSLAMs to be used for ATM address registration across an ATM User-Network Interface (UNI). If ILMI is configured on the G.SHDSL WIC, the ATM PVC must be configured on the DSLAM. All switch terminating connections use interface 0/0 to connect to the switch CPU.

For information about configuring the DSLAM, see the *Configuration Guide for Cisco DSLAMs with NI-2*.

Verifying ATM Configuration

Use the following commands to verify your configuration:

- To verify current configuration and to view the status for all controllers, use the `show running-config` command.
- To view ATM controller statistics, use the `show controllers atm slot/port` command.
- To verify the PVC status, use the `show atm vc` command. Make sure that active PVCs are up.
- To help identify ATM related events as they are generated, use the `debug atm events` command.
- To indicate which interfaces are having trouble, use the `debug atm errors` command.
- To identify an entry for the ATM interface you configured and to show an entry for the ATM slot/port you configured, use the `show ip route` command.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 10** | Router(config-if)# equipment-type {co | cpe} Configures the DSL interface to function as central office equipment or customer premises equipment:
 - **co**—The WIC functions as central office equipment and can interface with another G.SHDSL WIC configured as **cpe**.
 - **cpe**—The WIC functions as customer premises equipment and can interface with a DSLAM or with another G.SHDSL WIC configured as **co**. The default is **cpe**. |
| **Step 11** | Router(config-if)# dsl linerate {kbps | auto} Configures the DSL line rate:
 - **kbps**—Line rate (data transfer rate) in kilobits per second. Allowable entries are 72, 136, 200, 264, 392, 520, 776, 1032, 1160, 1544, 2056, and 2312.
 - **auto**—The WIC automatically trains for an optimal line rate by negotiating with the far-end DSLAM or WIC. The default is **auto**. |
| **Step 12** | Router(config-if)# exit Exits from ATM interface configuration mode. |
| **Step 13** | Router(config)# exit Exits from global configuration mode. |
| **Step 14** | Router# show interface atm 1/0 Verifies the ATM interface configuration. |
| **Step 15** | Router# clear interface atm 1/0 Permits the configuration changes to take effect. |
To view the status of an ATM interface, use the `show interface atm` command. Make sure that the ATM slot/port and the line protocol are up, as shown in the following examples:

```plaintext
Router# show interface atm 1/0
ATM1/0 is up, line protocol is up
    Hardware is DSLSAR (with Globespan G.SHDSL Module)
    MTU 4470 bytes, sub MTU 4470, BW 800 Kbit, DLY 2560 usec,
        reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ATM, loopback not set
    Keelalive not supported
Encapsulation(s): AAL5 AAL2, PVC mode
24 maximum active VCs, 256 VCs per VP, 2 current VCCs
VC idle disconnect time: 300 seconds
Last input never, output 00:00:01, output hang never
Last clearing of "show interface" counters 03:16:00
Queueing strategy: fifo
    Output queue 0/40, 0 drops; input queue 0/75, 0 drops
30 second input rate 0 bits/sec, 0 packets/sec
30 second output rate 0 bits/sec, 0 packets/sec
2527 packets input, 57116 bytes, 0 no buffer
    Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
    0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
10798 packets output, 892801 bytes, 0 underruns
    0 output errors, 0 collisions, 0 interface resets
    0 output buffer failures, 0 output buffers swapped out

Router# show atm vc
VCD /                                      Peak  Avg/Min Burst
Interface   Name       VPI   VCI  Type   Encaps   SC   Kbps   Kbps   Cells  Sts
1/0.3      2            9    36   PVC    MIX   UBR   800         800         UP
1/0.2      1            9    37   PVC    SNAP  UBR   800         800         UP

Router# show controllers atm 1/0
Interface ATM1/0 is up
    Hardware is DSLSAR (with Globespan G.SHDSL Module)
    IDB: 62586758 Instance:6258E054  reg_dlsar:3C810000  wic_regs:3C810080
    PHY Inst:62588490 Ser0Inst:62573074 Ser1Inst:6257CBD8  us_hwidth:800
    Slot: 1  Unit: 1  Subunit: 0  pkt Size:4496
    VCPervP:256  max_vcp: 256  rct_size:65536  total vc:2
    vplcvicbit:16  connTblVCI:8  vpi_bits:8
    vpvc_sel:3  enabled: 0  throttled:0

WIC  Register  Value  Notes
---------------  -------  ----------
    FPGA Dev ID (LB)  0x44  'D'
    FPGA Dev ID (UB)  0x53  'S'
    FPGA Revision  0x99
    WIC Config Reg  0x45  WIC / VIC select = VIC; 
                         CTRLR addr bit 8 = 1;
                         OK LED on;
                         LOOPBACK LED off;
                         CD LED on;
    WIC Config Reg2  0x07  Gen bus error on bad ADSL access
    Int 0 Enable Reg  0x03  ADSL normal interrupt enabled
                            ADSL error interrupt enabled
```

To view the status of the G.SHDSL modem, use the `show dsl interface atm` command. If the line is down, the following statement appears: Line is not active. Some of the values may not be accurate. You can also verify whether the equipment type and operating mode configuration are correct for your application.
The following sample output shows a WIC configured as central office equipment, and the line is up:

Router# show dsl interface atm 0/0
Globespan G.SHDSL Chipset Information

<table>
<thead>
<tr>
<th>Equipment Type:</th>
<th>Central Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Mode:</td>
<td>G.SHDSL</td>
</tr>
<tr>
<td>Clock Rate Mode:</td>
<td>Auto rate selection Mode</td>
</tr>
<tr>
<td>Reset Count:</td>
<td>2</td>
</tr>
<tr>
<td>Actual Rate:</td>
<td>2320 Kbps</td>
</tr>
<tr>
<td>Modem Status:</td>
<td>Data</td>
</tr>
<tr>
<td>Noise Margin:</td>
<td>43 dB</td>
</tr>
<tr>
<td>Loop Attenuation:</td>
<td>0.0 dB</td>
</tr>
<tr>
<td>Transmit Power:</td>
<td>13.5 dB</td>
</tr>
<tr>
<td>Receiver Gain:</td>
<td>204.8000 dB</td>
</tr>
<tr>
<td>Last Activation Status:</td>
<td>No Failure</td>
</tr>
<tr>
<td>CRC Errors:</td>
<td>0</td>
</tr>
<tr>
<td>Chipset Version:</td>
<td>1</td>
</tr>
<tr>
<td>Firmware Version:</td>
<td>R1.0</td>
</tr>
</tbody>
</table>

Farend Statistics since CO boot-time:

CRC Errors:	0
Errored Seconds:	0
Severly ES:	0
Un Available S:	48
Loss Of Sync S:	0

The following sample output shows a WIC configured as customer premises equipment, and the line is up:

Router# show dsl interface atm 0/0
Globespan G.SHDSL Chipset Information

<table>
<thead>
<tr>
<th>Equipment Type:</th>
<th>Customer Premise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Mode:</td>
<td>G.SHDSL</td>
</tr>
<tr>
<td>Clock Rate Mode:</td>
<td>Auto rate selection Mode</td>
</tr>
<tr>
<td>Reset Count:</td>
<td>1</td>
</tr>
<tr>
<td>Actual Rate:</td>
<td>2320 Kbps</td>
</tr>
<tr>
<td>Modem Status:</td>
<td>Data</td>
</tr>
<tr>
<td>Noise Margin:</td>
<td>42 dB</td>
</tr>
<tr>
<td>Loop Attenuation:</td>
<td>0.0 dB</td>
</tr>
<tr>
<td>Transmit Power:</td>
<td>13.5 dB</td>
</tr>
<tr>
<td>Receiver Gain:</td>
<td>204.8000 dB</td>
</tr>
<tr>
<td>Last Activation Status:</td>
<td>No Failure</td>
</tr>
<tr>
<td>CRC Errors:</td>
<td>0</td>
</tr>
<tr>
<td>Chipset Version:</td>
<td>1</td>
</tr>
<tr>
<td>Firmware Version:</td>
<td>R1.0</td>
</tr>
</tbody>
</table>

Configuration Examples

Configuration examples are provided in the following sections:

- Configuration in CPE Mode Example, page A-25
- Configuration in CO Mode Example, page A-27
Saving Configuration Changes

To prevent the loss of the router configuration, save it to NVRAM.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** Router> enable
Password: password
Router# | Enters enable mode. Enter the password.
You have entered enable mode when the prompt changes to Router#. |
| **Step 2** Router# copy running-config startup-config | Saves the configuration changes to NVRAM so that they are not lost during resets, power cycles, or power outages. |
| **Step 3** Router(config-if)# Ctrl-z
Router#
%SYS-5-CONFIG_I: Configured from console by console | Returns to enable mode.
This message is normal and does not indicate an error. |

Where to Go Next

At this point you can proceed to the following:

- The Cisco IOS software configuration guide and command reference publications for more advanced configuration topics. These publications are available on Cisco.com, the Documentation CD-ROM that came with your router, or you can order printed copies.

- The System Error Messages and Debug Command Reference publications for troubleshooting information. These publications are available on Cisco.com, the Documentation CD-ROM that came with your router, or you can order printed copies.
Configuring Voice-over-IP

This chapter explains how to configure voice network modules with receive and transmit (E&M), Foreign Exchange Office (FXO), and Foreign Exchange Station (FXS) interfaces for your router. Voice network modules convert telephone voice signals into a form that can be transmitted over an IP network. This chapter is divided into the following sections:

- Voice-over-IP Prerequisites, page 4-1
- Configuring the Voice Interface, page 4-2
- Voice-over-IP Configuration Examples, page 4-3
- Where to Go Next, page 4-12

You need both a voice network module and a voice interface card for a voice connection. You can install one voice interface card in a 2-channel voice network module, and two voice interface cards in a 4-channel module. At least one other network module or WAN interface card must be installed in the router to provide the connection to the IP LAN or WAN.

Voice over IP (VoIP) enables your router to carry live voice traffic (for example, telephone calls and faxes) over an IP network. VoIP offers the following benefits:

- Toll bypass
- Remote PBX presence over WANs
- Unified voice/data trunking
- Plain old telephone service (POTS)-Internet telephony gateways

Voice-over-IP Prerequisites

Before you can configure your router to use VoIP, you must first do the following:

- Install the voice network module into your router. For more information about the voice network modules, refer to the “Connecting Voice Network Modules to a Network” chapter in the Cisco Network Modules Hardware Installation Guide.
- Complete your company’s dial plan. That is, decide what patterns of dialed numbers will access what telephony endpoints.
- Establish a working telephony network based on your company’s dial plan.
- Integrate your dial plan and telephony network into your existing IP network topology.
Chapter 4 Configuring Voice-over-IP

Configuring the Voice Interface

Whenever you install a new interface, or if you want to change the configuration of an existing interface, you must configure the interface. If you replace a module that was already configured, the router recognizes it and brings up the interface in the existing configuration.

Before you configure an interface, have the following information available:

- Protocols you plan to route on the new interface
- IP addresses, subnet masks, network numbers, zones, or other information related to the routing protocol

Timesaver

Obtain this information from your system administrator or network plan before you begin router configuration.

To configure a voice interface, you must use configuration mode (manual configuration). In this mode, you can enter Cisco IOS commands at the router prompt.

Before you begin, disconnect all WAN cables from the router to keep it from trying to run the AutoInstall process. The router tries to run AutoInstall whenever you power it on if there is a WAN connection on both ends, and the router does not have a valid configuration file stored in NVRAM (for instance, when you add a new interface). It can take several minutes for the router to determine that AutoInstall is not connected to a remote Transmission Control Protocol/Internet Protocol (TCP/IP) host.

To configure the voice interface configuration mode, follow this procedure:

1. Connect a console to the router. If you need instructions for connecting a console, refer to the installation chapter of your router installation and configuration guide.
2. Power on the router. If the current configuration is no longer valid, after about one minute you see the following prompt:
 Would you like to enter the initial dialog? [yes/no]:

 Answer no. You now enter the normal operating mode of the router.

 Note If the current configuration is valid, you enter the normal operating mode automatically.

3. After a few seconds, you see the user EXEC prompt (Router>). Type enable and the password to enter enable mode:

 Router> enable
 Password: <password>

 Configuration changes can be made only in enable mode. The prompt changes to the privileged EXEC (enable) prompt (Router#):

 Router#

4. Enter the configure terminal command to enter configuration mode:

 Router# configure terminal
 Router(config)#

 The router enters global configuration mode, indicated by the Router(config)# prompt.
Step 5 If you have not configured the router before, or want to change the configuration, use Cisco IOS commands to configure global parameters, passwords, network management, and routing protocols. In this example, IP routing is enabled:

```
Router(config)# ip routing
```

For complete information about global configuration commands, refer to the Cisco IOS configuration guides and command references.

Step 6 If you have not already done so, configure the network module or WAN interface card that you plan to use for IP traffic. For instructions, see your router’s installation and configuration guide or the configuration note for the network module or WAN interface card.

Step 7 To configure another interface, enter the `exit` command to return to the `Router(config)#` prompt.

Step 8 To configure the router for voice traffic, refer to the detailed instructions in the *Voice over IP Configuration* document.

Step 9 When you finish configuring interfaces, exit configuration mode and return to the enable prompt by pressing `Ctrl-z`. To see the current operating configuration, including any changes you just made, enter the `show running-config` command:

```
Router# show running-config
```

To see the configuration currently stored in NVRAM, enter the `show startup-config` command at the enable prompt:

```
Router# show startup-config
```

Step 10 The results of the `show running-config` and `show startup-config` commands differ from each other if you have made changes to the configuration, but have not yet written them to NVRAM. To write your changes to NVRAM, making them permanent, enter the `copy running-config startup-config` command at the enable prompt:

```
Router# copy running-config startup-config
Building configuration . . .
[OK]
Router#
```

The router is now configured to boot in the new configuration.

Voice-over-IP Configuration Examples

The actual VoIP configuration procedure you complete depends on the topology of your voice network. The following configuration examples should give you a starting point. Of course, these configuration examples would need to be customized to reflect your network topology.

Configuration procedures are supplied for the following scenarios:

- FXS-to-FXS Connection Using RSVP, page 4-4
- Linking PBX Users with E&M Trunk Lines, page 4-6
- PSTN Gateway Access Using FXO Connection, page 4-8
- PSTN Gateway Access Using FXO Connection (PLAR Mode), page 4-10
- Configuring Direct-Inward Dialing on a BRI Port, page 4-11

These examples are described in the following sections.
FXS-to-FXS Connection Using RSVP

The following example shows how to configure VoIP for simple FXS-to-FXS connections. In this example, a very small company, consisting of two offices, has decided to integrate VoIP into its existing IP network. One basic telephony device is connected to Router RLB-1; therefore Router RLB-1 has been configured for one POTS peer and one VoIP peer. Router RLB-w and Router R12-e establish the WAN connection between the two offices. Because one POTS telephony device is connected to Router RLB-2, it has also been configured for only one POTS peer and one VoIP peer.

In this example, only the calling end (Router RLB-1) is requesting RSVP. Figure 4-1 illustrates the topology of this FXS-to-FXS connection example.

Figure 4-1 FXS-to-FXS Connection Example

Configuration for Router RLB-1

```plaintext
hostname rlb-1
! Create voip dial-peer 10
dial-peer voice 10 voip
  ! Define its associated telephone number and IP address
destination-pattern +4155264000
  sess-target ipv4:40.0.0.1
  ! Request RSVP
  req-qos guaranteedDelay
  ! Create pots dial-peer 1
dial-peer voice 1 pots
  ! Define its associated telephone number and voice port
destination-pattern +4085264000
  port 1/0/0
  ! Configure serial interface 0/0
interface Serial0/0
  ip address 10.0.0.1 255.0.0.0
  no ip mroute-cache
  ! Configure RTP header compression
  ip rtp header-compression
  ip rtp compression-connections 25
  ! Enable RSVP on this interface
  ip rsvp bandwidth 48 48
  fair-queue 64 256 36
  clockrate 64000
  router igrp 888
  network 10.0.0.0
  network 20.0.0.0
  network 40.0.0.0
```
Configuration for Router RLB-w

hostname rlb-w
! Configure serial interface 1/0
interface Serial1/0
 ip address 10.0.0.2 255.0.0.0
! Configure RTP header compression
 ip rtp header-compression
 ip rtp compression-connections 25
! Enable RSVP on this interface
 ip rsvp bandwidth 96 96
 fair-queue 64 256 3
! Configure serial interface 1/3
interface Serial1/3
 ip address 20.0.0.1 255.0.0.0
! Configure RTP header compression
 ip rtp header-compression
 ip rtp compression-connections 25
! Enable RSVP on this interface
 ip rsvp bandwidth 96 96
 fair-queue 64 256 3
! Configure IGRP
 router igrp 888
 network 10.0.0.0
 network 20.0.0.0
 network 40.0.0.0

Configuration for Router R12-e

hostname r12-e
! Configure serial interface 1/0
interface Serial1/0
 ip address 40.0.0.2 25.0.0.0
! Configure RTP header compression
 ip rtp header-compression
 ip rtp compression-connections 25
! Enable RSVP on this interface
 ip rsvp bandwidth 96 96
 fair-queue 64 256 3
! Configure serial interface 1/3
interface Serial1/3
 ip address 20.0.0.2 255.0.0.0
! Configure RTP header compression
 ip rtp header-compression
 ip rtp compression-connections 25
! Enable RSVP on this interface
 ip rsvp bandwidth 96 96
 fair-queue 64 256 3
clockrate 128000
! Configure IGRP
 router igrp 888
 network 10.0.0.0
 network 20.0.0.0
 network 40.0.0.0
Configuration for Router RLB-2

hostname rlb-2
! Create pots dial-peer 2
dial-peer voice 2 pots
! Define its associated telephone number and voice-port
destination-pattern +4155264000
port 1/0/0
! Create voip dial-peer 20
dial-peer voice 20 voip
! Define its associated telephone number and IP address
destination-pattern +4085264000
sess-target ipv4:10.0.0.1
! Configure serial interface 0/0
interface Serial0/0
ip address 40.0.0.1 255.0.0.0
no ip mroute-cache
! Configure RTP header compression
ip rtp header-compression
ip rtp compression-connections 25
! Enable RSVP on this interface
ip rsvp bandwidth 96 96
fair-queue 64 256 3
clockrate 64000
! Configure IGRP
router igrp 888
network 10.0.0.0
network 20.0.0.0
network 40.0.0.0

Linking PBX Users with E&M Trunk Lines

The following example shows how to configure VoIP to link PBX users with E&M trunk lines.
In this example, a company wants to connect two offices: one in San Jose, California and the other in Salt Lake City, Utah. Each office has an internal telephone network using PBX, connected to the voice network by an E&M interface. Both the Salt Lake City and the San Jose offices are using E&M Port Type II, with four-wire operation and ImmediateStart signaling. Each E&M interface connects to the router using two voice interface connections. Users in San Jose dial “8-569” and then the extension number to reach a destination in Salt Lake City. Users in Salt Lake City dial “4-527” and then the extension number to reach a destination in San Jose.

Figure 4-2 illustrates the topology of this connection example.
This example assumes that the company already has established a working IP connection between its two remote offices.

Router SJ Configuration

```plaintext
hostname sanjose
!Configure pots dial-peer 1
dial-peer voice 1 pots
destination-pattern +527....
port 1/0/0
!Configure pots dial-peer 2
dial-peer voice 2 pots
destination-pattern +527....
port 1/0/1
!Configure voip dial-peer 3
dial-peer voice 3 voip
destination-pattern +569....
session target ipv4:172.16.65.182
!Configure the E&M interface
voice-port 1/0/0
signal immediate
operation 4-wire
type 2
voice-port 1/0/1
signal immediate
operation 4-wire
type 2
!Configure the serial interface
interface serial 0/0
description serial interface type dce (provides clock)
clock rate 2000000
ip address 172.16.1.123
no shutdown
```
Router SLC Configuration

hostname saltlake
!Configure pots dial-peer 1
dial-peer voice 1 pots
destination-pattern +569....
port 1/0/0
!Configure pots dial-peer 2
dial-peer voice 2 pots
destination-pattern +569....
port 1/0/1
!Configure voip dial-peer 3
dial-peer voice 3 voip
destination-pattern +527....
session target ipv4:172.16.1.123
!Configure the E&M interface
voice-port 1/0/0
signal immediate
operation 4-wire
type 2
voice-port 1/0/0
signal immediate
operation 4-wire
type 2
!Configure the serial interface
interface serial 0/0
description serial interface type dte
ip address 172.16.65.182
no shutdown

Note PBXs should be configured to pass all DTMF signals to the router. Cisco recommends that you do not configure "store-and-forward" tone.

Note If you change the gain or the telephony port, make sure that the telephony port still accepts DTMF signals.

PSTN Gateway Access Using FXO Connection

The following example shows how to configure VoIP to link users with the PSTN gateway using an FXO connection.

In this example, users connected to Router SJ in San Jose, California can reach PSTN users in Salt Lake City, Utah via Router SLC. Router SLC in Salt Lake City is connected directly to the PSTN through an FXO interface.

Figure 4-3 illustrates the topology of this connection example.
Note
This example assumes that the company already has established a working IP connection between its two remote offices.

Router SJ Configuration

! Configure pots dial-peer 1
dial-peer voice 1 pots
destination-pattern +14085274000
port 1/0/0
! Configure voip dial-peer 2
dial-peer voice 2 voip
destination-pattern +9...........
session target ipv4:172.16.65.182
! Configure the serial interface
interface serial 0/0
clock rate 2000000
ip address 172.16.1.123
no shutdown

Router SLC Configuration

! Configure pots dial-peer 1
dial-peer voice 1 pots
destination-pattern +9............
port 1/0/0
! Configure voip dial-peer 2
dial-peer voice 2 voip
destination-pattern +14085274000
session target ipv4:172.16.65.182
! Configure serial interface
interface serial 0/0
ip address 172.16.65.182
no shutdown
PSTN Gateway Access Using FXO Connection (PLAR Mode)

The following example shows how to configure VoIP to link users with the PSTN gateway using an FXO connection (PLAR mode).

In this example, PSTN users in Salt Lake City, Utah, can dial a local number and establish a private line connection in a remote location. As in the previous example, Router SLC in Salt Lake City is connected directly to the PSTN through an FXO interface.

Figure 4-4 illustrates the topology of this connection example.

Figure 4-4 PSTN Gateway Access Using FXO Connection (PLAR Mode)

Note

This example assumes that the company already has established a working IP connection between its two remote offices.

Router SJ Configuration

! Configure pots dial-peer 1
dial-peer voice 1 pots
destination-pattern +14085274000
port 1/0/0
! Configure voip dial-peer 2
dial-peer voice 2 voip
destination-pattern +9...........
session target ipv4:172.16.65.182
! Configure the serial interface
interface serial 0/0
clock rate 2000000
ip address 172.16.1.123
no shutdown
Router SLC Configuration

! Configure pots dial-peer 1
dial-peer voice 1 pots
destination-pattern +9............
port 1/0/0
! Configure voip dial-peer 2
dial-peer voice 2 voip
destination-pattern +14085274000
session target ipv4:172.16.1.123
! Configure the voice port
voice port 1/0/0
connection plar 14085274000
! Configure the serial interface
interface serial 0/0
ip address 172.16.65.182
no shutdown

Configuring Direct-Inward Dialing on a BRI Port

The following example shows how to configure a BRI port for direct-inward dialing (DID). This configuration allows the called number information from the ISDN Q.931 setup message to be used for routing on an ISDN line.

In this example, a call comes in to router 1 on the BRI port. The DID information allows the router to route the call based on the called number. If the called number is 2xxx, the call is routed to router 2000, and if the called number is 3xxx, the call is routed to router 3000.

Figure 4-5 illustrates the topology of this connection example.

Figure 4-5 Configuring DID on a BRI Port
Router 1 Configuration

dial-peer voice 1 pots
port 1/0/0
destination-pattern 1...
direct-inward-dial
dial-peer voice 2 voip
session target ipv4:1.1.1.2
destination-pattern 2...
dial-peer voice 3 voip
session target ipv4:1.1.1.3
destination-pattern 3...

Router 2 Configuration

dial-peer voice 1 pots
port 1/0/0
destination-pattern 2000

Router 3 Configuration

dial-peer voice 1 pots
port 1/0/0
destination-pattern 3000

Where to Go Next

At this point you can proceed to the following:

- *Voice over IP Software Configuration Guide* for further information on Voice over IP configuration procedures and commands.
- Cisco IOS software configuration guide and command reference publications for more advanced configuration topics. These publications are available on Cisco.com, the Documentation CD-ROM that came with your router, or you can order printed copies.
Configuration Examples

This appendix shows some examples of the configuration in the Cisco 2600 series, Cisco 3600 series, and Cisco 3700 series routers.

Cisco 2600 Series Router Configuration Example

Following is an example of a configuration on a Cisco 2600 series router.

The following configuration command script was created:

```
hostname 2600
enable secret 5 $1$zxxT$YZMzUP1/wQvyLn5cWeyPu
enable password guessme
line vty 0 4
password guessagain
snmp-server community public
!
no appletalk routing
no decnet routing
ip routing
no clns routing
no ipx routing
no vines routing
no xns routing
no apollo routing
no bridge 1
!
line 1 64
speed 115200
flowcontrol hardware
login local
autoselect during-login
autoselect ppp
modem dialin
ip local pool setup_pool 172.20.30.40 172.20.30.88
!
username user password passwd
line 1 64
modem output
transport input all
!
interface Ethernet0/0
no shutdown
ip address 255.255.255.0 255.255.255.0
lat enabled
```
no mop enabled
!
interface Serial0/0
 encapsulation hdlc
 clock rate 2000000
 ip address 1.0.0.1 255.0.0.0
 lat enabled
 appletalk cable-range 3-3 3.3
 appletalk zone myzone
 ipx network 8
 no vines metric
 mop enabled

interface Ethernet0/1
 ip address 255.255.255.1 255.255.0.0
 lat enabled
 no vines metric
 mop enabled

interface Serial0/1
 physical-layer sync
 encapsulation ppp
 ip address 2.0.0.1 255.0.0.0
 lat enabled
 appletalk cable-range 6-6 6.6
 appletalk zone myzone
 ipx network 6
 no vines metric
 xns network 7
 mop enabled

interface Serial0/2
 physical-layer async
 ip address 3.0.0.1 255.0.0.0
 lat enabled
 appletalk cable-range 8-8 8.8
 appletalk zone myzone
 ipx network 8
 no vines metric
 mop enabled

interface Serial1/0
 physical-layer sync
 encapsulation frame-relay
 frame-relay lmi-type cisco
 clock rate 115200
 ip address 4.0.0.1 255.0.0.0
 no lat enabled
 no vines metric
 no mop enabled

interface Serial1/1
 physical-layer async
 ip address 5.0.0.1 255.0.0.0
 no lat enabled
 no vines metric
 no mop enabled

interface Serial1/2
 physical-layer sync
 encapsulation x25 dte
 x25 address 1234
 x25 map ip 1.0.0.1 4121
 x25 map ipx 6.0.0.1 -2132065964
x25 ltc 1
x25 htc 64
x25 win 7
x25 wout 7
x25 threshold 2
x25 ips 128
x25 ops 128
clock rate 115200
ip address 6.0.0.1 255.0.0.0
no lat enabled
no vines metric
no mop enabled
!
interface Serial1/3
physical-layer sync
encapsulation smds
smds address c141.5556.1415
no keepalive
smds static-map ip 2.0.0.1 c141.5556.1414
smds static-map ipx 2.0.0.1 c141.5556.1414
clock rate 115200
ip address 172.22.50.10 255.255.0.0
no lat enabled
no vines metric
no mop enabled
dialer-list 1 protocol ip permit
dialer-list 1 protocol ipx permit
!
router igrp 1
redistribute connected
network 172.21.0.0
!
end

Following is an example of a configuration on the Cisco 2691 router.

C2691#show running-config
Building configuration...

Current configuration : 1143 bytes
!
version 12.2
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname C2691
!
enable password lab
!
voice-card 1
!
ip subnet-zero
!
!
no ip domain-lookup
ip host rtplab-dev 172.18.207.10
!
!
!
fax interface-type fax-mail
mta receive maximum-recipients 0
!
controller T1 1/0
 framing esf
 linecode b8zs
 ds0-group 1 timeslots 1-24 type e&m-wink-start

controller T1 1/1
 framing sf
 linecode ami

interface FastEthernet0/0
 ip address 172.18.193.171 255.255.255.0
 speed 100
 full-duplex

interface FastEthernet0/1
 ip address 50.0.0.4 255.0.0.0
 speed 100
 full-duplex

ip classless
ip route 172.18.207.0 255.255.255.0 172.18.193.1
ip http server
ip pim bidir-enable

call rsvp-sync

voice-port 1/0:1
 output attenuation 3

mgcp profile default

dial-peer cor custom

dial-peer voice 919 pots
 destination-pattern 919
 port 1/0:1
 prefix 919

dial-peer voice 408 voip
 destination-pattern 408
 session target ipv4:50.0.0.3
 dtmf-relay h245-alphanumeric
 codec g711alaw

line con 0
 exec-timeout 0 0
line aux 0
line vty 0 4
 password lab
 login

end
Following is an example of a configuration on the Cisco 2620XM router:

Building configuration...

Current configuration : 588 bytes
!
version 12.2
no service pad
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname c2620xm
!
!
ip subnet-zero
!
!
!
!
!
!
!
!
!
!
!
!
!
!
fax interface-type fax-mail
mta receive maximum-recipient 0
!
!
!
!
interface FastEthernet0/0
 ip address 111.0.0.29 255.255.255.0
duplex auto
 speed auto
 no cdp enable
!
ip classless
ip route 0.0.0.0 0.0.0.0 0.0.0.0 FastEthernet0/0
no ip http server
ip pim bidir-enable
!
!
no cdp run
!
!
call rsvp-sync
!
!
mgcp profile default
!
dial-peer cor custom
!
!
!
line con 0
line aux 0
line vty 0 4
login
!
!
end
Cisco 3631 Router Configuration Example

Following is an example of the configuration on the Cisco 3631 router equipped with the following modules:

- IMA-8T1 in
- NM-4A/S
- WIC-2A/S
- WIC-1DSU-56k4

Building configuration...
00:45:06: %SYS-5-CONFIG_I: Configured from console by console
Current configuration : 3095 bytes

! Last configuration change at 12:12:59 PDT Tue Dec 4 2001
! NVRAM config last updated at 12:12:26 PDT Tue Dec 4 2001
!
version 12.2
! service timestamps debug uptime
! service timestamps log uptime
! service password-encryption
!
! hostname cisco3631
!
! enable secret 5 $1$6UL.$w0aJJ5oZmIv1zRDl1RMvo/
!
! username USER password 7 01030717481C091D25
! memory-size iomem 10
! clock timezone PDT -8
! ip subnet-zero
! no ip domain-lookup
!
! x29 profile linemode 2:1 3:2 15:1
! x25 routing
!
! chat-script test "" ""ATDT\T" TIMEOUT 120 CONNECT \c
!
!

! interface FastEthernet0/0
! description FAST ETHERNET INTERFACE
! ip address x.x.x.x x.x.x.x
! duplex auto
! speed auto
!
! interface Serial0/0
! description WIC-1DSU-56k4
! ip address x.x.x.x x.x.x.x
! encapsulation ppp
! interface Serial0/1
description WIC-2A/S
physical-layer async
no ip address
encapsulation ppp
dialer in-band
dialer rotary-group 3
dialer-group 1
async mode dedicated
no fair-queue
!
interface Serial0/2
description WIC-2A/S
physical-layer async
no ip address
encapsulation ppp
no ip route-cache
no ip mroute-cache
dialer in-band
dialer rotary-group 3
dialer-group 1
async default routing
async mode dedicated
no fair-queue
!
interface Serial1/0
description NM-4A/S
no ip address
encapsulation x25
x25 htc 8
!
interface Serial1/1
description NM-4A/S
no ip address
encapsulation x25 dce
x25 ips 256
x25 ops 256
clockrate 9600
!
interface Serial1/2
no ip address
shutdown
!
interface Serial1/3
no ip address
shutdown
!
interface ATM2/0
no ip address
shutdown
no atm ilmi-keepalive
no scrambling-payload
!
interface ATM2/1
no ip address
shutdown
no atm ilmi-keepalive
no scrambling-payload
!
interface ATM2/2
description ATM T1
ip address x.x.x.x x.x.x.x
no ip route-cache
Cisco 3631 Router Configuration Example

no ip mroute-cache
no atm ilmi-keepalive
pvc atm71 0/71
protocol clns 47.0004.004d.0056.0000.0c00.0003.00 broadcast
protocol ip 12.0.0.2 broadcast
encapsulation aal5snap
!
scrambling-payload
impedance 120-ohm
!
interface ATM2/3
no ip address
shutdown
no atm ilmi-keepalive
no scrambling-payload
!
interface ATM2/4
no ip address
shutdown
no atm ilmi-keepalive
no scrambling-payload
!
interface ATM2/5
no ip address
shutdown
no atm ilmi-keepalive
no scrambling-payload
!
interface ATM2/6
no ip address
shutdown
no atm ilmi-keepalive
no scrambling-payload
!
interface ATM2/7
no ip address
shutdown
no atm ilmi-keepalive
no scrambling-payload
!
interface ATM2/IMA0
description ATM-IMA GROUP
ip address x.x.x.x x.x.x.x
no ip route-cache
no ip mroute-cache
no atm ilmi-keepalive
pvc atm71 0/71
protocol clns 47.0004.004d.0056.0000.0c00.0002.00 broadcast
protocol ip 12.0.0.1 broadcast
encapsulation aal5snap
!
interface Dialer3
ip address x.x.x.9 x.x.x.x
encapsulation ppp
no ip route-cache
no ip mroute-cache
dialer in-band
dialer idle-timeout 500
dialer map ip x.x.x.10 name USER modem-script test broadcast 9,5551122
dialer map ip x.x.x.10 name USER modem-script test broadcast 9,5551123
dialer hold-queue 15
dialer load-threshold 5 either
dialer-group 1
no fair-queue
no cdp enable
ppp authentication chap
ppp multilink
group-range 4 5
!
router ospf 1
redistribute connected subnets
network X.X.X.X 0.0.0.X area 3
!
!
ip classless
no ip http server
ip pim bidir-enable
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
Cisco 3725 Router Configuration Example

Following example shows the configuration on the Cisco 3725 router.

version 12.1
no service single-slot-reload-enable
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname pipertdm
!
no logging buffered
logging rate-limit console 10 except errors
no logging console
!
!
ip subnet-zero
!
!
o no ip finger
ip host rtplab-tftp2 172.18.207.16
ip host rtplab-dev 172.18.207.10
!
no ip dhcp-client network-discovery
no mgcp timer receive-rtcp
call rsvp-sync
!
!
!
!
fax interface-type modem
mta receive maximum-recipients 0
!
!
!
!
interface FastEthernet0/0
ip address 172.18.197.74 255.255.255.252
no keepalive
duplex auto
speed auto
no cdp enable
!
interface FastEthernet0/1
ip address 2.2.2.2 255.0.0.0
no keepalive
duplex auto
speed auto
no cdp enable
!
interface BRI1/0

transport input all
line vty 0 4
password 7 00141215174C04140B
login
!
end
Following configuration examples are shown below:
VoATM over AAL2 on the ATM Interface Configuration Example

The following example shows VoATM over AAL2 on the ATM interface with an ADSL card:

```
Router#
version 12.2
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname host1
!
memory-size iomem 10
voice-card 1
!
ip subnet-zero
ip host host2 225.255.255.224
!
no mgcp timer receive-rtcp
call rsvp-sync

controller T1 1/0
  framing esf
  linecode b8zs
ds0-group 0 timeslots 1 type e&m-wink-start
ds0-group 1 timeslots 2 type e&m-wink-start
  ...
ds0-group 23 timeslots 24 type e&m-wink-start

controller T1 1/1
  framing esf
  linecode b8zs

interface Ethernet0/0
  ip address 1.6.46.119 255.255.255.224
  half-duplex
  no cdp enable

interface Serial0/0
  no ip address
  shutdown

interface ATM0/1
  ip address 10.1.1.1 255.0.0.0
  load-interval 30
  atm vc-per-vp 256
  no atm ilmi-keepalive
  pvc 10/100
  vbr-rt 672 672 512
  encapsulation aal2
!
  pvc 10/200
  protocol ip 10.1.1.2 broadcast
  encapsulation aal5snap
```
dsl operating-mode ansi-dmt
no fair-queue
!
interface Ethernet0/1
no ip address
shutdown
!
ip classless
ip route 223.255.254.254 255.255.255.224 Ethernet0/0
no ip http server
!
!
snmp-server engineID local 000000090200003080477F20
snmp-server manager
!
voice-port 1/0:0
local-alerting
timeouts wait-release 3
connection trunk 3001
!
voice-port 1/0:1
local-alerting
timeouts wait-release 3
connection trunk 3002
.
.
voice-port 1/0:23
local-alerting
timeouts wait-release 3
connection trunk 3024
shutdown
!
dial-peer cor custom
!
dial-peer voice 3001 voatm
destination-pattern 3001
called-number 4001
session protocol aal2-trunk
session target ATM0/1 pvc 10/100 31
codec aal2-profile ITUT 1 g711ulaw
no vad
!
dial-peer voice 3002 voatm
destination-pattern 3002
called-number 4002
session protocol aal2-trunk
session target ATM0/1 pvc 10/100 32
codec aal2-profile custom 100 g726r32
no vad
!
dial-peer voice 3003 voatm
destination-pattern 3003
called-number 4003
session protocol aal2-trunk
session target ATM0/1 pvc 10/100 33
codec aal2-profile ITUT 7 g729abr8
no vad
.
.
dial-peer voice 3024 voatm
destination-pattern 3024
called-number 3024
session protocol aal2-trunk
session target ATM0/1 pvc 10/100 54
codec aal2-profile ITUT 7 g729abr8
no vad

dial-peer voice 1 pots
destination-pattern 4001
port 1/0:0

dial-peer voice 2 pots
destination-pattern 4002
port 1/0:1

dial-peer voice 24 pots
destination-pattern 4024
port 1/0:23

! line con 0
exec-timeout 0 0
transport input none
line aux 0
line vty 0 4
login
no scheduler allocate
end

VoATM over AAL5 on the ATM Interface Configuration Example

The following example shows a Cisco 2600 series router configured for VoATM over AAL5 on the ATM interface with an ADSL card.

Router#
version 12.2
no service single-slot-reload-enable
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname u2621
!
no logging buffered
no logging buffered
logging rate-limit console 10 except errors
!
memory-size iomem 15
voice-card 1
!
ip subnet-zero
!
no ip finger
no ip domain-lookup
!
no mgcp timer receive-rtcp
call rsvp-sync
!
controller T1 1/0
framing esf
linecode b8zs
ds0-group 0 timeslots 1-24 type e&m-wink-start
! controller T1 1/1
!
!
interface ATM0/0
 ip address 12.0.0.1 255.255.255.224
 load-interval 30
 atm vc-per-vp 256
 no atm ilmi-keepalive
 dsl operating-mode auto
 no fair-queue
!
!
interface FastEthernet0/0
 ip address 1.7.73.1 255.255.255.224
 duplex auto
 speed auto
!
!
interface FastEthernet0/1
 ip address 192.168.2.1 255.255.255.224
 load-interval 30
 duplex auto
 speed auto
!
 ip classless
 ip route 223.255.254.0 255.255.255.224 FastEthernet0/0
 no ip http server
!
!
snmp-server engineID local 0000000902000002163DB260
 snmp-server packetsize 4096
 snmp-server manager
!
 voice-port 1/0:0
!
 dial-peer cor custom
!
!
dial-peer voice 5 pots
 destination-pattern 777...
 port 1/0:0
 prefix 777
!
!
dial-peer voice 100 voatm
 destination-pattern 888....
 session target atm0/0 pvc 0/72
!
!
line con 0
 exec-timeout 0 0
 transport input none
 line aux 0
 line vty 0 4
 login
!
end
The following examples are documented below:

- AIC IP Address Configuration Example, page A-16
- IP Route to the AIC Configuration Examples, page A-20
 - With an Unnumbered IP Address, page A-20
 - Without an Unnumbered IP Address, page A-21
- AIC CLI Configuration for Alarms, page A-22

AIC IP Address Configuration Example

The following example shows a Cisco 3600 router configured for AIC IP address:

```plaintext
version 12.2
no service single-slot-reload-enable
service tcp-keepalives-in
service tcp-keepalives-out
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname 3600-top
!
logging rate-limit console 10 except errors
!
memory-size iomem 15
ip subnet-zero
!
!
no ip finger
no ip domain-lookup
ip host moe 172.31.10.2
ip host mickey 10.1.1.2
!
no ip dhcp-client network-discovery
frame-relay switching
x25 routing
!
!
call-history-mib max-size 50
!
interface Ethernet0/0
ip address 10.5.37.13 255.255.0.0
ip helper-address 223.255.254.254
no keepalive
half-duplex
!
interface Serial0/0
ip address 10.5.5.1 255.255.255.0
encapsulation frame-relay
no ip mroute-cache
clockrate 500000
frame-relay class voice-vc
frame-relay traffic-shaping
frame-relay map ip 10.5.5.2 990 broadcast
frame-relay interface-dlci 990
frame-relay intf-type dce
```
! interface Ethernet0/1
 no ip address
 half-duplex
 no cdp enable
!
interface Serial0/1
 ip address 10.11.11.1 255.255.255.0
 encapsulation frame-relay
 no ip mroute-cache
 clockrate 256000
 frame-relay class voice-vc
 frame-relay traffic-shaping
 frame-relay interface-dlci 991
 frame-relay intf-type dce
!
interface Serial1/0
 ip address negotiated
!
router mobile
!
ip kerberos source-interface any
ip classless
ip route 223.255.254.254 255.255.255.255 10.5.0.1
ip route 223.255.254.254 255.255.255.255 Ethernet0/0
no ip http server
!
!
map-class frame-relay voice-vc
 frame-relay cir 800000
 frame-relay bc 512000
 no frame-relay adaptive-shaping
 frame-relay fair-queue
 frame-relay voice bandwidth 500000
 frame-relay fragment 100
 frame-relay ip rtp priority 16384 16383 512
!
map-class frame-relay fr1
 frame-relay cir 1000000
 frame-relay bc 1000
 no frame-relay adaptive-shaping
 frame-relay fair-queue
 frame-relay voice bandwidth 1000000
 frame-relay fragment 100
!
map-class frame-relay voice-data
 access-list 1 deny 192.200.1.20
 access-list 2 deny 10.10.1.10
 dialer-list 1 protocol ip permit
 dialer-list 1 protocol ipx permit
!
snmp-server packetsize 4096
snmp-server manager
!
alarm-interface 1
 ip address 10.4.3.2
call rsvp-sync
!
mgcp modem passthrough voip mode ca
no mgcp timer receive-rtcp
!
mgcp profile default
!
dial-peer cor custom
!
dial-peer voice 1 pots
destination-pattern 3
direct-inward-dial
forward-digits all
!
dial-peer voice 100 voip
shutdown
destination-pattern 3
session target ipv4:10.2.81.1
playout-delay maximum 300
!
dial-peer voice 2 pots
shutdown
destination-pattern 3002
!
dial-peer voice 3 pots
shutdown
destination-pattern 3003
!
dial-peer voice 4 pots
shutdown
destination-pattern 3004
!
dial-peer voice 2000 voip
shutdown
destination-pattern 2...
session target ipv4:5.5.5.2
playout-delay maximum 300
!
dial-peer voice 110 voip
shutdown
destination-pattern 1...
session target ipv4:10.2.83.30
playout-delay maximum 300
!
dial-peer voice 922 pots
shutdown
destination-pattern 9..
!
dial-peer voice 22 pots
shutdown
destination-pattern 22
!
dial-peer voice 6001 pots
shutdown
destination-pattern 6001
!
dial-peer voice 333 voip
shutdown
destination-pattern 1
session target ipv4:10.2.79.55
playout-delay maximum 300
!
dial-peer voice 200 vofr
shutdown
destination-pattern 1
!
dial-peer voice 7001 pots
 shutdown
 destination-pattern 7001

 dial-peer voice 5000 voip
 shutdown
 destination-pattern 5...
 session target ipv4:10.11.11.2
 playout-delay maximum 300

 dial-peer voice 20 voip
 shutdown
 destination-pattern 1
 session target ipv4:10.11.11.2
 playout-delay maximum 300

 dial-peer voice 2001 voip
 preference 2
 shutdown
 destination-pattern 2...
 session target ipv4:10.2.79.7
 playout-delay maximum 300

 dial-peer voice 1000 voip
 destination-pattern 1...
 session target ipv4:10.2.81.6
 playout-delay maximum 300
 no vad

 dial-peer voice 1001 voatm
 shutdown
 destination-pattern 1...

 dial-peer voice 1100 vofr
 shutdown
 destination-pattern 1...
 session target Serial0/0 990
 no vad

 gateway

 gateway

 gateway

 gatekeeper
 shutdown

 line con 0
 exec-timeout 0 0
 transport input none
 line 33
 no exec
 transport preferred none
 transport input telnet
 transport output none
 stopbits 1
 line aux 0
 line vty 0 4
 login

 end
IP Route to the AIC Configuration Examples

Following examples show the configuration of an IP route to the AIC with an unnumbered and numbered IP address.

With an Unnumbered IP Address

The following example shows a Cisco 3660 router, with an IP route to an AIC, is configured with an unnumbered IP address:

```
version 12.1
no service single-slot-reload-enable
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname uut2-3660
!
logging rate-limit console 10 except errors
no logging console
!
ip subnet-zero
!
no ip finger
no ip domain-lookup
!
call rsvp-sync
cns event-service server
!
interface FastEthernet0/0
  ip address 10.2.130.2 255.255.0.0
duplex auto
speed auto
no cdp enable
!
interface Serial5/0
  ip unnumbered FastEthernet0/0
!
ip kerberos source-interface any
ip classless
ip route 0.0.0.0 0.0.0.0 10.2.0.1
ip route 10.2.130.102 255.255.255.255 Serial5/0
ip http server
!
no cdp run
!
alarm-interface 5
  ip address 10.2.130.102
!
dial-peer cor custom
!
!
line con 0
  exec-timeout 0 0
  transport input none
line 161
  no exec
  transport preferred none
  transport input telnet
```
Without an Unnumbered IP Address

The following example shows a Cisco 2621 router configured without an unnumbered IP address:

```
uut5-2621#s run
Building configuration...

Current configuration :1318 bytes
!
version 12.2
no service single-slot-reload-enable
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname uut5-2621
!
logging rate-limit console 10 except errors
no logging console
!
ip subnet-zero
!
no ip finger
no ip domain-lookup
!
no ip dhcp-client network-discovery
!
interface FastEthernet0/0
  ip address 10.2.130.5 255.255.0.0
duplex auto
  speed auto
no cdp enable
!
interface Serial1/0
  ip address 172.128.12.1 255.255.255.252
!
routerr rip
network 10.0.0.0
!
ip kerberos source-interface any
ip classless
ip route 0.0.0.0 0.0.0.0 10.2.0.1
no ip http server
!
no cdp run
!
snmp-server packetsize 4096
snmp-server manager
!
alarm-interface 1
!
ip address 172.128.12.2
call rsvp-sync
```
AIC CLI Configuration for Alarms

These examples are output from the `show alarm config #` command.

Discrete Alarm

- **description**: west door
- **normally closed**
- **normal state description**: door closed
- **alarm state description**: door open
- **SNMP trap**: enabled

Analog Alarm Monitoring Current

- **description**: thermostat
- **high-high state description**: very hot
- **high state description**: hot
- **normal state description**: just right
- **low state description**: cold
- **low-low state description**: very cold
- **current-loop**: -5.2 5.4 15.0 25.0 35.1 45.6
- **SNMP trap**: enabled

Analog Alarm Monitoring Current Configured as a Discrete

- **description**: east door
- **configured as discrete**
- **normal state description**: door closed
- **alarm description**: door open
- **current-loop**: 0.0 3.2 5.9
- **SNMP trap**: enabled
Cisco 3640 Central Site Configuration to Support ISDN and Modem Calls

The following configuration allows remote LANs and standalone remote users with modems to dial in to a central site.

The following configuration example shows a Cisco 3640 router with the following hardware configuration:

- One 2-port ISDN-PRI network module installed in slot 1
- One digital modem network module installed in slot 2 and slot 3
- One 1-port Ethernet network module installed in slot 0

Note: Each MICA digital modem card has its own group async configuration. Additionally, a single range of async lines is used for each modem card. For additional interface numbering information, refer to the Digital Modem Network Module Configuration Note.

```console
! version 11.2
service timestamps debug datetime msec
service timestamps log datetime msec
service password-encryption
no service udp-small-servers
no service tcp-small-servers
!
hostname NAS
!
aaa new-model
aaa authentication login default local
aaa authentication login console enable
aaa authentication login vty local
aaa authentication login dialin local
aaa authentication ppp default local
aaa authentication ppp dialin if-needed local
enable secret cisco
!
username admin password cisco
username remotelan1 password dialpass1
username remotelan2 password dialpass2
username PCuser1 password dialpass3
username PCuser2 password dialpass4
async-bootp dns-server 10.1.3.1 10.1.3.2
isdn switch-type primary-5ess
!
controller T1 1/0
framing esf
clock source line
linecode b8zs
pri-group timeslots 1-24
!
controller T1 1/1
framing esf
clock source line
linecode b8zs
pri-group timeslots 1-24
!
interface Loopback0
ip address 10.1.2.254 255.255.255.0
```
Cisco 3640 Central Site Configuration to Support ISDN and Modem Calls

interface Ethernet0/0
ip address 10.1.1.10 255.255.255.0
ip summary address eigrp 10 10.1.2.0 255.255.255.0

interface Serial 1/0:23
no ip address
capsulation ppp
no keepalive
isdn incoming-voice modem
dialer rotary-group 0
dialer-group 1
no fair-queue
no cdp enable

interface Serial 1/1:23
no ip address
capsulation ppp
no keepalive
isdn incoming-voice modem
dialer rotary-group 0
dialer-group 1
no fair-queue
no cdp enable

interface Group-Async1
ip unnumbered Loopback0
capsulation ppp
async mode interactive
peer default ip address pool dialin_pool
no cdp enable
ppp authentication chap pap dialin
group-range 65 88

interface Group-Async2
ip unnumbered Loopback0
capsulation ppp
async mode interactive
peer default ip address pool dialin_pool
no cdp enable
ppp authentication chap pap dialin
group-range 97 120

interface Dialer0
ip unnumbered Loopback0
no ip mroute-cache
capsulation ppp
peer default ip address pool dialin_pool
dialer in-band
dialer-group 1
no fair-queue
no cdp enable
ppp authentication chap pap dialin
ppp multilink

router eigrp 10
network 10.0.0.0
passive-interface Dialer0
no auto-summary

ip local pool dialin_pool 10.1.2.1 10.1.2.50
ip default-gateway 10.1.1.1
ip classless
Configuration in CPE Mode Example

The following example shows a G.SHDSL configuration of VoATM over AAL2, operating in customer premises equipment (CPE) mode, on a Cisco 2600 series router. This router in CPE mode can be linked to either a DSLAM or to another router that is configured to operate in central office (CO) mode.

Router#
version 12.2
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname host1
!
memory-size iomem 10
voice-card 1
!
ip subnet-zero
ip host host2 225.255.255.224
!
no mgcp timer receive-rtcp
call rsvp-sync
!
controller T1 1/0
framing esf
linecode b8zs
ds0-group 0 timeslots 1 type e&m-wink-start
ds0-group 1 timeslots 2 type e&m-wink-start
.
.
.ds0-group 23 timeslots 24 type e&m-wink-start
!
controller T1 1/1
framing esf
linecode b8zs
!
interface Ethernet0/0
 ip address 209.165.202.128 255.255.255.224
 half-duplex
 no cdp enable

interface Serial0/0
 no ip address
 shutdown

interface ATM0/1
 ip address 209.165.201.1 255.255.255.224
 dsl operating-mode gshdsl symmetric annex A
 dsl equipment-type cpe
 dsl linerate auto
 load-interval 30
 atm vc-per-vp 256
 no atm ilmi-keepalive
 pvc 10/100
 vbr-rt 672 672 512
 encapsulation aal2

 pvc 10/200
 protocol ip 209.165.202.159 broadcast
 encapsulation aal5snap

 no fair-queue

interface Ethernet0/1
 no ip address
 shutdown

 ip classless
 ip route 209.165.202.128 255.255.255.224 Ethernet0/0
 no ip http server

 snmp-server engineID local 0000000090200003080477F20
 snmp-server manager

 voice-port 1/0:0
 local-alerting
 timeouts wait-release 3
 connection trunk 3001

 voice-port 1/0:1
 local-alerting
 timeouts wait-release 3
 connection trunk 3002

 voice-port 1/0:23

 local-alerting
 timeouts wait-release 3
 connection trunk 3024
 shutdown

 dial-peer cor custom
dial-peer voice 3001 voatm
 destination-pattern 3001
 called-number 4001
 session protocol aal2-trunk
 session target ATM0/1 pvc 10/100 31
codec aal2-profile ITUT 1 g711ulaw
no vad
!
dial-peer voice 3002 voatm
destination-pattern 3002
called-number 4002
session protocol aal2-trunk
session target ATM0/1 pvc 10/100 32
codec aal2-profile custom 100 g726r32
no vad
!
dial-peer voice 3003 voatm
destination-pattern 3003
called-number 4003
session protocol aal2-trunk
session target ATM0/1 pvc 10/100 33
codec aal2-profile ITUT 7 g729abr8
no vad
.
.
dial-peer voice 3024 voatm
destination-pattern 3024
called-number 3024
session protocol aal2-trunk
session target ATM0/1 pvc 10/100 54
codec aal2-profile ITUT 7 g729abr8
no vad
!
dial-peer voice 1 pots
destination-pattern 4001
port 1/0:0
!
dial-peer voice 2 pots
destination-pattern 4002
port 1/0:1
.
.
dial-peer voice 24 pots
destination-pattern 4024
port 1/0:23
!
!
line con 0
exec-timeout 0 0
transport input none
line aux 0
line vty 0 4

login
!
no scheduler allocate
end

Configuration in CO Mode Example

The following example shows a G.SHDSL configuration of VoATM over AAL2, operating in central
office (CO) mode, on a Cisco 2600 series router. This router in CO mode can be linked to another router
that is configured to operate in CPE mode.

Router#
version 12.2
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname host2
!
memory-sizeiomem 10
voice-card 1
!
ip subnet-zero
ip host host2 225.255.255.224
!
no mgcp timer receive-rtcp
call rsvp-sync
!
controller T1 1/0
 framing esf
 linecode b8zs
ds0-group 0 timeslots 1 type e&m-wink-start
ds0-group 1 timeslots 2 type e&m-wink-start
!
controller T1 1/1
 framing esf
 linecode b8zs
!
interface Ethernet0/0
 ip address 209.165.202.128 255.255.255.224
 half-duplex
 no cdp enable
!
interface Serial0/0
 no ip address
 shutdown
!
interface ATM0/1
 ip address 209.165.201.1 255.255.255.224
 dsl operating-mode gshdsl symmetric annex A
 dsl equipment-type co
 dsl linerate auto
 load-interval 30
 atm vc-per-vp 256
 no atm ilmi-keepalive
 pvc 10/100
 vbr-rt 672 672 512
 encapsulation aal2
!
 pvc 10/200
 protocol ip 209.165.202.159 broadcast
 encapsulation aal5snap
!
 no fair-queue
!
interface Ethernet0/1
 no ip address
 shutdown
!
 ip classless
 ip route 209.165.202.128 255.255.255.224 Ethernet0/0
no ip http server
!
!
snmp-server engineID local 000000090200003080477F20
snmp-server manager
!
voice-port 1/0:0
 local-alerting
 timeouts wait-release 3
 connection trunk 3001
!
voice-port 1/0:1
 local-alerting
 timeouts wait-release 3
 connection trunk 3002
 *
 *
voice-port 1/0:23
 local-alerting
 timeouts wait-release 3
 connection trunk 3024
 shutdown
!
dial-peer cor custom
!
dial-peer voice 3001 voatm
 destination-pattern 3001
 called-number 4001
 session protocol aal2-trunk
 session target ATM0/1 pvc 10/100 31
 codec aal2-profile ITUT 1 g711ulaw
 no vad
!
dial-peer voice 3002 voatm
 destination-pattern 3002
 called-number 4002
 session protocol aal2-trunk
 session target ATM0/1 pvc 10/100 32
 codec aal2-profile custom 100 g726r32
 no vad
!
dial-peer voice 3003 voatm
 destination-pattern 3003
 called-number 4003
 session protocol aal2-trunk
 session target ATM0/1 pvc 10/100 33
 codec aal2-profile ITUT 7 g729abr8
 no vad
 *
 *
dial-peer voice 3024 voatm
 destination-pattern 3024
 called-number 3024
 session protocol aal2-trunk
 session target ATM0/1 pvc 10/100 54
 codec aal2-profile ITUT 7 g729abr8
 no vad
!
dial-peer voice 1 pots
 destination-pattern 4001
 port 1/0:0
 !
dial-peer voice 2 pots
destination-pattern 4002
port 1/0:1
.
.
dial-peer voice 24 pots
destination-pattern 4024
port 1/0:23
!
!
line con 0
 exec-timeout 0 0
 transport input none
line aux 0
line vty 0 4
login
!
no scheduler allocate
end
Formatting the Compact Flash Memory Cards

This appendix describes how to format the compact Flash memory into a Class B Flash file system, known as the low-end file system (LEFS), or into a Class C Flash file system, which is similar to DOS. It also describes how to perform file and directory operations in each file system.

Formatting Procedures for Compact Flash Memory Cards

The following sections describe formatting procedures for internal and external compact Flash memory cards.

Formatting Procedures

Cisco recommends that you erase (Class B) or format (Class C) new compact Flash memory cards to initialize them with either a Class B or Class C Flash file system. This ensures proper formatting and enables the ROM monitor to recognize and boot the Flash.

The Class B Flash file system is also known as the low end file system (LEFS).

The Class C Flash file system is similar to the standard DOS file system.

Note

A compact Flash memory card formatted with the standard DOS file system does not support booting from the ROM monitor.

Determining the File System on a Compact Flash Memory Card

To determine the file system of an external compact Flash memory card, enter the `show slot0: all` command. To determine the file system of an internal compact Flash memory card, enter the `show flash: all` command.

- If geometry and format information is not displayed, the card is formatted with a Class B Flash file system.
- If geometry and format information is displayed, the card is formatted with a Class C Flash file system.

The following examples show outputs for Class B and Class C Flash file systems:
External Card with Class B Flash File System:
The geometry and format information is not displayed for this format.

Router# show slot0: all

<table>
<thead>
<tr>
<th>Partition</th>
<th>Size</th>
<th>Used</th>
<th>Free</th>
<th>Bank-Size</th>
<th>State</th>
<th>Copy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31360K</td>
<td>6502K</td>
<td>24857K</td>
<td>0K</td>
<td>Read/Write</td>
<td>Direct</td>
</tr>
</tbody>
</table>

Slot0 CompactFlash directory:
File Length Name/status
addr fcksum ccksum
1 6658376 c3725-i-mz
0x40 0xE0FF 0xE0FF
[6658440 bytes used, 25454200 available, 32112640 total]
31360K bytes of ATA Slot0 CompactFlash (Read/Write)

Chip information NOT available.

External Card with Class C Flash File System:
The geometry and format information is displayed in this format.

Router# show slot0: all

-#- --length-- -----date/time------ path
1 6658376 Mar 01 1993 04:27:46 c3725-i-mz

25268224 bytes available (6664192 bytes used)

******* ATA Flash Card Geometry/Format Info *******

ATA CARD GEOMETRY
Number of Heads: 4
Number of Cylinders 490
Sectors per Cylinder 32
Sector Size 512
Total Sectors 62720

ATA CARD FORMAT
Number of FAT Sectors 31
Sectors Per Cluster 8
Number of Clusters 7796
Number of Data Sectors 62560
Base Root Sector 155
Base FAT Sector 93
Base Data Sector 187

Internal Card with Class B Flash File System:
The geometry and format information is not displayed for this format.

Router# show flash: all

<table>
<thead>
<tr>
<th>Partition</th>
<th>Size</th>
<th>Used</th>
<th>Free</th>
<th>Bank-Size</th>
<th>State</th>
<th>Copy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>125184K</td>
<td>20390K</td>
<td>104793K</td>
<td>0K</td>
<td>Read/Write</td>
<td>Direct</td>
</tr>
</tbody>
</table>

System CompactFlash directory:
File Length Name/status
addr fcksum ccksum
1 6658376 c3725-i-mz
0x40 0xE0FF 0xE0FF
2 14221136 c3631-telcoent-mz
Appendix B Formatting the Compact Flash Memory Cards

Formatting Procedures for Compact Flash Memory Cards

Formatting Compact Flash Memory as a Class B Flash File System

Use these formatting commands to:

- Format compact Flash memory cards with a Class B Flash file system (LEFS)
- Remove the files from a compact Flash memory card previously formatted with a Class B Flash file system

For external compact Flash memory cards, enter the `erase slot0:` command.
For internal compact Flash memory cards, enter the `erase flash:` command.

The following example shows output for formatting an external compact Flash memory card with a Class B Flash file system:

Router# erase slot0:
Erasing the slot0 filesystem will remove all files! Continue? [confirm]
Current DOS File System flash card in slot0: will be formatted into Low End File System flash card! Continue? [confirm]
Erasing device...

...erased

Erase of slot0: complete
Formatting Compact Flash Memory as a Class C File System

Use these formatting commands to:

- Format compact Flash memory cards with a Class C Flash file system
- Remove the files from a compact Flash memory card previously formatted with a Class C Flash file system

For external compact Flash memory cards, enter the `format slot0:` command.
For internal compact Flash memory cards, enter the `format flash:` command.

The following example shows output for formatting an internal compact Flash memory card with a Class C Flash file system:

```
Router# format flash:
Format operation may take a while. Continue? [confirm]
Format operation will destroy all data in "flash:". Continue? [confirm]
Enter volume ID (up to 64 chars)[default flash]:
Current Low End File System flash card in flash will be formatted into DOS File System flash card! Continue? [confirm]
Writing Monlib sectors ..........................................................
Monlib write complete ...
Format:All system sectors written. OK...

Format:Total sectors in formatted partition:250592
Format:Total bytes in formatted partition:128303104
Format:Operation completed successfully.

Format of flash complete
```

File and Directory Operations

The following sections describe file and directory operations for internal and external Cisco Flash memory cards. File and directory operations vary according to the formatted file system—Class B or Class C.

Operations for Use With Class B Flash File System

The following file operations are useful for compact Flash memory cards formatted with a Class B Flash file system.

Copy Files

To copy files to another location, enter the `copy {flash:|slot0:}` command.

The following example shows output for copying a Cisco IOS file from an internal compact Flash memory card (flash:) to an external compact Flash memory card (slot0:):

```
Router# copy flash:c3725-i-mz.tmp slot0:
```

```bash
Destination filename [c3725-i-mz.tmp]? 
Erase slot0:before copying? [confirm]
```
Verifying checksum... OK (0xC68E)
6458584 bytes copied in 67.788 secs (96396 bytes/sec)

The following example shows output for copying a configuration file to the startup configuration in an internal compact Flash memory card (flash:):

Router# copy flash:my-config1 startup-config
Destination filename [startup-config]?
[OK]
517 bytes copied in 4.188 secs (129 bytes/sec)

The following example shows output for copying a configuration file to the running configuration in an internal compact Flash memory card (flash:):

Router# copy flash:my-config2 running-config
Destination filename [running-config]?
709 bytes copied in 0.72 secs

Display the Contents of a Compact Flash Memory Card

To display the contents (directories and files) of a compact Flash memory card formatted with a Class B Flash file system, enter the dir {flash: | slot0:} command or the show {flash: | slot0:} command.

The following example shows output for displaying the contents of an internal compact Flash memory card using the dir flash: command:

Router# dir flash:

Directory of flash:

1 -rw- 5190020 <no date> c3631-i-mz
2 -rw- 6458584 <no date> c3725-i-mz
3 -rw- 16535740 <no date> c3631-telcoent-mz

128450560 bytes total (100266024 bytes free)

The following example shows output for displaying the contents of an external compact Flash memory card using the show slot0: command:

Router# show slot0:

System CompactFlash directory:
File Length Name/status
1 5190020 c3631-i-mz
2 6458584 c3725-i-mz
3 16535740 c3631-telcoent-mz

[28184536 bytes used, 100266024 available, 128450560 total]
125440K bytes of ATA System CompactFlash (Read/Write)
Delete Files from Compact Flash Memory

To delete a file from compact Flash memory, enter the `delete {flash: | slot0:}` command, followed by the `squeeze {flash: | slot0:}` command.

When a file is deleted in the Class B Flash file system, the memory space occupied by the deleted file is not released until you enter the `squeeze {flash: | slot0:}` command. Although the memory space once occupied by the deleted file remains, the deleted file cannot be recovered. To release the memory space occupied by a deleted file, enter the `squeeze {flash: | slot0:}` command.

Note
The `dir {flash: | slot0:}` command does not show deleted files; the `show {flash: | slot0:}` command shows all files, including any deleted files if the `squeeze {flash: | slot0:}` command has not been entered.

The following example shows output for deleting a Cisco IOS file from an external compact Flash memory card, and then releasing the memory space originally occupied by the file:

```
Router# dir slot0:
Directory of slot0:
 1  -rw-  6458208  <no date>  c3725-i-mz.tmp
 2  -rw-  6458208  <no date>  c3725-i-mz
16056320 bytes total (3139776 bytes free)
Router# delete slot0:c3725-i-mz.tmp
Delete filename [c3725-i-mz.tmp]?
Delete slot0:c3725-i-mz.tmp? [confirm]
Router# dir slot0:
Directory of slot0:
 2  -rw-  6458208  <no date>  c3725-i-mz
16056320 bytes total (3139776 bytes free)
Router# show slot0:
Slot0 CompactFlash directory:
File  Length   Name/status
 1   6458208  c3725-i-mz.tmp [deleted]
 2   6458208  c3725-i-mz
[12916544 bytes used, 3139776 available, 16056320 total]
15680K bytes of ATA Slot0 CompactFlash (Read/Write)
Router# squeeze slot0:
Squeeze operation may take a while. Continue? [confirm]
squeeze in progress...
...Rebuild file system directory...
Squeeze of slot0 complete
```

Display File Content

To display the content of a file in compact Flash memory, use the `more {flash: | slot0:}` command.

The following example shows output from the `more {flash: | slot0:}` command on an external Cisco Flash memory card:

```
Router# more slot0:c3725-i-mz
00000000: 7F454C46 01020100 00000000 00000000 .ELF .... .... ....
```
Operations for Use with Class C Flash File System

The following file and directory operations are useful for compact Flash memory cards formatted with a Class C Flash file system.

File Operations for Class C Flash File System

Copy Files

To copy files to another location, enter the `copy {flash: | slot0:}` command.

The following example shows output for copying a Cisco IOS file from an external compact Flash memory card to an internal compact Flash memory card:

```plaintext
Router# copy slot0:c3725-i-mz.tmp flash:

Destination filename [c3725-i-mz.tmp]?
.
.
.
6458584 bytes copied in 202.940 secs (31973 bytes/sec)
```

--More--
The following example shows output for copying a configuration file to the startup configuration in an internal compact Flash memory card (flash:):

Router# copy flash:my-config1 startup-config

Destination filename [startup-config]? [OK]
517 bytes copied in 4.188 secs (129 bytes/sec)

The following example shows output for copying a configuration file to the running configuration in an internal compact Flash memory card (flash:):

Router# copy flash:my-config2 running-config

Destination filename [running-config]?
709 bytes copied in 0.72 secs

Display the Contents of a Compact Flash Memory Card

To display the contents (directories and files) of a compact Flash memory card formatted with a Class C Flash file system, use the `dir {flash: | slot0:}` or `show {flash: | slot0:}` command.

The following examples show outputs for displaying the contents of an external compact Flash memory card with a Class C Flash file system:

Router# show slot0:

```
-#--length-------date/time------ path
1 6658376 Mar 01 1993 00:29:52 c3725-i-mz
2 2124 Mar 01 1993 00:34:38 running-config
3 2622 Mar 01 1993 00:34:44 startup-config
```

25260032 bytes available (6672384 bytes used)

Router# dir slot0:

```
Directory of slot0:/
  3 -rw- 6455048 Mar 01 2001 00:04:06 c3725-i-mz
1579 -rw- 6458584 Mar 01 2001 00:24:38 c3725-i-mz.new
```

15912960 bytes total (2998272 bytes free)

Display Geometry and Format Information

To display the geometry and format information of a compact Flash memory card formatted with a Class C Flash file system, use the `show {flash: | slot0:} filesys` command.

The following example shows output for displaying the geometry and format information of an external Cisco Flash memory card:

Router# show slot0: filesys

```
********* ATA Flash Card Geometry/Format Info *********

ATA CARD GEOMETRY
 Number of Heads:  4
 Number of Cylinders  490
 Sectors per Cylinder  32
 Sector Size  512
 Total Sectors  62720

ATA CARD FORMAT
 Number of FAT Sectors  31
```
Appendix B Formatting the Compact Flash Memory Cards

File and Directory Operations

<table>
<thead>
<tr>
<th>Sectors Per Cluster</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Clusters</td>
<td>7796</td>
</tr>
<tr>
<td>Number of Data Sectors</td>
<td>62560</td>
</tr>
<tr>
<td>Base Root Sector</td>
<td>155</td>
</tr>
<tr>
<td>Base FAT Sector</td>
<td>93</td>
</tr>
<tr>
<td>Base Data Sector</td>
<td>187</td>
</tr>
</tbody>
</table>

Delete Files from Compact Flash Memory

To delete a file from a compact Flash memory card, use the `delete` command.

The following example shows output for deleting a Cisco IOS file from an internal compact Flash memory card:

```shell
Router# delete flash:c3725-i-mz.tmp
Delete filename [c3725-i-mz.tmp]? [confirm]
Router# dir flash:
```

Rename a File

To rename a file in a compact Flash memory card, use the `rename` command.

The following example shows output for renaming a Cisco IOS file in an internal compact Flash memory card:

```shell
Router# dir flash:

Directory of flash:/

```

Display File Content

To display the content of a file in a compact Flash memory card, use the `more` command.

The following example shows output from the `more` command on an internal Compact Flash card:

```shell
Router# more flash:c3725-i-mz.tmp
```
Directory Operations for Class C Flash File System

Create a New Directory

To create a directory in compact Flash memory, use the `mkdir {flash: | slot0:}` command.

The following example shows output for first displaying the contents of an internal compact Flash card, and then creating a directory named `config` and a subdirectory named `test-config`:

```
Router# dir flash:
Directory of flash:/
3  -rw-    6458208  Mar 01 1993 00:04:08  c3725-i-mz.tmp
128094208 bytes total (121634816 bytes free)
Router# mkdir flash:/config
Create directory filename [config]?
Created dir flash:/config
Router# mkdir flash:/config/test-config
Create directory filename [/config/test-config]?
Created dir flash:/config/test-config
Router# dir flash:
Directory of flash:/
3  -rw-    6458208  Mar 01 1993 00:04:08  c3725-i-mz.tmp
128094208 bytes total (121634816 bytes free)
```

Router# cd flash:/config
Router# dir flash:
Directory of flash:/config
1580 drw- 0 Mar 01 1993 23:48:36 config
128094208 bytes total (121626624 bytes free)

Router# cd flash:/config/test-config
Router# dir flash:
Directory of flash:/config/test-config
1581 drw- 0 Mar 01 1993 23:50:08 test-config
128094208 bytes total (121626624 bytes free)
Appendix B Formatting the Compact Flash Memory Cards

File and Directory Operations

Remove a Directory
To remove a directory from compact Flash memory, use the `rmdir {flash: | slot0:}` command.

Before you can remove a directory, all files and subdirectories must be removed from the directory.

The following example shows output for displaying the contents of an internal compact Flash card, then removing the subdirectory named `test-config`:

```
Router# dir flash:

Directory of flash:/config/

1581 drwx- 0 Mar 01 1993 23:50:08 test-config
128094208 bytes total (121626624 bytes free)

Router# rmdir flash:/config/test-config

Remove directory filename [/config/test-config]? Delete flash:/config/test-config? [confirm]
Removed dir flash:/config/test-config

Router# dir flash:

Directory of flash:/config/

No files in directory
128094208 bytes total (121630720 bytes free)
```

Enter a Directory and Determine Which Directory You Are In
To enter a directory in compact Flash memory, use the `cd` command.

To determine which directory you are in, use the `pwd` command.

If you enter only `cd`, the router will enter the default home directory, which is `flash:/`

The following example shows output for the following actions:
- Entering the home directory of a compact Flash memory card in an internal slot (`flash:/`)
- Verifying that you are in the home directory
- Displaying the contents of the home directory
- Entering the `/config` directory
- Verifying that you are in the `/config` directory
- Entering the home directory of a compact Flash memory card in an external slot (`slot0:/`)
- Verifying that you are in the `slot0:/` directory
- Returning to the home directory (`flash:/`)
- Verifying that you are in the home directory

```
Router# cd

Router# pwd
flash:
Router# dir

Directory of flash:/

3 -rw- 6458208 Mar 01 1993 00:04:08 c3725-i-mz.tmp
1580 drw- 0 Mar 01 1993 23:48:36 config

128094208 bytes total (121630720 bytes free)
```
Router# cd config

Router# pwd
flash:/config/

Router# cd slot0:

Router# pwd
slot0:/

Router# cd

Router# pwd
flash:
Using the ROM Monitor

This appendix describes the ROM monitor (also called the bootstrap program), which is the firmware that runs when you power on or restart the Cisco 2600, Cisco 3600 and Cisco 3700 series router. During normal operation, the ROM monitor helps to initialize the processor hardware and boot the operating system software. You can also use the ROM monitor to help you isolate or rule out hardware problems encountered when installing your router.

This appendix contains the following sections:
- Entering the ROM Monitor Mode
- ROM Monitor Commands
- ROM Monitor Syntax Conventions
- Command Descriptions
- Procedures for Recovering Boot and System Images

Entering the ROM Monitor Mode

To use the ROM monitor, you must have access to the console port. See the Cisco 2600 Series Cabling and Setup Quick Start Guide for information on connecting the console cable.

To enter the ROM monitor mode, do the following:

Configure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 2600> reload</td>
<td>Restart the router.</td>
</tr>
<tr>
<td>Step 2 Press the Break key during the first 60 seconds while the system is starting up</td>
<td>Forces the router to stop booting and enter the ROM monitor mode.</td>
</tr>
</tbody>
</table>

Verify

To verify that you are in the ROM monitor mode, check that the prompt displayed on your screen is the ROM monitor mode prompt:

```
rommon # >
```

The # is the line number and increases incrementally at each prompt.
From the Cisco IOS software, you can configure the router to automatically enter the ROM monitor mode the next time the router boots by setting virtual configuration register bits 3, 2, 1, and 0 to zero. From the console, enter the following configuration command:

```
configuration-register 0x0
```

The new configuration register value, 0x0, is effective after the router is rebooted with the `reload` command. The router remains in the ROM monitor and does not boot the operating system.

As long as the configuration register value remains 0x0, you must manually boot the operating system from the console. Refer to the `boot` command in the section “Command Descriptions” later in this appendix.

ROM Monitor Commands

Enter `?` or `help` at the ROM monitor mode prompt to display a list of available commands. For example:

```
rommon 1 > ?
```

```
alias       set and display aliases command
boot        boot up an external process
break       set/show/clear the breakpoint
conreg      configuration register utility
cont        continue executing a downloaded image
context     display the context of a loaded image
cookie      display contents of cookie PROM in hex
dev         list the device table
dir         list files in the file system
dis         display instruction stream
dnld        serial download a program module
frame       print out a selected stack frame
help        monitor builtin command help
history     monitor command history
meminfo     main memory information
repeat      repeat a monitor command
reset       system reset
set         display the monitor variables
stack       produce a stack trace
sync        write monitor environment to NVRAM
sysret      print out info from last system return
tftpdl      tftp image download
unalias     unset an alias
unset       unset a monitor variable
xmodem      x/ymodem image download
rommon 2 >
```

Note

You can abort any command by pressing the Break key at the console.

ROM Monitor Syntax Conventions

The ROM monitor syntax in this appendix uses the following conventions:

- Square brackets `[]` denote an optional element. In the following example, the element `abc` is not required, but you can specify it if you choose:

 `command [abc]`
• If a minus option is followed by a colon (for example, [-s:]) you must provide an argument for the option.
• A term in italics means that you must fill in the appropriate information. In the following example, you replace the term in italics with the interface type you are using:

\[\text{command type interface}\]

Command Descriptions

This section lists some useful ROM monitor commands. Refer to the Cisco IOS configuration guides and command references for more information on ROM monitor commands.

• **boot** or **b**—Boot an image.
 - boots the first image in Flash memory.
 - `flash:[name]` boots the Cisco IOS software from the Flash memory.
 - `filename tftpserver` boots from the specified file over the network from the specified TFTP server. For example:

    ```
    boot c2600-1-mz 172.15.19.11
    ```
 - `filename` boots from the boothelper image because it does not recognize the device ID. This form of the command is used to netboot the image named `filename`.

 The Cisco 2600 series router does not have a dedicated boothelper image ([rx]boot) as used by some other Cisco routers. With the Cisco 2600 series router, the first image in Flash memory is invoked as the default boothelper image anytime the ROM monitor does not recognize the device ID in the `boot` command.

 You can override the default boothelper image setting by setting the BOOTLDR Monitor environment variable to point to another image. Any system image can be used for this purpose.

• Options to the boot command are `-x`, load image but do not execute, and `-v`, verbose.

• Use the Cisco IOS commands `show version` and `show hardware` to display the source of the currently running image.

 - `-dir device:[partition:]`—List the files on the named device. For example:

    ```
    rommon 8 > dir flash:
    File size Checksum File name
    2229799 bytes (0x220627) 0x469e C2600-j-m2.113-4T
    ```

 - `-help`—Display a summary of ROM monitor commands (equivalent to `?`).

 - `-meminfo`—Display size in bytes, starting address, available range of main memory, the starting point and size of packet memory, and size of nonvolatile memory (NVRAM). The following example shows the `meminfo` command:

    ```
    rommon 9 > meminfo
    ```

    ```
    Main memory size: 32 MB.
    Available main memory starts at 0xa000e000, size 32704KB
    IO (packet) memory size: 25 percent of main memory.
    NVRAM size: 32KB
    ```

• '-l'—The `meminfo` command with the `-l` option displays supported DRAM configurations. The following example shows an example of the `meminfo -l` command:

  ```
  rommon 10 > meminfo -l
  ```
Supported memory configurations:

<table>
<thead>
<tr>
<th>DIMM 0</th>
<th>DIMM 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>4M</td>
<td>8M-DUAL</td>
</tr>
<tr>
<td>16M</td>
<td>32M-DUAL</td>
</tr>
<tr>
<td>4M</td>
<td>4M</td>
</tr>
<tr>
<td>4M</td>
<td>8M-DUAL</td>
</tr>
<tr>
<td>4M</td>
<td>16M</td>
</tr>
<tr>
<td>4M</td>
<td>32M-DUAL</td>
</tr>
<tr>
<td>8M-DUAL</td>
<td>4M</td>
</tr>
<tr>
<td>8M-DUAL</td>
<td>8M-DUAL</td>
</tr>
<tr>
<td>8M-DUAL</td>
<td>16M</td>
</tr>
<tr>
<td>8M-DUAL</td>
<td>32M-DUAL</td>
</tr>
<tr>
<td>16M</td>
<td>4M</td>
</tr>
<tr>
<td>16M</td>
<td>8M-DUAL</td>
</tr>
<tr>
<td>16M</td>
<td>16M</td>
</tr>
<tr>
<td>16M</td>
<td>32M-DUAL</td>
</tr>
<tr>
<td>32M-DUAL</td>
<td>4M</td>
</tr>
<tr>
<td>32M-DUAL</td>
<td>8M-DUAL</td>
</tr>
<tr>
<td>32M-DUAL</td>
<td>16M</td>
</tr>
<tr>
<td>32M-DUAL</td>
<td>32M-DUAL</td>
</tr>
</tbody>
</table>

- **reset** or **i**—Reset and initialize the router, similar to power on.
- **tftpdnld**—Download an image using Trivial File Transfer Protocol (TFTP) from a remote server.
- **show rom-monitor**—Shows version of read-only ROMMON, and if present, the upgrade version of ROMMON. It also shows the current version of ROMMON which version will be selected for execution when the Cisco IOS software is booted again. This command is available in the Cisco IOS exec mode.
 - **showmon**—Available in the ROMMON command mode. Provides the same information as the show rom-monitor command in the Cisco IOS exec mode.
- **upgrade rom-monitor <file<URL>> preference<readonly|upgrade>>**—Installs and reloads a new version of ROMMON in the Cisco IOS exec mode. URL refers to the path where the new ROMMON image is stored. Prompts the user to save the configuration.
 - **upgrade rom-monitor preference<readonly|upgrade>**—Selects the version of ROMMON to be loaded the next time the router is reloaded. This command is used in the Cisco IOS exec mode.
 - **rommon-pref**—Used in ROMMON command mode. Provides the same information as upgrade rom-monitor preference command in the Cisco IOS exec mode.

Note
The commands **show rom-monitor, showmon, upgrade rom-monitor, upgrade rom-monitor preference, rommon-pref** present in the Cisco 3700 series routers only. The command **tftpdnld** is present in the Cisco 2600 series routers only.
Debugging Commands

Most debugging commands are functional only when Cisco IOS software has crashed or is aborted. If you enter a debugging command and Cisco IOS crash information is not available, the following error message displays:

"xxx: kernel context state is invalid, can not proceed."

- **stack** or **k**—Produce a stack trace.
- **context**—Display processor context.
- **frame**—Display an individual stack frame.
- **sysret**—Display return information from the last booted system image. This information includes the reason for terminating the image, a stack dump of up to eight frames, and, if an exception is involved, the address where the exception occurred. For example:

```
rommon 8 > sysret
System Return Info:
  count: 19, reason: a SegV exception
  pc: 0x802b1040, error address: 0x802b1040
  Stack Trace:
    FP: 0x80908398, PC: 0x802b102c
    FP: 0x809083b0, PC: 0x802b0b88
    FP: 0x809083d8, PC: 0x8017039c
    FP: 0x809083e8, PC: 0x8016f764
```

Configuration Register Commands

The virtual configuration register resides in NVRAM. You can display or modify the virtual configuration register from either the ROM monitor or the operating system software.

To change the virtual configuration register from the ROM monitor, enter **confreg** by itself for menu mode, or enter the new value of the register in hexadecimal.

- **confreg [hexnum]**—Change the virtual configuration register to the value specified. The value is always interpreted as hexadecimal.

Note

Entering **confreg** without an argument displays the contents of the virtual configuration register and prompts you to alter the contents by describing the meaning of each bit. In either case, the new virtual configuration register value is written into NVRAM, but is not effective until you reset or power-cycle the router.

The following display shows an example of the **confreg** command:

```
rommon 7 > confreg
Configuration Summary
  enabled are:
    break/abort has effect
    console baud: 9600
    boot: the ROM Monitor
  do you wish to change the configuration? y/n [n]: y
  enable "diagnostic mode"? y/n [n]: y
  enable "use net in IP bcast address"? y/n [n]:
  enable "load rom after netboot fails"? y/n [n]:
  enable "use all zero broadcast"? y/n [n]:
  disable "break/abort has effect"? y/n [n]:
```

Entering the ROM Monitor Mode

Entering the ROM Monitor Mode

enable "ignore system config info"? y/n [n]:
change console baud rate? y/n [n]: y
enter rate: 0 = 9600, 1 = 4800, 3 = 2400
4 = 19200, 5 = 38400, 6 = 57600, 7 = 115200 [0]: 0
change the boot characteristics? y/n [n]: y
enter to boot:
0 = ROM Monitor
1 = the boot helper image
2-15 = boot system
[0]: 0

Configuration Summary
enabled are:
diagnostic mode
break/abort has effect
console baud: 9600
boot: the ROM Monitor

do you wish to change the configuration? y/n [n]:

You must reset or power cycle for new config to take effect

Using the show rom-monitor command

The show rom-monitor command displays the current version of the read only ROM monitor, and if present displays the upgrade version of the ROM monitor. The upgrade version is selected when the system is rebooted. This command runs in the Cisco IOS exec mode.

You get the following output, when the read only ROM monitor is present:

Router# show rom-monitor
ReadOnly ROMMON version:
System Bootstrap, Version 12.2(4r)XT2, RELEASE SOFTWARE (fc1)
TAC Support: http://www.cisco.com/tac
Copyright (c) 2001 by cisco Systems, Inc.
No upgrade ROMMON programmed or not yet run
Currently running ROMMON from ReadOnly region
ROMMON from ReadOnly region is selected for next boot
Router#

Following is an example of an output when both the read only and the upgrade versions of the ROM monitor are present:

Router# show rom-monitor
ReadOnly ROMMON version:
System Bootstrap, Version 12.2(4r)XT4, RELEASE SOFTWARE (fc1)
TAC Support: http://www.cisco.com/tac
Copyright (c) 2001 by cisco Systems, Inc.
Upgrade ROMMON version:
System Bootstrap, Version 12.2(8r)T1, RELEASE SOFTWARE (fc1)
TAC Support: http://www.cisco.com/tac
Copyright (c) 2002 by cisco Systems, Inc.
Currently running ROMMON from Upgrade region
ROMMON from Upgrade region is selected for next boot
Router#

You can get the same information if you enter the showmon command in the ROMMON command mode.
Using the upgrade rom-monitor Command

Use the `upgrade rom-monitor` command to upgrade the ROM monitor to a new version. Depending on where the image is located, use the following commands to upgrade the ROM monitor:

- `upgrade rom-monitor file <URL>`
- `upgrade rom-monitor preference <readonly | upgrade>`

`upgrade rom-monitors file <URL>` command installs the new version of ROM monitor on the router by taking the image from the location indicated in the URL. The image is in the form of “.srec” file. It will then reload the router.

Following is an example of the output when the upgrade version of ROM monitor is located at `tftp://223.255.254.254/ajayhn/c3745_RM2.srec`, and the system configuration has not been saved:

```
Router# upgrade rom-monitor file tftp://223.255.254.254/ajayhn/C3745_RM2.srec
Loading ajayhn/C3745_RM2.srec from 223.255.254.254 (via FastEthernet0/0):
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
[OK - 641719/1283072 bytes]
This command will reload the router. Continue? [yes/no]: y
System configuration has been modified. Save? [yes/no]: y
Building configuration...
Erasing boot flash eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
Programming boot flash pppp
Now Reloading
System Bootstrap, Version 12.2(4r)XT4, RELEASE SOFTWARE (fc1)
TAC Support: http://www.cisco.com/tac
Copyright (c) 2001 by cisco Systems, Inc.
Running new upgrade for first time
System Bootstrap, Version 12.2(8r)T1, RELEASE SOFTWARE (fc1)
TAC Support: http://www.cisco.com/tac
Copyright (c) 2002 by cisco Systems, Inc.
c3745 processor with 196608 Kbytes of main memory
Main memory is configured to 64 bit mode with parity disabled
Upgrade ROMMON initialized
rommon 1 >
```

Following output example a configuration that has been saved:

```
Router# upgrade rom-monitor file tftp://223.255.254.254/ajayhn/C3745_RM2.srec
Loading ajayhn/C3745_RM2.srec from 223.255.254.254 (via FastEthernet0/0):
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
[OK - 641719/1283072 bytes]
This command will reload the router. Continue? [yes/no]: y
Erasing boot flash eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
Programming boot flash pppp
Now Reloading
System Bootstrap, Version 12.2(4r)XT4, RELEASE SOFTWARE (fc1)
TAC Support: http://www.cisco.com/tac
Copyright (c) 2001 by cisco Systems, Inc.
Running new upgrade for first time
System Bootstrap, Version 12.2(8r)T1, RELEASE SOFTWARE (fc1)
TAC Support: http://www.cisco.com/tac
Copyright (c) 2002 by cisco Systems, Inc.
c3745 processor with 196608 Kbytes of main memory
Main memory is configured to 64 bit mode with parity disabled
Upgrade ROMMON initialized
rommon 1 >
```
Note rommon-pref in the ROMMON command mode provides the same information as upgrade rom-monitor preference command in the Cisco IOS Exec mod.

Procedures for Recovering Boot and System Images

If your router experiences difficulties and no longer contains a valid Cisco IOS software image in Flash memory, you can recover the Cisco IOS image using one of the following ROM monitor commands:

- **xmodem**—Use this if the computer attached to your console has a terminal emulator that has xmodem capability.
- **tftpdnld**—Use this if you have a TFTP server directly connected to the Ethernet 0 port.

Using the xmodem Command

The xmodem command establishes a connection between a console and the router console port for disaster recovery if both the boot and system images are erased from Flash memory.

xmodem [filename]—Establishes an xmodem connection between the console and the router. The optional parameter filename specifies the source file containing the Cisco IOS image.

Other options include the following:

- -c—use cyclic redundancy check (CRC-16)
- -y—use Ymodem transfer protocol
- -r—copy the image to DRAM for launch
- -x—do not launch image on completion of download

Using the tftpdnld Command

The tftpdnld command downloads a Cisco IOS software image from a remote server into Flash memory using TFTP.

tftpdnld—Begins the TFTP copy command.

The following variables are required:

- IP_ADDRESS—The IP address for the router you are using.
- IP_SUBNET_MASK—The subnet mask for the router you are using.
- DEFAULT_GATEWAY—The default gateway for the router you are using.
- TFTP_SERVER—The IP address of the server from which you want to download the image file.
- TFTP_FILE—The name of the file that you want to download.

The following variables are optional:

- TFTP_VERBOSE—Print setting. 0=quiet, 1=progress, 2=verbose. The default is 1.
- TFTP_RETRY_COUNT—Retry count for ARP and TFTP. The default is 7.
- TFTP_TIMEOUT—Overall timeout of the download operation in seconds. The default is 2400 seconds.
- TFTP_CHECKSUM—Performs a checksum test on the image. 0=no, 1=yes. The default is 1.
The syntax for specifying the variables is:

```
VARIABLE_NAME=value
```

After you specify the variables, you must reenter the `tftpdnld` command. For example:

```
rommon 1 > tftpdnld
rommon 2 > IP_ADDRESS=172.15.19.11
rommon 3 > IP_SUBNET_MASK=255.255.255.0
rommon 4 > DEFAULT_GATEWAY=172.15.19.1
rommon 5 > TFTP_SERVER=172.15.20.10
rommon 6 > TFTP_FILE=/tftpboot/c2600-i-mz
rommon 7 > TFTP_VERBOSE=1
rommon 8 > tftpdnld
```

```
IP_ADDRESS=172.15.19.11
IP_SUBNET_MASK=255.255.255.0
DEFAULT_GATEWAY=172.15.19.1
TFTP_SERVER=172.15.20.10
TFTP_FILE=/tftpboot/c2600-i-mz
TFTP_VERBOSE=1
```

Invoke this command for disaster recovery only.
WARNING: all existing data in flash will be lost!
Do you wish to continue? y/n: [n]:

Enter y to begin downloading the Cisco IOS software image. When the process is complete, the ROM monitor mode prompt displays on your screen.
Numerics

56-kbps DSU/CSU interface, configuring 2-22

A

analog modem interface
 configuring 3-26
 modem country codes 3-28
asynchronous/synchronous serial interface
 configuring 3-5
asynchronous interface, configuring 3-9
atm-dxi map command 3-48
ATM interface
 configuring 3-20
 configuring PVCs 3-21
 configuring SVCs 3-22
 IMA interface configuration 3-23
 ATM T1/E1 interface configuration 3-23

B

benefits 3-50
boot
 ROM monitor C-3

C

cautions symbol, meaning of xiii
Cisco 2600 series router
 WAN Interface Numbering 1-2
 Cisco 2600 series routers
 interface numbering 1-1
 Voice Interface Numbering 1-4
Cisco 3600 series routers
 interface numbering 1-4
 unit numbers (figure) 1-9
Cisco 3700 Series Interface Numbering 1-9
Cisco 3725 Interface Numbering 1-9
Cisco 3745 router interface numbering 1-11
Cisco IOS
 about 1-13
 command modes 1-14
 enable mode 1-15
 getting help 1-13
 saving configuration changes 1-15
 undo command 1-15
 undo feature 1-15
 clock rate settings 3-8
 codec complexity configuration 3-18
 command modes, Cisco IOS 1-18
 commands
 configuration register C-5
 context C-5
 copy running-config 1-15
 debugging C-5
 dir C-3
 exec-timeout 3-2
 frame C-5
 half-duplex timer 3-8
 help 1-13, C-3
 meminfo C-3
 ping 3-29
 reset C-4
ROM monitor diagnostics C-1
show config 3-3
show controllers 3-29
show controllers atm 3-26
show ima interface atm 3-26
show interface async 3-28
show interfaces 3-29
show line 3-28
show protocols 3-29
show running-config 3-29
show version 3-29
stack C-5
sysret C-5
tftpdnld C-4
undo 1-15
xmodem C-8
compress command 3-50
compression
 hardware 3-49
PPP 3-49
configuration
 before starting router 2-1
 completing 2-24
 global parameters 2-2
 saving 2-24, 3-65
 timeout 3-2
 verifying 3-29
 voice over IP 4-2
 voice over IP examples 4-3
configuration, saving 1-15
configuration example A-23
configuration register
 changing settings C-5
configuration tasks 3-51
 configure modem lines for dial-in and dial-out 3-57
 configure the modem for dial-in 3-58
 configure the modem for dial-out 3-58
 configure the default IP pool information 3-57
 configure the E1/T1 network module for ISDN PRI 3-52
 configure channelized E1 ISDN PRI 3-52
 configure channelized T1 ISDN PRI 3-53
 configure the ISDN D-channel serial interfaces 3-53
 configure the ISDN D-channel serial interface for E1 modules 3-54
 configure the ISDN D-channel serial interface for T1 modules 3-54
 configure the ISDN dialer interface 3-56
 configure the LAN interface 3-55
 configure the loopback interface 3-55
 create the group asynchronous interface 3-55
 configuring
 analog modem 3-26
 asynchronous/synchronous serial interface 3-5
 asynchronous interface 3-9
 ATM interface 3-20
 PVCs 3-21
 SVCs 3-22
 country codes 3-28
 E1 interface 3-15
 Ethernet interface 3-3
 global parameters 2-2
 high-density voice interface
 codec complexity 3-18
 IMA interface 3-23
 ATM T1/E1 interface 3-23
 IMA group interface 3-25
 interface parameters 2-6
 ISDN-BRI interface 3-10
 ISDN BRI line 2-15
 ISDN PRI interface 3-15
 E1 interface 3-16
 T1 interface 3-15
 multiflex trunk interface 3-15
 E1 interface 3-16
 T1 interface 3-15
 TDM connect 3-17
T1 (FT1) WAN interface 3-19
T1 interface 3-15
context command C-5
conventions xii
conventions, document xii

D
debugging commands C-5
dir command C-3
document
conventions xii
document conventions xii

E
E1/T1 ISDN PRI interface 3-15, 3-16
E1/T1 multiflex trunk interface 3-15, 3-16
E1 interface
 configuring 3-15
enable mode 1-15
encapsulation atm-dxi command 3-48
encapsulation ppp command
 configuring compression over 3-50
Ethernet interface, configuring 2-6, 3-3

F
feature summary 3-50
frame command C-5

G
global configuration command mode 1-14
global parameters configuration 2-2

H
half-duplex timer commands 3-8
hardware compression, displaying 3-49
help
 command C-3
help, Cisco IOS 1-13
high-density voice interface
codec complexity 3-18
host name
 configuring 3-2
 show config command 3-3
 verifying 3-3
hssi internal-clock command 3-48
HSSI network module
 benefits 3-47
 configuration
 disabling fair queueing 3-48
 examples 3-48
 invoking ATM 3-48
 specifying clocking 3-48
 specifying encapsulation 3-47
 specifying interface 3-47
 task list 3-47
 feature summary 3-46

I
IMA interface
 configuring 3-23
 configuring the ATM T1/E1 interface 3-23
 configuring the IMA interface 3-25
IMA interface configuration 3-25
interface configuration command mode 1-14
interface numbering
 Cisco 2600 series routers 1-1
 Cisco 3600 series routers 1-4
 Cisco 3660 slot 0 1-6, 1-8
 WAN and LAN interface cards 1-2
ISDN BRI
 switch type, provisioning 2-16
ISDN BRI interface, configuring 3-10
ISDN BRI line, configuring 2-15
ISDN PRI interface
 configuring 3-15
 E1 configuration 3-16
 T1 configuration 3-15
ISDN PRI switch types 3-52
ISDN provisioning by switch type (table) 2-16
ISDN switch types 3-12

LAN Interface Numbering
 Cisco 2600 series router 1-2

meminfo command C-3
modem country codes 3-28
multiflex trunk interface
 configuring 3-15
 E1 configuration 3-16
 T1 configuration 3-15
 TDM connect 3-17

network modules
 configuring
 asynchronous/synchronous interface 2-10
 E1/T1 ISDN PRI interface 2-18
 Ethernet interface 2-6
 Fast Ethernet interface 2-6
 ISDN BRI interface 2-12
 serial interface 2-7
 Token Ring interface 2-7

note symbol, meaning of xiii

P
 parameters
 configuring global 2-2
 configuring interface 2-6
 password
 configuring 3-2
 show config command 3-3
 verifying 3-3
 PPP
 compression 3-49
 prerequisites 3-51
 privileged EXEC command mode 1-14
 provisioning ISDN switch types 2-16
 PVC configuration 3-21

R
 recovering boot and system images C-8
 reset command C-4
 ROM
 monitor
 diagnostics C-5
 router
 rear view
 Cisco 3620 (figure) 1-5
 Cisco 3631 (figure) 1-6
 Cisco 3640 (figure) 1-5
 Cisco 3660 (figure) 1-5

S
 saving configuration changes 1-15, 3-65
 script, setup 2-2
 service profile identifier
 See SPID
setup command facility 2-2
setup script, using 2-2
show config command 3-3
show process cpu command 3-49
Slot numbering - Cisco 3745 1-11
Slot numbering for Cisco 3600 series router 1-4
slot numbering for Cisco 3725 1-10
SPID 2-17
SPIDs 2-17
stack command C-5
SVC configuration 3-22
Symbols
 Caution xiii
 Note xiii
 Timesaver xiii
 Tips xiii
sysret command C-5

V
verifying
 IMA configuration 3-26
 interface configuration 3-29
 modem configuration 3-28
Voice Interface cards - Cisco 3700 series 1-11
voice interface numbering
 Cisco 2600 series routers 1-4
Voice interface numbering for Cisco 3600 Series
 Routers 1-9
Voice interface numbering for Cisco 3700 Series
 Routers 1-13
voice over IP
 configuration examples 4-3
 configuring 4-2
 configuring direct-inward dialing on a BRI port 4-11
 FXS-to-FXS connections 4-4
 linking PBX users with E&M trunk lines 4-6
 PSTN gateway access using FXO connections 4-8
 PSTN gateway access using FXO connections in PLAR
 mode 4-10

W
WAN interface cards
 Cisco 3600 series slot (figure) 1-8
WAN interface cards - Cisco 3700 series 1-11
WAN Interface Numbering
 Cisco 2600 series routers 1-2

X
xmodem command C-8