PROBLEM 1.
runner% cat final1.c
#include <stdio.h> /* another solution */
#include <stdio.h>

void main(void)
{
 int i = 0, n;
 scanf("%i", &n);
 for (i = n-1; i >= 0; i--)
 printf("%i ", i);
 printf("\n");
}

coyote19% cc -o final1 final1.c

coyote19% final1
5
4 3 2 1 0
runner%

PROBLEM 2.
#include <stdio.h>
void main(void)
{
 int i;
 double arr[200];
 int zero_found;
 for (i = 0; i < 100; i++)
 arr[i] = (double)(i+1);
 /* search for zero */
 zero_found = 0;
 for (i = 0; i < 100; i++) {
 if (arr[i] == 0.0) zero_found = 1;
 break; /* works without the break */
 }
 if (zero_found) printf("Zero found\n");
 else printf("No zeros\n");
}

PROBLEM 3.
#include <stdio.h>
#include <ctype.h>
void main(void)
{
 char ch;
 int digits = 0;
 while((ch = getchar()) != EOF)
 if (isdigit(ch)) digits++;
 printf("Number of digits: %i\n", digits);
}
runner% cc -o final_1 final_1.c
runner% final_1 < final_1.c
Number of digits: 1

PROBLEM 4.
runner% cat final3.c
#include <stdio.h>
#define MAXFIB 40
void main(void)
{
 int f[MAXFIB];
 int i;
 f[0] = 0; f[1] = 1;
 for (i = 2; i < MAXFIB; i++)
 f[i] = f[i-1] + f[i-2];
 for (i = 0; i < MAXFIB; i++)
 printf("Fibonacci number %2i = %8i\n", i, f[i]);
}
runner% cc -o final3 final3.c
PROBLEM 5. Carnivals love this game because they make an average of 7.87 cents for each dollar that players bet. The players ("suckers") sometimes reason as follows: there are 3 chances out of 6 that my number will come up, so I should come out even that way, and the extra paid off for duplicates is just gravy.

/* Simulate game of Chuck-O-Luck
* Each time, read in a number to bet on: bet_on, 1 <= bet_on <= 6
* Simulate rolling three dice, results in: d[0], d[1], d[2]
* Count number of dice matching your number: num_dice
* If num_dice > 0, you win num_dice dollars, but if
* num_dice == 0, you lose a dollar.
* Program written by N. Wagner, April 29, 1998
*/

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define MAX_GAMES 100000 /* total number of games to play */
int roll(void); /* single roll of a die */
void main(void)
{
 int bet_on = 4; /* the number you are betting on */
 int winnings = 0; /* total winnings for all games */
 int win[4] = {0, 0, 0, 0}; /* keep track of the number of times the*/
 /* dice rolled matched your number */
 int n; /* count the games */
 int i; /* counter used for dice */
 int num_dice; /* number of dice matching your number */
 int d[3]; /* results of three rolls */
 srand48((long)time(NULL)); /* initialize random number generator */
 for (n = 0; n < MAX_GAMES; n++) { /* play MAX_GAMES number of games */
 /* count number of rolls matching your number */
 num_dice = 0;
 for (i = 0; i < 3; i++)
 if (d[i] == bet_on) num_dice++;
 win[num_dice]++; /* keep track of each value of num_dice */
 if (num_dice == 3) winnings += 3; /* add to winnings */
 else if (num_dice == 2) winnings += 2; /* add to winnings */
 else if (num_dice == 1) winnings += 1; /* add to winnings */
 else if (num_dice == 0) winnings += -1; /* take from winnings */
 } /* end of for loop */

 printf("Total winnings:%i dollars, or %.3f%%, out of %i bet total
", winnings, 100.0*winnings/MAX_GAMES);
 printf("Percentages: 3: %.5f%%, 2: %.5f%%, 1: %.5f%%, 0: %.5f%%\n", win[3]*100.0/MAX_GAMES,win[2]*100.0/MAX_GAMES,win[1]*100.0/MAX_GAMES,win[0]*100.0/MAX_GAMES);
 printf("Exact values: 3: %.5f%%, 2: %.5f%%, 1: %.5f%%, 0: %.5f%%\n", 1.0*100.0/216.0, 15.0*100.0/216.0, 75.0*100.0/216.0, 125.0*100.0/216.0);
}

int roll(void)
{
 return (int)(6.0*drand48() + 1.0);
}

runner% final
Total winnings:7855374 dollars, or -7.85%, out of 100000000 bet total
Percentages: 3: 0.46329%, 2: 6.9444%, 1: 34.7222%, 0: 57.8703%
Exact values: 3: 0.46296%, 2: 6.9444%, 1: 34.7222%, 0: 57.8703%
Notice that you are losing nearly 8% of the money you bet. (7.87% on the average.)

If we make the one change that the game pays $20 in case of all three dice are equal to your number, then the game is exactly fair.

runner% final (with MAX_GAMES equal to 100000000 and one line of code changed: if (num_dice == 3) winnings += 3;
changed to: if (num_dice == 3) winnings += 20;)
Total winnings:3990 dollars, or 0.004%, out of 100000000 bet total
Percentages: 3: 0.46306%, 2: 6.94374%, 1: 34.72425%, 0: 57.86894%
Exact values: 3: 0.46296%, 2: 6.94444%, 1: 34.72222%, 0: 57.87037%