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SHORTInternetPREFACEWith this issue we have terminated the setion \Short Notes.". . . It has never been \rystal lear" why a Contribution annot be short,just as it has oasionally been veri�ed in these pagesthat a Short Note might be long.| ROBERT A. SHORT, IEEE Transations on Computers (1973)This booklet ontains draft material that I'm irulating to experts in the�eld, in hopes that they an help remove its most egregious errors before toomany other people see it. I am also, however, posting it on the Internet forourageous and/or random readers who don't mind the risk of reading a fewpages that have not yet reahed a very mature state. Beware: This materialhas not yet been proofread as thoroughly as the manusripts of Volumes 1, 2, 3,and 4A were at the time of their �rst printings. And alas, those arefully-hekedvolumes were subsequently found to ontain thousands of mistakes.Given this aveat, I hope that my errors this time will not be so numerousand/or obtrusive that you will be disouraged from reading the material arefully.I did try to make the text both interesting and authoritative, as far as it goes.But the �eld is vast; I annot hope to have surrounded it enough to orral itompletely. So I beg you to let me know about any de�ienies that you disover.To put the material in ontext, this portion of fasile 5 previews Setion7.2.2.1 of The Art of Computer Programming, entitled \Daning links." Itdevelops an important data struture tehnique that is suitable for baktrakprogramming, whih is the main fous of Setion 7.2.2. Several subsetions(7.2.2.2, 7.2.2.3, et.) will follow.� � �The explosion of researh in ombinatorial algorithms sine the 1970s hasmeant that I annot hope to be aware of all the important ideas in this �eld.I've tried my best to get the story right, yet I fear that in many respets I'mwoefully ignorant. So I beg expert readers to steer me in appropriate diretions.Please look, for example, at the exerises that I've lassed as researhproblems (rated with diÆulty level 46 or higher), namely exerises 182, : : : ; I'vealso impliitly mentioned or posed additional unsolved questions in the answersto exerises 82, 210, : : : . Are those problems still open? Please inform me ifyou know of a solution to any of these intriguing questions. And of ourse if noiii
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iv PREFACE JellisHuangSihermanFGbookKnuthsolution is known today but you do make progress on any of them in the future,I hope you'll let me know.I urgently need your help also with respet to some exerises that I madeup as I was preparing this material. I ertainly don't like to reeive redit forthings that have already been published by others, and most of these results arequite natural \fruits" that were just waiting to be \pluked." Therefore pleasetell me if you know who deserves to be redited, with respet to the ideas foundin exerises 5, 6, 20, 21, 31, 40, 70, 158, 163, 177, 198(d), 206, 207, 208, 210,218, 222, : : : . Furthermore I've redited exerises : : : to unpublished work of: : : . Have any of those results ever appeared in print, to your knowledge?� � �Speial thanks are due to George Jellis for answering dozens of historial queries,as well as to Wei-Hwa Huang, George Siherman, and : : : for their detailedomments on my early attempts at exposition. And I want to thank numerousother orrespondents who have ontributed ruial orretions.� � �I happily o�er a \�nder's fee" of $2.56 for eah error in this draft when it is �rstreported to me, whether that error be typographial, tehnial, or historial.The same reward holds for items that I forgot to put in the index. And valuablesuggestions for improvements to the text are worth 32/ eah. (Furthermore, ifyou �nd a better solution to an exerise, I'll atually do my best to give youimmortal glory, by publishing your name in the eventual book:�)In the prefae to Volume 4B I plan to introdue the abbreviation FGbookfor my book Seleted Papers on Fun and Games (Stanford: CSLI Publiations,2011), beause I will be making frequent referene to it in onnetion withrereational problems.Cross referenes to yet-unwritten material sometimes appear as `00'; thisimpossible value is a plaeholder for the atual numbers to be supplied later.Happy reading!Stanford, California D. E. K.99 Umbruary 2016
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7.2.2.1 DANCING LINKS 1 BARRISFIELDSundoingexat overing{0s and 1sWhat a danedo they doLordy, how I'm tellin' you!| HARRY BARRIS, Mississippi Mud (1927).Don't lose your on�dene if you slip,Be grateful for a pleasant trip,And pik yourself up, dust yourself o�, start all over again.| DOROTHY FIELDS, Pik Yourself Up (1936)7.2.2.1. Daning links. One of the hief harateristis of baktrak algo-rithms is the fat that they usually need to undo everything that they do totheir data strutures. Blah blah de blah blah blah.� � �Exat over problems. We will be seeing many examples where links danehappily and eÆiently, as we study more and more examples of baktraking.The beauty of the idea an perhaps be seen most naturally in an importantlass of problems known as exat overing : We're given an m � n matrix A of0s and 1s, and the problem is to �nd a subset of rows whose sum is exatly 1 inevery olumn. For example, onsider the 6� 7 matrixA = 0BBBBB� 0 0 1 0 1 1 01 0 0 1 0 0 10 1 1 0 0 1 01 0 0 1 0 0 00 1 0 0 0 0 10 0 0 1 1 0 1
1CCCCCA : (20)Eah row of A orresponds to a subset of a 7-element universe. A moment'sthought shows that there's only one way to over all seven of these olumns withdisjoint rows, namely by hoosing rows 1, 4, and 5. We want to teah a omputerhow to solve suh problems, when there are many, many rows and many olumns.
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2 COMBINATORIAL SEARCHING (F5C: 29 Jan 2017�2201) 7.2.2.1 DUDENEYCLARKEGOLOMBGolombConwayIf mounted on ardboard, [these piees℄will form a soure of perpetual amusement in the home.| HENRY E. DUDENEY, The Canterbury Puzzles (1907)Very gently, he replaed the titanite rossin its setting between the F, N, U, and V pentominoes.| ARTHUR C. CLARKE, Imperial Earth (1976)Whih English nouns ending in -o pluralize with -s and whih with -es?If the word is still felt as somewhat alien, it takes -s,while if it has been fully naturalized into English, it takes -es.Thus, ehoes, potatoes, tomatoes, dingoes, embargoes, et.,whereas Italian musial terms are altos, bassos, antos, pianos, solos, et.,and there are Spanish words like tangos, armadillos, et.I one held a trademark on `Pentomino(-es)', but I now preferto let these words be my ontribution to the language as publi domain.| SOLOMON W. GOLOMB, letter to Donald Knuth (16 February 1994)Everybody agrees that seven of the pentominoes should be named afterseven onseutive letters of the alphabet:
T U V W X Y ZBut two di�erent systems of nomenlature have been proposed for the other �ve:

F I L P N or O P Q R S(S. W. Golomb) (J. H. Conway)where Golomb likes to think of the word `Filipino' while Conway prefers to mapthe twelve pentominoes onto the twelve onseutive letters. Conway's shemetends to work better in omputer programs.
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7.2.2.1 DANCING LINKS 3 HEINuboidsparallelepipedsHeinSomaGardnerParker Brotherspentominoesanonialfatoring
A minimum number of bloks of simple form are employed. . . .Experiments and alulations have shown that from the set of seven bloksit is possible to onstrut approximately the same number of geometrial�gures as ould be onstruted from twenty-seven separate ubes.| PIET HEIN, United Kingdom Patent Spei�ation 420,349 (1934)� � �The simplest polyubes are uboids|also alled retangular parallelepipedsby people who like long names. But things get even more interesting when weonsider nonuboidal shapes. Piet Hein notied in 1933 that the seven smallestshapes of that kind, namely1: bent 2: ell 3: tee 4: skew 5: L-twist 6: R-twist 7: law , (30)an be put together to form a 3�3�3 ube, and he liked the piees so muh thathe alled them Soma. Notie that the �rst four piees are essentially planar, whilethe other three are inherently three-dimensional. Moreover, the two twists aremirror images: We an't hange one into the other without entering the fourthdimension. Martin Gardner wrote about the joys of Soma in Sienti� Amerian199, 3 (September 1958), 182{188, and it soon beame wildly popular: Morethan two million SOMA R ubes were sold in Ameria alone, after Parker Brothersbegan to market a well-made set with an instrution booklet written by Hein.The task of paking these seven piees into a ube is easy to formulate as anexat over problem, just as we did when paking pentominoes. This time wehave 24 3D-rotations of the piees to onsider, instead of 8 2D-rotations and/or3D-reetions; so exerise 200 is used instead of exerise 140 to generate the rowsof the problem. It turns out that there are 688 rows, involving 34 olumns thatwe an all 1, 2, : : : , 7, 111, 112, : : : , 333. For example, the �rst row1 111 121 211haraterizes one of the potential ways to plae the \bent" piee 1.Algorithm D needs just 407 megamems to �nd all 11,520 solutions to thisproblem. Furthermore, we an save most of that time by taking advantage ofsymmetry: Every solution an be rotated into a unique \anonial" solutionin whih the \ell" piee 2 has not been rotated; hene we an restrit thatpiee to only six plaements, namely (111; 121; 131; 211), (112; 122; 132; 212), : : : ,(213; 223; 233; 313)|all shifts of eah other. This removes 138 rows, and thealgorithm now �nds the 480 anonial solutions in just 20 megamems. (Theseanonial solutions form 240 mirror-image pairs.)Fatoring an exat over problem. In fat, we an simplify the Soma ubeproblem muh further, so that all of its solutions an atually be found by handin a reasonable time, by fatoring the problem in a lever way. : : :
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4 COMBINATORIAL SEARCHING (F5C: 29 Jan 2017�2201) 7.2.2.1 olor-ontrolled{word searholor odesColor-ontrolled overing. Take a break! Before reading any further, pleasespend a minute or two solving the \word searh" puzzle in Fig. 71; omparativelymindless puzzles like this one provide a low-stress way to sharpen your word-reognition skills. It an be solved easily| for instane, by making eight passesover the array|and the solution appears in Fig. 72.Fig. 71. Find the mathematiians*:Put ovals around the following nameswhere they appear in the 15 � 15 ar-ray shown here, reading either for-ward or bakward or upward or down-ward, or diagonally in any diretion.After you've �nished, the leftover let-ters will form a hidden message. (Thesolution appears on the next page.)ABEL HENSEL MELLINBERTRAND HERMITE MINKOWSKIBOREL HILBERT NETTOCANTOR HURWITZ PERRONCATALAN JENSEN RUNGEFROBENIUS KIRCHHOFF STERNGLAISHER KNOPP STIELTJESGRAM LANDAU SYLVESTERHADAMARD MARKOFF WEIERSTRASS

O T H E S C A T A L A N D A UT S E A P U S T H O R S R O FT L S E E A Y R R L Y H A P AE P E A R E L R G O U E M S IN N A R R C V L T R T A A M AI T H U O T E K W I A N D E ML A N T N B S I M I C M A A WL G D N A R T R E B L I H C EE R E C I Z E C E P T N E D YM E A R S H R H L I P K A T HE J E N S E N H R I E O N E TH S U I N E B O R F E W N A RT M A R K O F F O F C S O K MP L U T E R P F R O E K G R AG M M I N S E J T L E I T S GOur goal in this setion is not to disuss how to solve suh puzzles; instead, weshall onsider how to reate them. It's by no means easy to pak those 27 namesinto the box in suh a way that their 184 haraters oupy only 135 ells, witheight diretions well mixed. How an that be done with reasonable eÆieny?For this purpose we shall extend the idea of exat overing by introduing\olor odes." : : :
* The journal Ata Mathematia elebrated its 21st birthday by publishing a speial TableG�en�erale des Tomes 1{35, edited by Marel Riesz (Uppsala: 1913), 179 pp. It ontained aomplete list of all papers published so far in that journal, together with portraits and briefbiographies of all the authors. The 27 mathematiians mentioned in Fig. 71 are those whowere subsequently mentioned in Volumes 1, 2, or 3 of The Art of Computer Programming|exept for people like MITTAG-LEFFLER or POINCAR�E, whose names ontain speial haraters.
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7.2.2.1 DANCING LINKS 5Fig. 72. Solution to the puzzle of thehidden mathematiians (Fig. 71). No-tie that the entral letter R atuallypartiipates in six di�erent names:BERTRANDGLAISHERHERMITEHILBERTKIRCHHOFFWEIERSTRASSThe T to its left partiipates in �ve.Here's what the leftover letters say:These authors of early papers inAtaMathematia were ited years laterin The Art of Computer Program-ming.

O T H E S C A T A L A N D A UT S E A P U S T H O R S R O FT L S E E A Y R R L Y H A P AE P E A R E L R G O U E M S IN N A R R C V L T R T A A M AI T H U O T E K W I A N D E ML A N T N B S I M I C M A A WL G D N A R T R E B L I H C EE R E C I Z E C E P T N E D YM E A R S H R H L I P K A T HE J E N S E N H R I E O N E TH S U I N E B O R F E W N A RT M A R K O F F O F C S O K MP L U T E R P F R O E K G R AG M M I N S E J T L E I T S G
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6 COMBINATORIAL SEARCHING (F5C: 29 Jan 2017�2201) 7.2.2.1 baktrak treedistaneHamming distanediversityuniformquasi-uniformNP-hardunique solutioninstant insanitygropebinary operationmultipliation tables
EXERCISES|First Setx 5. [26 ℄ Let T be any tree. Construt an unsolvable exat over problem for whih Tis the baktrak tree traversed by Algorithm D; a unique olumn should have the mini-mum size whenever step D? is enountered. Illustrate your onstrution when T = .6. [25 ℄ Continuing exerise 5, let T be a tree in whih ertain leaves have beendistinguished from the others and designated as \solutions."a) Show that some suh trees never math the behavior of Algorithm D.b) Charaterize all suh trees that do arise, having solutions where indiated.10. [M21 ℄ The solution to an exat over problem with matrix A an be regarded asa binary vetor x suh that xA = 11 : : : 1. The distane between two solutions x andx0 an then be de�ned as the Hamming distane d(x; x0) = �(x� x0), the number ofplaes where x and x0 di�er. The diversity of A is the minimum distane between twoof its solutions. (If A has at most one solution, its diversity is in�nite.)a) Is it possible to have diversity 1?b) Is it possible to have diversity 2?) Is it possible to have diversity 3?d) Prove that if A represents a uniform exat over problem, the distane betweensolutions is always even.e) Most of the exat over problems that arise in appliations are at least quasi-uniform, in the sense that they have a nonempty subset C of primary olumnssuh that A j C has the same number of 1s in every row. (For example, everypolyomino or polyube paking problem is quasi-uniform, beause every row of thematrix spei�es exatly one piee name.) Can suh problems have odd distanes?19. [M16 ℄ Given an exat over problem A, onstrut an exat over problem A0 thathas exatly one more solution than A does. [Consequently it is NP-hard to determinewhether an exat over problem with at least one solution has more than one solution.℄Assume that A ontains no all-zero rows.20. [M25 ℄ Given an exat over problem A, onstrut an exat over problem A0 suhthat (i) A0 has at most three 1s in every olumn; (ii) A0 and A have exatly the samenumber of solutions.21. [M21 ℄ Continuing exerise 20, onstrut A0 having exatly three 1s per olumn.x 24. [30 ℄ Given an m � n exat over problem A with exatly three 1s per olumn,onstrut a generalized \instant insanity" problem with N = O(n) ubes and N olorsthat is solvable if and only if A is solvable. (See 7.2.2{(36).)x 26. [M24 ℄ A grope is a set G together with a binary operation Æ, in whih the identityx Æ (y Æ x) = y is satis�ed for all x 2 G and y 2 G.a) Prove that the identity (x Æ y) Æ x = y also holds, in every grope.b) Whih of the following \multipliation tables" de�ne a grope on f0; 1; 2; 3g?0123103223013210 ; 0321321021031032 ; 0132102332102301 ; 0231310213202013 ; 0312213030211203 :(In the �rst example, x Æ y = x� y; in the seond, x Æ y = (�x� y) mod 4. Thelast two have x Æ y = x� f(x� y) for ertain funtions f .)) For all n, onstrut a grope whose elements are f0; 1; : : : ; n � 1g.d) Consider the exat over problem that has n2 olumns (x; y) for 0 � x; y < n andthe following n + (n3 � n)=3 rows:
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7.2.2.1 DANCING LINKS 7 idempotentommutativeidentity elementDominosasolitairegamePijanowski solitaire, see Dominosadominoes3D MATCHINGpermutations of the multisetqueen grapholoredexat over problembitwise manipulationbreadth-�rst0s and 1s
i) f(x; x)g, for 0 � x < n;ii) f(x; x); (x; y); (y; x)g, for 0 � x < y < n;iii) f(x; y); (y; z); (z; x)g, for 0 � x < y; z < n.Show that its solutions are in one-to-one orrespondene with the multipliationtables of gropes on the elements f0; 1; : : : ; n � 1g.e) Element x of a grope is idempotent if x Æ x = x. If k elements are idempotent andn� k are not, prove that k � n2 (modulo 3).27. [21 ℄ Modify the exat over problem of exerise 26(d) in order to �nd the mul-tipliation tables of (a) all idempotent gropes|gropes suh that x Æ x = x for all x;(b) all ommutative gropes|gropes suh that x Æ y = y Æ x for all x and y; () allgropes with an identity element|gropes suh that x Æ 0 = 0 Æ x = x for all x.30. [21 ℄ Dominosa is a solitaire game in whih you \shu�e" the 28 piees <0>0,<0>1, : : : ,<6>6 of double-six dominoes and plae them at random into a 7� 8 frame.Then you write down the number of spots in eah ell, put the dominoes away, and tryto reonstrut their positions based only on that 7� 8 array of numbers. For example,0̂0̂5̂<2>1<4>1²̂v1v4v5<3>5<3>5v¶<1>1<5>6<0>04̂4̂4̂<4>5¶̂<2>2v²v³v00̂5̂v¶<1>3<3>6¶̂v¶v²<0>3²̂<5>1v1<5>0<4>4v0<3>2 yields the array 0BBBBBBB� 0 0 5 2 1 4 1 21 4 5 3 5 3 5 61 1 5 6 0 0 4 44 4 5 6 2 2 2 30 0 5 6 1 3 3 66 6 2 0 3 2 5 11 5 0 4 4 0 3 2

1CCCCCCCA :a) Show that another plaement of dominoes also yields the same matrix of numbers.b) What domino plaement yields the array0BBBBBBB� 3 3 6 5 1 5 1 56 5 6 1 2 3 2 42 4 3 3 3 6 2 04 1 6 1 4 4 6 03 0 3 0 1 1 4 42 6 2 5 0 5 0 02 5 0 5 4 2 1 6
1CCCCCCCA ?x 31. [20 ℄ Show that Dominosa reonstrution is a speial ase of 3D MATCHING.32. [M22 ℄ Generate random instanes of Dominosa, and estimate the probability ofobtaining a 7�8 matrix with a unique solution. Use two models of randomness: (i) Eahmatrix whose elements are permutations of the multiset f8�0; 8�1; : : : ; 8�6g is equallylikely; (ii) eah matrix obtained from a random shu�e of the dominoes is equally likely.39. [20 ℄ By setting up an exat over problem and solving it with Algorithm D, showthat the queen graph Q8 (exerise 7.1.4{241) annot be olored with eight olors.40. [21 ℄ In how many ways an Q8 be olored in a \balaned" fashion, using eightqueens of olor 0 and seven eah of olors 1 to 8?x 50. [21 ℄ If we merely want to ount the number of solutions to an exat over problem,without atually onstruting them, a ompletely di�erent approah based on bitwisemanipulation instead of list proessing is sometimes useful.The following na��ve algorithm illustrates the idea: We're given an m � n matrixof 0s and 1s, represented as n-bit vetors r1, : : : , rm. The algorithm works with a
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8 COMBINATORIAL SEARCHING (F5C: 29 Jan 2017�2201) 7.2.2.1 primary olumnsbitwise ANDbitwise ORnonprimary olumnsn queens problemolor ontrolsNP-omplete2D mathingword searh puzzlepresidentsI'm not surehow many ofthese namesshould go inthe indexonnetedword searhsudokupolyomino sudokusudokuweighted exat over problem

(potentially huge) database of pairs (sj ; j), where sj is an n-bit number representinga set of olumns, and j is a positive integer representing the number of ways to overthat set exatly. Let p be the n-bit mask that represents the primary olumns.N1. [Initialize.℄ Set N  1, s1  0, 1  1, k 1.N2. [Done?℄ If k > m, terminate; the answer is PNj=1 j [sj & p= p℄.N3. [Append rk where possible.℄ Set t  rk. For N � j � 1, if sj & t = 0, insert(sj + t; j) into the database (see below).N4. [Loop on k.℄ Set k  k + 1 and return to N2.To insert (s; ) there are two ases: If s = si for some (si; i) already present, we simplyset i  i + . Otherwise we set N  N + 1, sN  s, N  .Show that this algorithm an be signi�antly improved by using the following trik:Set uk  rk & �fk, where fk = rk+1 j � � � j rm is the bitwise OR of all future rows. Ifuk 6= 0, we an remove any item from the database for whih sj does not ontain uk&p.We an also exploit the nonprimary olumns of uk to ompress the database further.51. [25 ℄ Implement the improved algorithm of the previous exerise, and ompare itsrunning time to that of Algorithm D when applied to the n queens problem.52. [M21 ℄ Explain how the method of exerise 50 ould be extended to give represen-tations of all solutions, instead of simply ounting them.70. [25 ℄ Prove that the exat over problem with olor ontrols is NP-omplete, evenif every row of the matrix has only two entries.80. [22 ℄ Using the \word searh puzzle" onventions of Figs. 71 and 72, show that thewords ONE, TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN, ELEVEN, and TWELVEan all be paked into a 6� 6 square, leaving one ell untouhed.81. [22 ℄ Also pak two opies of ONE, TWO, THREE, FOUR, FIVE into a 5� 5 square.x 82. [32 ℄ The �rst 44 presidents of the U.S.A. had 38 distint surnames: ADAMS, ARTHUR,BUCHANAN, BUSH, CARTER, CLEVELAND, CLINTON, COOLIDGE, EISENHOWER, FILLMORE, FORD,GARFIELD, GRANT, HARDING, HARRISON, HAYES, HOOVER, JACKSON, JEFFERSON, JOHNSON,KENNEDY, LINCOLN, MADISON, MCKINLEY, MONROE, NIXON, OBAMA, PIERCE, POLK, REAGAN,ROOSEVELT, TAFT, TAYLOR, TRUMAN, TYLER, VANBUREN, WASHINGTON, WILSON.a) What's the smallest square into whih all of these names an be paked, usingword searh onventions, and requiring all words to be onneted via overlaps?b) What's the smallest retangle, under the same onditions?x 83. [25 ℄ Pak as many of the following words as possible into a 9 � 9 array, simul-taneously satisfying the rules of both word searh and sudoku:ACREART COMPARECOMPUTER CORPORATECROP MACROMETA MOTETPARAMETER ROAMTAME90. [24 ℄ Find the unique solutions to the following examples of polyomino sudoku:D A N C I N G L I N K S C O M P U T E R
A L G O R I T H M

S O L V I N G S U D O K U P U Z Z L E100. [M25 ℄ Consider a weighted exat over problem in whih we must hoose 2 of 4rows to over olumn 1, and 5 of 7 rows to over olumn 2; the rows don't interat.
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7.2.2.1 DANCING LINKS 9a) What's the size of the searh tree if we branh �rst on olumn 1, then on olumn 2?Would it better to branh �rst on olumn 2, then on olumn 1?b) Generalize part (a) to the ase when olumn 1 needs p of p + d rows, whileolumn 2 needs q of q + d rows, where q > p and d > 0.
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10 COMBINATORIAL SEARCHING (F5C: 29 Jan 2017�2201) 7.2.2.1 Conway�ve-letter wordspentominoesnonstraightsymmetrypentominoesClarketetrominoestetrominoesthree-olorablegraph oloring
EXERCISES|Seond SetHundreds of fasinating rereational problems have been based on polyominoes andtheir ousins (the polyubes, polyiamonds, polyhexes, polystiks, : : : ). The followingexerises explore \the ream of the rop" of suh lassi puzzles, as well as a few gemsthat were not disovered until reently.In most ases the idea is to �nd a good way to disover all solutions, usually bysetting up an appropriate exat over problem that an be solved without taking anenormous amount of time.x 140. [25 ℄ Sketh the design of a utility program that will reate sets of rows by whihan exat over solver will �ll a given shape with a given set of polyominoes.148. [18 ℄ Using Conway's piee names, pak �ve pentominoes into the shapeso that they spell a ommon English word when read from left to right.x 150. [21 ℄ There are 1010 ways to pak the twelve pentominoes into a 5� 12 box, notounting reetions. What's a good way to �nd them all, using Algorithm D?151. [21 ℄ How many of those 1010 pakings deompose into 5� k and 5� (12�k)?152. [21 ℄ In how many ways an the eleven nonstraight pentominoes be paked intoa 5� 11 box, not ounting reetions? (Redue symmetry leverly.)154. [20 ℄ There are 2339 ways to pak the twelve pentominoes into a 6� 10 box, notounting reetions. What's a good way to �nd them all, using Algorithm D?155. [23 ℄ Continuing exerise 154, explain how to �nd speial kinds of pakings:a) Those that deompose into 6� k and 6� (10�k).b) Those that have all twelve pentominoes touhing the outer boundary.) Those with all pentominoes touhing that boundary exept for V, whih doesn't.d) Same as (), with eah of the other eleven pentominoes in plae of V.e) Those with the minimum number of pentominoes touhing the outer boundary.f) Those that are haraterized by Arthur C. Clarke's desription, as quoted in thetext. (That is, the X should touh only the F, N, U, and V|no others.)157. [21 ℄ There are �ve di�erent tetrominoes, namelysquare; straight ; skew ; ell ; tee :In how many essentially di�erent ways an eah of them be paked into an 8�8 squaretogether with the twelve pentominoes?158. [21 ℄ If an 8�8 hekerboard is ut up into thirteen piees, representing the twelvepentominoes together with one of the tetrominoes, some of the pentominoes will havemore blak ells than white. Is it possible to do this in suh a way that U, V, W, X,Y, Z have a blak majority while the others do not?159. [18 ℄ Design a nie, simple tiling pattern that's based on the �ve tetrominoes.160. [25 ℄ How many of the 6� 10 pentomino pakings are strongly three-olorable, inthe sense that eah individual piee ould be olored red, white, or blue in suh a waythat no pentominoes of the same olor touh eah other|not even at orner points?
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7.2.2.1 DANCING LINKS 11 hekerboardAzte diamondsymmetriM�obius stripfault-freeBenjaminube, wrappedKnuth, JillGaria, HetorKaplanfeneholestatamirossroadsO'Beirneone-sided pentominoes
x 162. [20 ℄ The blak ells of a square n � n hekerboard form an interesting graphalled the Azte diamond of order n=2. For example, the ases n = 11 and 13 are(i) and (ii) ;where (ii) has a \hole" showing the ase n = 3. Thus (i) has 61 ells, and (ii) has 80.a) Find all ways to pak (i) with the twelve pentominoes and one monomino.b) Find all ways to pak (ii) with the 12 + 5 pentominoes and tetrominoes.Speed up the proess by not produing solutions that are symmetri to eah other.x 163. [M26 ℄ Arrange the twelve pentominoes into a M�obius strip of width 4. Thepattern should be \fault-free": Every straight line must interset some piee.164. [40 ℄ (H. D. Benjamin, 1948.) Show that the twelve pentominoes an be wrappedaround a ube of size p10 �p10 �p10. For example, here are front and bak viewsof suh a ube, made from twelve olorful fabris by the author's wife in 1993:

(Photos byHetor Garia)What is the best way to do this, minimizing undesirable distortions at the orners?x 165. [22 ℄ (Craig S. Kaplan.) A polyomino an sometimes be surrounded by non-overlapping opies of itself that form a fene: Every ell that touhes the polyomino|even at a orner| is part of the fene; onversely, every piee of the fene touhes theinner polyomino. Furthermore, the piees must not enlose any unoupied \holes."Find the (a) smallest and (b) largest fenes for eah of the twelve pentominoes.(Some of these patterns are unique, and quite pretty.)166. [22 ℄ Solve exerise 165 for fenes that satisfy the tatami ondition of exerise7.1.4{215: No four edges of the tiles should ome together at any \rossroads."168. [21 ℄ (T. H. O'Beirne, 1961.) The one-sided pentominoes are the eighteen distint5-ell piees that an arise if we aren't allowed to ip piees over:Notie that there now are two versions of F, L, P, N, Y, and Z.In how many ways an all eighteen of them be paked into retangles?169. [21 ℄ Suppose you want to pak the twelve pentominoes into a 6�10 box, withoutturning any piees over. Then 26 di�erent problems arise, depending on whih sides ofthe one-sided piees are present. Whih of those 64 problems has (a) the fewest (b) themost solutions?
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12 COMBINATORIAL SEARCHING (F5C: 29 Jan 2017�2201) 7.2.2.1 tetrominoeshekeredone-sidedhekerboard dissetionshexominoesBenjaminKadnerHanssonmagni�ationtripliationastlesSteadpentominoestetrominoesolor ontrolshexominoesparallelogram polyominoparallominoskew Young tableauYoung tableauxskew Ferrers boardFerrers diagrams

170. [21 ℄ When tetrominoes are both hekered and one-sided (see exerises 158 and168), ten possible piees arise. In how many ways an all ten of them �ll a retangle?175. [20 ℄ There are 35 hexominoes, �rst enumerated in 1934by the master puzzlist H. D. Benjamin. At Christmastimethat year, he o�ered ten shillings to the �rst person whoould pak them into a 14�15 retangle|although he wasn'tsure whether or not it ould be done. The prize was won byF. Kadner, who proved that the hexominoes atually an't bepaked into any retangle. Nevertheless, Benjamin ontinuedto play with them, eventually disovering that they �t nielyinto the triangle shown here.Prove Kadner's theorem. Hint: See exerise 158.176. [24 ℄ (Frans Hansson, 1947.) The fat that 35 = 12 + 32 + 52 suggests that wemight be able to pak the hexominoes into three boxes that represent a single hexominoshape at three levels of magni�ation, suh as :For whih hexominoes an this be done?x 177. [30 ℄ Show that the 35 hexominoes an be paked into �ve \astles": :In how many ways an this be done?178. [41 ℄ For whih values of m an the hexominoes be paked into a box like this?m179. [41 ℄ Perhaps the best hexomino paking uses a 5� 45 retangle with 15 holes;proposed by W. Stead in 1954. In how many ways an the 35 hexominoes �ll it?x 181. [22 ℄ In how many ways an the twelve pentominoes be plaed intoan 8� 10 retangle, leaving holes in the shapes of the �ve tetrominoes?(The holes should not touh the boundary, nor should they touh eahother, even at orners; one example is shown at the right.) Explain howto enode this puzzle as an exat over problem with olor ontrols.182. [46 ℄ If possible, solve the analog of exerise 181 for the ase of 35 hexominoes ina 5� 54 retangle, leaving holes in the shapes of the twelve pentominoes.x 198. [HM35 ℄ A parallelogram polyomino, or \parallomino" for short, is a polyominowhose boundary onsists of two paths that eah travel only north and/or east. (Equiv-alently, it is a \skew Young tableau" or a \skew Ferrers board," the di�erene between
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7.2.2.1 DANCING LINKS 13 tableauxpartitionstreespath lengthgenerating funtionbase plaementsSomapSoma ubesemidistanedegree sequenesonneted omponentsbiomponentsfatorizationW-wallSoma pieesnonominoesHeinShwartz
the diagrams of two tableaux or partitions; see Setions 5.1.4 and 7.2.1.4.) For example,there are �ve parallominoes whose boundary paths have length 4:NNNEENNN ; NNEEENEN ; NNEEEENN ; NENEEENN ; NEEEEEEN :a) Find a one-to-one orrespondene between the set of ordered trees with m leavesand n nodes and the set of parallominoes with width m and height n �m. Thearea of eah parallomino should be the path length of its orresponding tree.b) Study the generating funtion G(w; x; y) =Pparallominoes wareaxwidthyheight.) Prove that the parallominoes whose width-plus-height is n have total area 4n�2.d) Part () suggests that we might be able to pak all of those parallominoes into a2n�2� 2n�2 square, without rotating them or ipping them over. Suh a pakingis learly impossible when n = 3 or n = 4; but is it possible when n = 5 or n = 6?200. [20 ℄ Extend exerise 140 to three dimensions. How many base plaements doeah of the seven Soma piees have?x 202. [22 ℄ The Somap is the graph whose verties are the 240 distint solutions to theSoma ube problem, with u���v if and only if u an be obtained from v by hangingthe positions of at most three piees. (Using the terminology of exerise 10(d), adjaentverties orrespond to solutions of semidistane � 3.) The strong Somap is similar,but it has u���v only when a hange of just two piees gets from one to the other.a) What are the degree sequenes of these graphs?b) How many onneted omponents do they have? How many biomponents?x 204. [M25 ℄ Use fatorization to prove that Fig. 80's W-wall annot be built.205. [24 ℄ Figure 80(a) shows some of the many \low-rise" (2-level) shapes that an bebuilt from the seven Soma piees. Whih of them is hardest (has the fewest solutions)?Whih is easiest? Answer these questions also for the 3-level prism shapes in Fig. 80(b).x 206. [M23 ℄ Generalizing the �rst four examples of Fig. 80, study the set of all shapesobtainable by deleting three ubies from a 3� 5� 2 box. (Twoexamples are shown here.) How many essentially di�erent shapesare possible? Whih shape is easiest? Whih shape is hardest?207. [22 ℄ Similarly, onsider (a) all shapes that onsist of a3 � 4 � 3 box with just three ubies in the top level; (b) all3-level prisms that �t into a 3� 4� 3 box.208. [25 ℄ How many of the 1285 nonominoes de�ne a prism that an be realized bythe Soma piees? Do any of those paking problems have a unique solution?210. [M40 ℄ Make empirial tests of Piet Hein's belief that the number of shapesahievable with seven Soma piees is approximately the number of 27-ubie polyubes.212. [20 ℄ (B. L. Shwartz, 1969.) Show that the Soma piees an make shapes thatappear to have more than 27 ubies, beause of holes hidden inside or at the bottom:

stairase penthouse pyramidIn how many ways an these three shapes be onstruted?
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14 COMBINATORIAL SEARCHING (F5C: 29 Jan 2017�2201) 7.2.2.1(a) 2-level patternsbathtub ouh stepping stones anal bedtower 1 tower 2 tower 3 tower 4shift 0 shift 1 shift 2benh 4� 4 oop 3� 6 orral 4� 5 orralastle �ve-seat benh doorway piggybank lobstergrand piano piano gorilla fae smile(b) 3-level prisms based on nonominoes�sh gold�sh dryer hair steps stiletunnel underpass doorway anal bed lipzigzag wall 1 zigzag wall 2 apartments 1 apartments 2 almost W-wall W-wallFig. 80. Gallery of noteworthy polyubes that ontain 27 ubies. All of them an bebuilt from the seven Soma piees, exept for the W-wall. Many onstrutions are alsostable when tipped on edge and/or when turned upside down. (See exerises 204{214.)



January 29, 2017

7.2.2.1 DANCING LINKS 15 self-supportinggravityfa�adesmoviesisometriprojetionthree dimensionsCube DiaboliqueDiabolial CubeWatilliauxtetraubesgravityotominoes
213. [22 ℄ Show that the seven Soma piees an also make strutures suh as

asserole ot vulture mushroom antilever ,whih are \self-supporting" via gravity. (You may need to plae a small book on top.)x 214. [M32 ℄ Impossible strutures an be built, if we insist only that they look genuinewhen viewed from the front (like fa�ades in Hollywood movies)! Find all solutions toW-wall X-wall ubethat are visually orret. (In order to solve this exerise, you need to know that the illus-trations here use the non-isometri projetion (x; y; z) 7! (30x�42y; 14x+10y+45z)ufrom three dimensions to two, where u is a sale fator.) All seven piees must be used.215. [30 ℄ The earliest known example of a polyube puzzle is the \Cube Diabolique,"manufatured in late nineteenth entury Frane by Charles Watilliaux; it ontains sixat piees of sizes 2, 3, : : : , 7:a) In how many ways do these piees make a 3� 3� 3 ube?b) Are there six polyubes, of sizes 2, 3, : : : , 7, that make a ube in just one way?217. [22 ℄ Show that there are exatly eight di�erent tetraubes |polyubes of size 4.Whih of the following shapes an they make, respeting gravity? How many solutionsare possible?
twin towers double law annon up 3 up 4 up 5218. [25 ℄ How many of the 369 otominoes de�ne a 4-level prism that an be realizedby the tetraubes? Do any of those paking problems have a unique solution?
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16 COMBINATORIAL SEARCHING (F5C: 29 Jan 2017�2201) 7.2.2.1 pentaubessolid pentominoesat pentaubesmirror imagespentominoes5� 5� 5 ubeDowler's Boxhiralmirror
220. [30 ℄ There are 29 pentaubes, onveniently identi�ed with one-letter odes:a b  d e fA B C D E Fj k l m no p q r s tu v w x y zPiees o through z are alled, not surprisingly, the solid pentominoes or at pentaubes.a) What are the mirror images of a, b, , d, e, f, A, B, C, D, E, F, j, k, l, : : : , z?b) In how many ways an the solid pentominoes be paked into an a� b�  uboid?) What \natural" set of 25 pentaubes is able to �ll the 5� 5� 5 ube?x 221. [25 ℄ The full set of 29 pentaubes an build an enormous vari-ety of elegant strutures, inluding a partiularly stunning examplealled \Dowler's Box." This 7� 7� 5 ontainer, �rst onsidered byR. W. M. Dowler in 1979, is onstruted from �ve at slabs. Yetonly 12 of the pentaubes lie at; the other 17 must somehow beworked into the edges and orners.Despite these diÆulties, Dowler's Box has so many solutions that we an atuallyimpose many further onditions on its onstrution:a) Build Dowler's Box in suh a way that the hiral piees a, b, , d, e, f and theirimages A, B, C, D, E, F all appear in horizontally mirror-symmetri positions.horizontally symmetri  and C diagonally symmetri  and Cb) Alternatively, build it so that those pairs are diagonally mirror-symmetri.) Alternatively, plae piee x in the enter, and build the remaining struture fromfour ongruent piees that have seven pentaubes eah.222. [25 ℄ The 29 pentaubes an also be used to make the shapeshown here, exploiting the urious fat that 34 + 43 = 29 � 5. ButAlgorithm D will take a long, long time before telling us how toonstrut it, unless we're luky, beause the spae of possibilities ishuge. How an we �nd a solution quikly?999. [M00 ℄ this is a temporary exerise (for dummies)
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7.2.2.1 ANSWERS TO EXERCISES 17 PellAUBREYsemidistaneMatsuiMatsuiNP-ompleteminimum remaining values heuristiDr Pell was wont to say, that in the Resolution of Questiones,the main matter is the well stating them:whih requires a good mother-witt & Logik: as well as Algebra:for let the Question be but well-stated, and it will worke of it selfe:. . . By this way, an man annot intangle his notions, & make a false Steppe.| JOHN AUBREY, An Idea of Eduation of Young Gentlemen (. 1684)SECTION 7.2.2.15. If T has only a root node, let there be one olumn, no rows.Otherwise let T have d � 1 subtrees T1, : : : , Td, and assume thatwe've onstruted problems with rows Rj and olumns Cj for eah Tj .Let C = C1 [ � � � [Cd [ f1; : : : ; dg. The problem for T is obtained byappending d+1 new olumns f0; 1; : : : ; dg and the following new rows:(i) `0 and all olumns of CnCj ', for 1 � j � d; (ii) `all olumns of Cnj',for 1 � j � d. This onstrution works exept when d = 1 and T1 isa leaf; in that ase we an use olumns f0; 1; 2; 3g, rows `0 1 2', `1 3',`2 3'. The matrix for the example tree has 17 olumns and 16 rows.
011111100000000001011111000000000011011110000000000111001100000000001110101000000000011100110000000000000000001111110000000000101111100000000001101111000000000011100110000000000111010100000000001110110000000000011111111111111111000000011111111111111111001111111111111110106. (a) If a solution isn't at the root, its parent must have exatly one hild. (Alter-natively, if dupliate rows are permitted, all siblings of a solution must be solutions.)(b) Use the previous onstrution; a solution node orresponds to olumn 0, row `0'.10. (a) No. Otherwise A would have a row that's zero in all primary olumns.(b) Yes, but only if A has two rows that are idential in all primary olumns.() Yes, but only if A has two rows whose sum is also a row, when restrited toprimary olumns.(d) The number of plaes, j, where x = 1 and x0 = 0 must be the same as thenumber where x = 0 and x0 = 1. For if A has exatly k primary 1s in every row,exatly jk primary olumns are being overed in di�erent ways.(e) Again the distanes must be even, beause every solution to A is also a solutionto the uniform problem A j C. (Therefore it makes sense to speak of the semidistaned(x; x0)=2 between solutions of quasi-uniform exat overing problem. The semidistanein a polyform paking problem is the number of piees that are paked di�erently.)19. (Solution by T. Matsui.) Add one new olumn at the left of A, all 0s. Then addtwo rows of length n + 1 at the bottom: 10 : : : 0 and 11 : : : 1. This (m+ 2) � (n + 1)matrix A0 has one solution that hooses only the last row. All other solutions hoosethe seond-to-last row, together with rows that solve A.20. (Solution by T. Matsui.) Assume that all 1s in olumn 1 appear in the �rst t rows,where t > 3. Add two new olumns at the left, and two new rows 1100 : : : 0, 1010 : : : 0of length n + 2 at the bottom. For 1 � k � t, if row k was 1�k, replae it by 010�k ifk � t=2, 011�k if k > t=2. Insert 00 at the left of the remaining rows t+ 1 through m.This onstrution an be repeated (with suitable row and olumn permutations)until no olumn sum exeeds 3. If the original olumn sums were (1; : : : ; n), thenew A0 has 2T more rows and 2T more olumns than A did, where T =Pnj=1(j .� 3).One onsequene is that the exat over problem is NP-omplete even whenrestrited to ases where all row and olumn sums are at most 3.Notie, however, that this onstrution is not useful in pratie, beause it disguisesthe struture of A: It essentially destroys the minimum remaining values heuristi,beause all olumns whose sum is 2 look equally good to the solver!
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21. Take a matrix with olumn sums (1; : : : ; n), all � 3, and extend it with threeolumns of 0s at the right. Then add the following four rows: (x1; : : : ; xn; 0; 1; 1),(y1; : : : ; yn; 1; 0; 1), (z1; : : : ; zn; 1; 1; 0), and (0; : : : ; 0; 1; 1; 1), where xj = [j < 3℄, yj =[j < 2℄, zj = [j < 1℄. The bottom row must be hosen in any solution.24. Consider a set of ubes and olors alled f�; 0; 1; 2; 3; 4; : : : g, where (i) all faes ofube � are olored �; (ii) olors 1, 2, 3, 4 our only on ubes 0, 1, 2, 3, 4; (iii) the op-posite fae-pairs of those �ve ubes are respetively (00; 12; ��), (11; 12; 34), (22; 34; �),(33; 12; �), (44; 34; ), where �, �,  are pairs of olors =2 f1; 2; 3; 4g. Any solution tothe ube problem has disjoint 2-regular graphs X and Y ontaining two faes of eaholor. Sine X and Y both ontain �� from ube �, we an assume that X ontains 00and Y ontains 12 from ube 0. Hene Y an't ontain 11 or 22; it must ontain 12 fromube 1 or ube 3. If X doesn't ontain 11 or 22, it must ontain 12 from ube 1 andube 3. Hene X ontains 11, 22, 33, and 44. We're left with only three possibilitiesfor Y from ubes 1, 2, 3, 4, namely (34; �; 12; 34), (12; 34; �; 34), (34; 34; 12; ).Now let aj1, aj2, aj3 denote the 1s in olumn j of A. We onstrut N = 8n + 1ubes and olors alled �, ajk, bjl, where 1 � j � n, 1 � k � 3, 0 � l � 4. The oppositefae-pairs of � are (��; ��; ��). Those of ajk are (ajkajk; ajkajk; ajkbj00), where j0is the olumn of ajk's yli suessor to the right in its row. Those of bj0, bj1, bj2,bj3, bj4 are respetively (bj0bj0; bj1bj2; ��), (bj1bj1; bj1bj2; bj3bj4), (bj2bj2; bj3bj4; bj0aj1),(bj3bj3; bj1bj2; bj0aj2), (bj4bj4; bj3bj4; bj0aj3). By the previous paragraph, solutions tothe ube problem orrespond to 2-regular graphs X and Y suh that, for eah j, Xor Y ontains all the pairs bjlbjl and the other \selets" one of the three pairs bj0ajk.The fae-pairs of eah seleted ajk ensure that ajk's yli suessor is also seleted.[See E. Robertson and I. Munro, Utilitas Mathematia 13 (1978), 99{116.℄26. (a) (x Æ y) Æ x = (x Æ y) Æ (y Æ (x Æ y)) = y.(b) All �ve are legitimate. (The last two are gropes beause f(t + f(t)) = t for0 � t < 4 in eah ase. They are isomorphi if we interhange any two elements. Thethird is isomorphi to the seond if we interhange 1$ 2. There are 18 grope tables oforder 4, of whih (4, 12, 2) are isomorphi to the �rst, third, and last tables shown here.)() For example, let x Æ y = (�x� y) mod n. (More generally, if G is any groupand if � 2 G satis�es �2 = 1, we an let x Æ y = �x��y��. If G is ommutative and� 2 G is arbitrary, we an let x Æ y = x�y��.)(d) For eah row of type (i) in an exat overing, de�ne x Æ x = x; for eah row oftype (ii), de�ne x Æ x = y, x Æ y = y Æ x = x; for eah row of type (iii), de�ne x Æ y = z,y Æ z = x, z Æ x = y. Conversely, every grope table yields an exat overing in this way.(e) Suh a grope overs n2 olumns with k rows of size 1, all other rows of size 3.[F. E. Bennett proved, in Disrete Mathematis 24 (1978), 139{146, that suh gropesexist for all k with 0 � k � n and k � n2 (modulo 3), exept when k = n = 6.℄Notes: The identity xÆ(yÆx) = y seems to have �rst been onsidered by E. Shr�oderin Math. Annalen 10 (1876), 289{317 [see `(C0)' on page 306℄, but he didn't do muhwith it. In a lass for sophomore mathematis majors at Calteh in 1968, the author de-�ned gropes and asked the students to disover and prove as many theorems about themas they ould, by analogy with the theory of groups. The idea was to \grope for results."The oÆial modern term for a grope is a real jawbreaker: semisymmetri quasigroup.27. (a) Eliminate the n olumns for (x; x); use only the 2�n3� rows of type (iii) for whihy 6= z. (Idempotent gropes are equivalent to \Mendelsohn triples," whih are familiesof n(n� 1)=3 3-yles (xyz) that inlude every ordered pair of distint elements. N. S.
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7.2.2.1 ANSWERS TO EXERCISES 19 Shr�odertotally symmetri quasigroupsSteinSteiner triple systemsAdlerJahnquadrillesLuasDelannoydimer tilingsheavy-tailed distributionempirial standard deviation
Mendelsohn proved [Computers in Number Theory (New York: Aademi Press, 1971),323{338℄ that suh systems exist for all n 6� 2 (modulo 3), exept when n = 6.)(b) Use only the �n+12 � olumns (x; y) for 0 � x � y < n; replae rows of type (ii)by f(x; x); (x; y)g and f(x; y); (y; y)g for 0 � x < y < n; replae those of type (iii) byf(x; y); (x; z); (y; z)g for 0 � x < y < z < n. (Suh systems, Shr�oder's `(C1) and (C2)',are alled totally symmetri quasigroups; see S. K. Stein, Trans. Amer. Math. So. 85(1957), 228{256, x8. If idempotent, they're equivalent to Steiner triple systems.)() Omit olumns for whih x = 0 or y = 0. Use only the 2�n�13 � rows of type (iii)for 1 � x < y; z < n and y 6= z. (Indeed, suh systems are equivalent to idempotentgropes on the elements f1; : : : ; n � 1g.)30. In (a), four piees hange; in (b) the solution is unique:(a) 0̂0̂5̂²̂1̂<4>1²̂v1v4v5v³v5<3>5v¶<1>1<5>6<0>04̂4̂4̂<4>5¶̂<2>2v²v³v00̂5̂v¶<1>3<3>6¶̂v¶v²<0>3²̂5̂1̂v1<5>0<4>4v0v³v² ; (b) <3>3¶̂<5>15̂1̂5̂<6>5v¶1̂²̂v³v²v4<2>4³̂v³v³¶̂<2>04̂1̂v¶<1>4v4<6>0v³v0<3>0<1>1<4>4²̂<6>25̂0̂5̂<0>0v²<5>0v5v4v²<1>6 :Notie that the spot patterns2,3, and6 are rotated when a domino is plaed ver-tially; these visual lues, whih would disambiguate (a), don't show up in the matrix.[Dominosa was invented in Germany by O. S. Adler [Reihs Patent #71539 (1893);see his booklet written with F. Jahn, Sperr-Domino und Dominosa (1912), 23{64.Similar problems of \quadrilles" had been studied earlier by E. Luas and H. Delannoy;see Luas's [R�er�eations Math�ematiques 2 (Paris: Gauthier-Villars, 1883), 52{63℄.31. De�ne 28 verties Dxy for 0 � x � y � 6; 28 verties ij for 0 � i < 7, 0 � j < 8,and i + j even; and 28 similar verties ij with i + j odd. The mathing problem has49 triples of the form fDxy; ij; i(j+1)g for 0 � i; j < 7, as well as 48 of the formfDxy; ij; (i+1)jg for 0 � i < 6 and 0 � j < 8, orresponding to potential horizontalor vertial plaements. For example, the triples for exerise 30(a) are fD00; 00; 01g,fD05; 01; 02g, : : : , fD23; 66; 67g; fD01; 00; 10g, fD04; 01; 11g, : : : , fD12; 57; 67g.32. Model (i) has M = 56!=8!7 � 4:10 � 1042 equally likely possibilities; model (ii)has N = 1292697 � 28! � 221 � 8:27 � 1041, beause there are 1292697 ways to pak 28dominoes in a 7 � 8 frame. (Algorithm D will quikly list them all.) The expetednumber of solutions per trial in model (i) is therefore N=M � 0:201.Ten thousand random trials with model (i) gave 216 ases with at least onesolution, inluding 26 where the solution was unique. The total numberPx of solutionswas 2256; and Px2 = 95918 indiated a heavy-tailed distribution whose empirialstandard deviation is � 3:1. The total running time was about 250 M�.Ten thousand random trials with model (ii), using random hoies from a preom-puted list of 1292687 pakings, gave 106 ases with a unique solution; one ase had 2652of them! Here Px = 508506 and Px2 = 144119964 indiated an empirial mean of� 51 solutions per trial, with standard deviation � 109. Total time was about 650 M�.
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20 ANSWERS TO EXERCISES 7.2.2.1 eight queens problemGossetDudeneyfrontiern queensRivinZabihLampingauthortriply linkedbinary searh treebaktraking algorithmasymptotiallytheory vs pratiepratie vs theoryn queen beesregular expression3SAT
39. Eah of the 92 solutions to the eight queens problem (see Fig. 68) oupies eight ofthe 64 ells; so we must �nd eight disjoint solutions. Only 1897 updates of Algorithm Dare needed to show that suh a mission is impossible. [In fat no sevensolutions an be disjoint, beause eah solution touhes at least three of thetwenty ells 13, 14, 15, 16, 22, 27, 31, 38, 41, 48, 51, 58, 61, 68, 72, 77, 83,84, 85, 86. See Thorold Gosset, Messenger of Mathematis 44 (1914), 48.Henry E. Dudeney found the illustrated way to oupy all but two ells, inTit-Bits 32 (11 September 1897), 439; 33 (2 Otober 1897), 3.℄40. This is an exat over problem with 92 + 312 + 396 + � � � + 312 = 3284rows (see exerise 7.2.2{5). Algorithm D needs about 2 million updates to�nd the solution shown, and about 83 billion to �nd all 11,092 of them.

12345678785634124671823523854167842367515167238467481523512784073486521865043775421860268350713407218652183704805642136120734550. Set fm  0 and fk�1  fk j rk for m � k > 1. The bits of uk represent olumnsthat are being hanged for the last time.Let uk = u0 + u00, where u0 = uk & p. If uk 6= 0 at the beginning of step N4,we ompress the database as follows: For N � j � 1, if sj & u0 6= u0, delete (sj ; j);otherwise if sj & u00 6= 0, delete (sj ; j) and insert ((sj & �uk) j u0; j).To delete (sj ; j), set (sj ; j) (sN ; N ) and N  N � 1.When this improved algorithm terminates in step N2, we always have N � 1.Furthermore, if we let pk = r1 j � � � j rk�1, the size of N never exeeds 2�k , where�k = �hpkrkfki is the size of the \frontier" (see exerise 7.1.4{55).[In the speial ase of n queens, represented as the exat over problem in (??), thisalgorithm is due to I. Rivin, R. Zabih, and J. Lamping, Inf. Pro. Letters 41 (1992),253{256. They proved that the frontier for n queens never has more than 3n olumns.℄51. The author has had reasonably good results using a triply linked binary searhtree for the database, with randomized searh keys. (Beware: The swapping algorithmused for deletion was diÆult to get right.) This implementation was, however, limitedto exat over problems whose matrix has at most 64 olumns; hene it ould do nqueens via (??) only when n < 12. When n = 11 its database reahed a maximum sizeof 75,009, and its running time was about 25 megamems. But Algorithm D was a lotbetter: It needed only about 780K updates to �nd all Q(11) = 2680 solutions.In theory, this method will need only about 23n steps as n ! 1, times a smallpolynomial funtion of n. A baktraking algorithm suh as Algorithm D, whih enu-merates eah solution expliitly, will probably run asymptotially slower (see exerise7.2.2{14). But in pratie, a breadth-�rst approah needs too muh spae.On the other hand, this method did beat Algorithm D on the n queen bees problemof exerise 7.2.2{15: When n = 11 its database grew to 364,864 items; it omputedH(11) = 596;483 in just 30M�, while Algorithm D needed 27 mega-updates.52. The set of solutions for sj an be represented as a regular expression �j instead ofby its size, j . Instead of inserting (sj + t; j) in step N3, insert �jk. If inserting (s; �),when (si; �i) is already present with si = s, hange �i  �i [�. [Alternatively, if onlyone solution is desired, we ould attah a single solution to eah sj in the database.℄70. Given a 3SAT problem with luases (li1 _ li2 _ li3) for 1 � i � m, with eahlij 2 fx1; �x1; : : : ; xn; �xng, ontrut an exat over problem with 3m primary olumnsij (1 � i � m, 1 � j � 3) and n seondary olumns xk (1 � k � n), having thefollowing rows: (i) `li1 li2', `li2 li3', `li3 li1'; (ii) `lij xk:1' if lij = xk, `lij xk:0' if lij = �xk.That problem has a solution if and only if the given lauses are satis�able.
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7.2.2.1 ANSWERS TO EXERCISES 21 disonnetedGibatauthorinterative methodGordonEklerbranh, hoie ofhoie of olumn to overbest olumnHuangSnyder
80. There are just �ve solutions; the latter two are awed by being disonneted:N E V E S TT E N . I WH R V I X EG H U E N LI T W O L VE E V I F E N E V E S TT E N . I WH R V I X EG H U E N LI T W O L VE V I F F E N E V E S OE V E N I NV L V R X EE E I G H TL W F . W TE T F O U R N E I G H TN E V E S WF I V E . ES O N E T LI W U E L VX T H R E E N E I G H TN E V E S WF I V E . EX O N E T LI W U E L VS T H R E EHistorial note: Word searh puzzles were invented by Norman E. Gibat in 1968.81. When Algorithm C is generalized to allow non-unit olumn sums as inAlgorithm ?, it needs just 24 megamems to prove that there are exatly eightsolutions; hene the solution shown here is essentially unique. T H R E EH W U N VR U O F IE N F W FE V I F T82. (a, b) The author's best solutions, thought to be minimal (but there is no proof),are below. In both ases, and in Fig. 71, an interative method was used: After thelongest words were plaed strategially by hand, Algorithm C paked the others niely.. N Y E L N I K C M . . T N V. O . C O O L I D G E . A L A. T . S . R E T R A C R Y O N. N L . J D N A L E V E L C B. I A T F A T O . . V W O N UW L . G R I C A M . . O R I RA C J G A U L K D . B H O L ES . E N . E M L S A . N . H NH . F I H C R A M O M E . O OI R F D A R . A N O N S X F SN U E R Y E D H A R R I S O NG H R A E I Y D E N N E K R HT T S H S P G A R F I E L D OO R O O S E V E L T . . O Y JN A N A H C U B U S H . P . TP I E R C E I S E N H O W E R U H T R A H A R D I N G A R F I E L D N A L E V E L C TO B A M A D I S O N O S L I W A S H I N G T O N O S I R R A H O O V E R E A G A N A FL I N C O L N O S K C A J E F F E R S O N E R U B N A V A D A M S E Y A H S U B F O .K E N N E D Y E L N I K C M O N R O E J O H N S O N O X I N A N A H C U B R E T R A CF I L L M O R E L Y T A Y L O R O O S E V E L T R U M A N O T N I L C O O L I D G E .[Solution (b) applies an idea by whih Leonard Gordon was able to pak the names ofpresidents 1{42 with one less olumn. See A. Ross Ekler, Word Ways 27 (1994), 147.℄83. To pak w given words, use primary olumns fPij;Ri;Ci;Bi;#k j 1 � i; j � 9;1 � k � w;  2 fA; C; E; M; O; P; R; T; Ugg and seondary olumns fij j 1 � i; j � 9g.There are 729 rows `Pij Ri Cj Bb ij:', where b = 3b(i � 1)=3 + dj=3e, togetherwith a row `#k i1j1:1 : : : iljl:l' for eah plaement of an l-letter word 1 : : : l intoells (i1; j1), : : : , (il; jl). Furthermore, it's important to modify step ?? of the algorithmso that the \best olumn" always has the form #k, unless it has length � 1.A brief run then establishes that COMPUTER and CORPORATE annotboth be paked. But all of the words exept CORPORATE do �t together;the (unique) solution shown is found after only 7.3 megamems, most ofwhih are needed simply to input the problem. [This exerise was inspiredby a puzzle in Sudoku Masterpiees (2010) by Huang and Snyder.℄ P M O T E U R C AT A U C R P O M EE C R O A M U T PU R M A P C E O TA O E U M T P R CC P T R O E A U MO E A M C R T P UR U C P T A M E OM T P E U O C A R
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22 ANSWERS TO EXERCISES 7.2.2.1 authorpro�lelog-onaveauthorUNIXextended hexadeimal digitshexadeimal notation, extendedbase plaementssortedpaked integersstraight trominoseondarybreak symmetryauthorolor ontrolsMererGardner
90. (The author designed these puzzles with the aid of exerises ??{??.)D A N C I N GD G C I A . NN A I G . D CG D N A C I .I . A C N G D. N G D I C AA C D . G N IC I . N D A G L I N K SL K S N IN I K S LI S N L KS L I K NK N L I S C O M P U T E R

C P T M R E O UU O P R E C T ME C M U O R P TR T U P M O C EO R E T U P M CM U C E P T R OT M R O C U E PP E O C T M U R
A L G O R I T H M
A I L T G H O M RI L T G H O M R AL T G H O M R A IT G H O M R A I LG H O M R A I L TH O M R A I L T GO M R A I L T G HM R A I L T G H OR A I L T G H O M

S O L V I N GS V O G L I NN O I S V G LI N L O G S VL I G V N O SV G S N I L OG S V L O N IO L N I S V S S U D O K US K O . D UD U S K . OO . D U S KU D K O . S. S U D K OK O . S D U P U Z Z L EP L E . Z UZ U P L E .E . Z U P LU E L Z . P. P U E L ZL Z . P U E100. (a) To over 2 of 4, we have 3 hoies at the root, then 3 or 2 or 1 at the nextlevel, hene (1, 3, 6) nodes at levels (0, 1, 2). To over 5 of 7, there are (1, 3, 6, 10,15, 21) nodes at levels (0, 1, : : : , 5). Thus the pro�le with olumn 1 �rst is (1, 3, 6,6 � 3, 6 � 6, 6 � 10, 6 � 15, 6 � 21). The other way is better: (1, 3, 6, 10, 15, 21, 21 � 3, 21 � 6).(b) With olumn 1 �rst the pro�le is (a0, a1, : : : , ap, apa1, : : : , apaq), where aj =�j+dd �. We should branh on olumn 2 �rst beause ap+1 < apa1, ap+2 < apa2, : : : , aq <apaq�p, aqa1 < apaq�p+1, : : : , aqap�1 < apaq�1. (These inequalities follow beausethe sequene haji is strongly log-onave: It satis�es the ondition a2j > aj�1aj+1 forall j � 1. See exerise MPR{125.)140. Let the given shape be spei�ed as a set of integer pairs (x; y). These pairs mightsimply be listed one by one in the input; but it's muh more onvenient to aept amore ompat spei�ation. For example, the utility program with whih the authorprepared the examples of this book was designed to aept UNIX-like spei�ations suhas `[14-7℄2 5[0-3℄' for the seven pairs f(1; 2), (4; 2), (5; 2), (6; 2), (7; 2), (5; 0), (5; 1),(5; 3)g. The range 0 � x; y < 62 has proved to be suÆient in almost all instanes, withsuh integers enoded as single \extended hexadeimal digits" 0, 1, : : : , 9, a, b, : : : , z,A, B, : : : , Z. The spei�ation `[1-3℄[1-k℄' is one way to de�ne a 3� 20 retangle.Similarly, eah of the given polyominoes is spei�ed by stating its piee name anda set T of typial positions that it might oupy. Suh positions (x; y) are spei�ed usingthe same onventions that were used for the shape; they needn't lie within that shape.The program omputes base plaements by rotating and/or reeting the elementsof that set T . The �rst base plaement is the shifted set T0 = T � (xmin; ymin), whoseoordinates are nonnegative and as small as possible. Then it repeatedly applies anelementary transformation, either (x; y) 7! (y; xmax � x) or (x; y) 7! (y; x), to everyexisting base plaement, until no further plaements arise. (That proess beomes easywhen eah base plaement is represented as a sorted list of paked integers (x�16)+y.)For example, the typial positions of the straight tromino might be spei�ed as `1[1-3℄';it will have two base plaements, f(0; 0); (0; 1); (0; 2)g and f(0; 0); (1; 0); (2; 0)g.After digesting the input spei�ations, the program de�nes the olumns of theexat problem, whih are the piee names together with the ells xy of the given shape.Finally, it de�nes the rows: For eah piee p and for eah base plaement T 0 of p,and for eah o�set (Æx; Æy) suh that T 0 + (Æx; Æy) lies fully within the given shape,there's a row that names the olumns fpg [ f(x+ Æx; y + Æy) j (x; y) 2 T 0g.(The output of this program is often edited by hand, to take aount of speialirumstanes. For example, some olumns may hange from primary to seondary;some rows may be eliminated in order to break symmetry. The author's implementationalso allows the spei�ation of seondary olumns with olor ontrols, along with baseplaements that inlude suh ontrols.)148. RUSTY. [Leigh Merer posed a similar question to Martin Gardner in 1960.℄150. As in the 3 � 20 example onsidered in the text, we an set up an exat overproblem with 12 + 60 olumns, and with rows for every potential plaement of eah
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7.2.2.1 ANSWERS TO EXERCISES 23 Conwayseondary olumnSottbreak symmetryFairbairnPestiauBouwkampHaselgrove, ColinHaselgrove, Jenifer
piee. This gives respetively (52, 292, 232, 240, 232, 120, 146, 120, 120, 30, 232, 120)rows for piees (O, P, : : : , Z) in Conway's nomenlature, thus 1936 rows in all.To redue symmetry, we an insist that the X ours in the upper left orner; thenit ontributes just 10 rows instead of 30. But some solutions are still ounted twie,when X is entered in the middle row. To prevent this we an add a seondary olumn`s', and append `s' to the �ve rows that orrespond to those entered appearanes; wealso append `s' to the 60 rows that orrespond to plaements where the Z is ipped over.Without those hanges, Algorithm D would use 9.76 G� to �nd 4040 solutions;with them, it needs just 2.86 G� to �nd 1010.This approah to symmetry breaking in pentomino problems is due to Dana Sott[Tehnial Report No. 1 (Prineton University Dept. of Eletrial Engineering, 10 June1958)℄. Another way to break symmetry would be to allow X anywhere, but to restritthe W to its 30 unrotated plaements. That works almost as well: 2.87 G�.151. There's a unique way to pak P, Q, R, U, X into a 5 � 5 square, and to pakthe other seven into a 5� 7. (See below.) With independent reetions, together withrotation of the square, we obtain 16 of the 1010. There's also a unique way to pakP, R, U into a 5� 3 and the others into a 5� 9 (notied by R. A. Fairbairn in 1967),yielding 8 more. And there's a unique way to pak O, Q, T, W, Y, Z into a 5� 6, plustwo ways to pak the others, yielding another 16. (These paired 5 � 6 patterns wereapparently �rst notied by J. Pestiau; see answer 169.) Finally, the pakings in thenext exerise give us 264 deomposable 5� 12s altogether.[Similarly, C. J. Bouwkamp disovered that S, V, T, Y pak uniquely into a 4�5,while the other eight an be put into an 4� 10 in �ve ways, thus aounting for 40 ofthe 368 distint 4� 15s. See Journal of Rereational Mathematis 3 (1970), 125.℄
152. Without symmetry redution, 448 solutions are found in 1.21 G�. But we anrestrit X to the upper left orner, agging its plaements with `s' when entered in themiddle row or middle olumn (but not both). Again the `s' is appended to ipped Z's.Finally, when X is plaed in dead enter, we append another seondary olumn `', andappend `' to the 90 rotated plaements of W. This yields 112 solutions, after 0.34 G�.Or we ould leave X unhindered but urtail W to 1/4 of its plaements. That'seasier to do (although not quite as lever) and it �nds those 112 in 0.42 G�.Inidentally, there aren't atually any solutions with X in dead enter.154. The exat over problem analogous to that in exerise 150 has 12 + 60 olumnsand (56, 304, 248, 256, 248, 128, 1152, 128, 128, 32, 248, 128) rows. It �nds 9356solutions after 15.93 G� of omputation, without symmetry redution. But if we insistthat X be entered in the upper left quarter, by removing all but 8 of its plaements,we get 2339 solutions after just 3.93 G�. (The alternative of restriting W's rotationsis not as e�etive in this ase: 5.43 G�.) These solutions were �rst enumerated byC. B. and Jenifer Haselgrove [Eureka: The Arhimedeans' Journal 23 (1960), 16{18℄.155. (a) Obviously only k = 5 is feasible. All suh pakings an be obtained byomitting all rows of the over problem that straddle the \ut." That leaves 1507 of theoriginal 2032 rows, and yields 16 solutions after 104 M�. (Those 16 boil down to justthe two 5� 6 deompositions that we already saw in answer 151.)
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24 ANSWERS TO EXERCISES 7.2.2.1 PottsGardnerseondary olumnsDudeneyparityone-sided pentominoesReid(b) Now we remove the 763 rows for plaements that don't touh the boundary,and obtain just the two solutions below, after 100 M�. (This result was �rst notiedby Tony Potts, who posted it to Martin Gardner on 9 February 1960.)() Now there are 1237 plaements/rows; the unique solution is found after 83 M�.(d) There are respetively (0, 9, 3, 47, 16, 8, 3, 1, 30, 22, 5, 11) solutions forpentominoes (O, P, Q, : : : , Z). (The I/O pentomino an be \framed" by the others in11 ways; but all of those pakings also have at least one other interior pentomino.)(e) Despite many ways to over all boundary ells with just seven pentominoes,none of them lead to an overall solution. Thus the minimum is eight; 207 of the 2339solutions attain it. To �nd them we might as well generate and examine all 2339.(f) The question is ambiguous: If we're willing to allow the X to touh unnamedpiees at a orner, but not at an edge, there are 25 solutions (8 of whih happen tobe answers to part (a)). In eah of these solutions, X also touhes the outer boundary.(The over and frontispiee of Clarke's book show a paking in whih X doesn't touhthe boundary, but it doesn't solve this problem: There's an edge where X meets I, andthere's a point where X meets P.) There also are two pakings in whih the edges of Xtouh only F, N, U, and the boundary, but not V.On the other hand, there are just 6 solutions if we allow only F, N, U, V to touhX's orner points. One of them, shown below, has X touhing the short side and seemsto math the quotation best. These 6 solutions an be found in just 47 M�, by introdu-ing 60 seondary olumns as sort of an \upper level" to the board: All plaements of Xoupy the normal �ve lower-level ells, plus up to 16 upper-level ells that touh them;all plaements of F, N, U, V are unhanged; all plaements of the other seven pieesoupy both the lower and the upper level. This niely forbids them from touhing X.
157. Restrit X to �ve essentially di�erent positions; if X is on the diagonal, also keepZ unipped by using the seond olumn `s' as in answer 152. There are respetively(16146, 24600, 23619, 60608, 25943) solutions, found in (19.8, 35.4, 27.3, 66.6, 34.5) G�.
In eah ase the tetromino an be plaed anywhere that doesn't immediately ut o�a region of one or two squares. [The twelve pentominoes �rst appeared in print whenH. E. Dudeney published The Canterbury Puzzles in 1907. His puzzle #74, \TheBroken Chessboard," presented the �rst solution shown above, with piees hekeredin blak and white. That parity restrition, with the further ondition that no piee isturned over, would redue the number of solutions to only 4, �ndable in 120 M�.℄The 60-element subsets of the hessboard that an't be paked with the pentomi-noes has been haraterized by M. Reid in J. Rereational Math. 26 (1994), 153{154.
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7.2.2.1 ANSWERS TO EXERCISES 25 symmetrytorustorus, generalizedSihermanwallpapertatamiSATseondary olumnGardnerHawkinsLindonFuhlendorfsymmetries
158. Yes, in seven essentially di�erent ways. To remove symmetry, we an makethe I vertial and put the X in the right half. (The pentominoes will have a totalof 6� 2 + 5� 3 + 4 = 31 blak squares; therefore the tetromino must be .)159. These shapes an't be paked in a retangle. But we an use the \supertile"to make an in�nite strip � � � � � � . We an also tile the plane with asupertile like , or even use a generalized torus suh as (see exerise 7{137).That supertile was used in 2009 by George Siherman to make tetromino wallpaper.160. The 2339 solutions ontain 563 that satisfy the \tatami" ondition: No four pieesmeet at any one point. Eah of those 563 leads to a simple 12-vertex graph oloringproblem; for example, the SAT methods of Setion 7.2.2.2 typially need at most twoor three kilomems to deide eah ase.It turns out that exatly 94 are three-olorable, inluding the seond solution toexerise 155(b). Here are the three for whih W, X, Y, Z all have the same olor:
162. Both shapes have 8-fold symmetry, so we an save a fator of nearly 8 by plaingthe X in (say) the north-northwest otant. If X thereby falls on the diagonal, or inthe middle olumn, we an insist that the Z is not ipped, by introduing a seondaryolumn `s' as in answer 152. Furthermore, if X ours in dead enter| this is possibleonly for shape (i)|we use `' as in that answer to prohibit also any rotation of the W.Thus �nd (a) 10 pakings, in 3.5 G�; (b) 7302 pakings, in 353 G�; for instane; ; :It turns out that the monomino must appear in or next to a orner, as shown. [The�rst solution to shape (i) with monomino in the orner was sent to Martin Gardnerby H. Hawkins in 1958. The �rst solution of the other type was published by J. A.Lindon in Rereational Mathematis Magazine #6 (Deember 1961), 22. Shape (ii)was introdued and solved muh earlier, by G. Fuhlendorf in The Problemist: FairyChess Supplement 2, 17 and 18 (April and June, 1936), problem 2410.℄163. (Notie that width 3 would be impossible, beause every fault-free plaement ofthe V needs width 4 or more.) We an set up an exat over problem for a 4 � 19retangle in the usual way; but then we make ell (x; y + 15) idential to (3� x; y) for0 � x < 4 and 0 � y < 5, essentially making a half-twist when the pattern begins towrap around. There are 60 symmetries, and are is needed to remove them properly.The easiest way is to put X into a �xed position, and allow W to rotate at most 90Æ.
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26 ANSWERS TO EXERCISES 7.2.2.1 three-olorableolor ontrolsThis exat over problem has 850 solutions, 502 of whih are fault-free. Here'sone of the 29 strongly three-olorable ones, shown before and after its ends are joined:top: bottom:164. It's also possible to wrap two ubes of size p5�p5�p5,as shown by F. Hansson; see Fairy Chess Review 6 (1947{1948), problems 7124 and 7591. A full disussion appears inFGbook, pages 685{689.165. It's easy to set up an exat over problem in whih the ells touhing the poly-omino are primary olumns, while other ells are seondary, and with rows restrited toplaements that ontain at least one primary olumn. Postproessing an then removespurious solutions that ontain holes. Typial answers for (a) are
representing respetively (9, 2153, 37, 2, 17, 28, 18, 10, 9, 2, 4, 1) ases. For (b) they're
representing (16, 642, 1, 469, 551, 18, 24, 6, 4, 2, 162, 1). The total number of fenesis respetively (3120, 1015033, 8660380, 284697, 1623023, 486, 150, 2914, 15707, 2,456676, 2074), after weeding out respetively (0, 0, 16387236, 398495, 2503512, 665,600, 11456, 0, 0, 449139, 5379) ases with holes. (See MAA Fous 36, 3 (June/July2016), 26; 36, 4 (August/September 2016), 33.) Of ourse we an also make fenes forone shape by using other shapes; for example, there's a beautiful way to fene a Z with12 Ws, and a unique way to fene one pentomino with only three opies of another.166. The small fenes of answer 165(a) already meet this ondition|exept for theX, whih has no tatami fene. The large fenes for T and U in 165(b) are also good.But the other nine fenes an no longer be as large:

[The tatami ondition an be inorporated into the exat over problem by usingolor ontrols: Introdue a seondary olumn for every potential edge between tiles,with values t and f. Also introdue a primary olumn p for every orner point; p willappear only in four rows `p e:f', one for eah edge e that touhes p. In every row for the
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7.2.2.1 ANSWERS TO EXERCISES 27 gadgetbenhmarksHaselgroveWassermann�Osterg�ardMeeus180Æ rotationentral symmetryPatentPestiauGuyhekeringparityparityexat over
plaement of a piee, inlude the olumns `e:f' for every edge internal to that piee,and `e:t' for every edge at the boundary of that piee. Then every point will be nextto a nonedge. However, for this exerise it's best simply to apply the tatami onditiondiretly to eah ordinary solution, before postproessing for hole-removal.℄168. This exerise, with 3 � 30, 5 � 18, 6 � 15, and 9 � 10 retangles, yields fourinreasingly diÆult benhmarks for the exat over problem, having respetively (46,686628, 2562928, 10440433) solutions. Symmetry an be broken as in exerise 152.The 3 � 30 ase was �rst resolved by J. Haselgrove; the 9 � 10 pakings were �rstenumerated by A. Wassermann and P. �Osterg�ard, independently. [See New Sientist12 (1962), 260{261; J. Meeus, J. Rereational Math. 6 (1973), 215{220; and FGbookpages 455, 468{469.℄ Algorithm D needs (.006, 5.234, 15.576, 63.386) teramems to �ndthem. (I plan to give statistis for improved versions too; please stay tuned.)169. Two solutions are now equivalent only when related by 180Æ rotation. Thus thereare 2 � 2339=64 = 73:09375 solutions per problem, on average. The minimum (42) andmaximum (136) solution ounts our for the ases(a) ; (b) :[In U.S. Patent 2900190 (1959, �led 1956), J. Pestiau remarked that these 64 problemswould give his pentomino puzzle \unlimited life and utility."℄170. There are no ways to �ll 2� 20; 4� 66 ways to �ll 4� 10;4�84 ways to �ll 5�8. None of the solutions are symmetrial.[See R. K. Guy, Nabla 7 (1960), 99{101.℄175. Most of the hexominoes will have three blak ells and three white ells, in any\hekering" of the board. However, eleven of them (shown as darker gray in theillustration) will have a two-to-four split. Thus the total number of blak ells willalways be an even number between 94 and 116, inlusive. But a 210-ell retanglealways ontains exatly 105 blak ells. [See The Problemist: Fairy Chess Supplement2, 9{10 (1934{1935), 92, 104{105; Fairy Chess Review 3, 4{5 (1937), problem 2622.℄Benjamin's triangular shape, on the other hand, has 1+3+5+� � �+19 = 102 = 100ells of one parity and �202 � � 102 = 110 of the other. It an be paked with the 35hexominoes in a huge number of ways, probably not feasible to ount exatly.176. The parity onsiderations in answer 175 tell us that this is possible only for the\unbalaned" hexominoes, suh as the one shown. And in fat, Algorithm D readily�nds solutions for all eleven of those, too numerous to ount. Here's an example:
[See Fairy Chess Review 6 (April 1947) through 7 (June 1949), problems 7252, 7326,7388, 7460, 7592, 7728, 7794, 7865, 7940, 7995, 8080. See also the similar problem 7092.℄177. Eah astle must ontain an odd number of the eleven unbalaned hexominoes(see answer 175). Thus we an begin by �nding all sets of seven hexominoes that anbe paked into a astle: This amounts to solving �111 �+ �113 � + �115 �+ �117 � = 968 exatover problems, one for eah potential hoie of unbalaned elements. Eah of those
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28 ANSWERS TO EXERCISES 7.2.2.1 fatoringHanssonPovahHanssonSihermanproblems is fairly easy; the 24 balaned hexominoes provide seondary olumns, whilethe astle ells and the hosen unbalaned elements are primary. In this way we obtain39411 suitable sets of seven hexominoes, with only a moderate amount of omputation.That gives us another exat over problem, having 35 olumns and 39411 rows.This seondary problem turns out to have exatly 1201 solutions (found in just 115 G�),eah of whih leads to at least one of the desired overall pakings. Here's one:In this example, two of the hexominoes in the rightmost astle an be ipped vertially;and of ourse the entire ontents of eah astle an independently be ipped horizon-tally. Thus we get 64 pakings from this partiular partition of the hexominoes (ormaybe 64 � 5!, by permuting the astles), but only two of them are \really" distint.Taking multipliities into aount, there are 1803 \really" distint pakings altogether.[Frans Hansson found the �rst way to pak the hexominoes into �ve equal shapes,using as the ontainer; see Fairy Chess Review 8 (1952{1953), problem 9442. Hisontainer admits 123189 suitable sets of seven, and 9298602 partitions into �ve suitablesets instead of only 1201. Even more pakings are possible with the ontainer ,whih has 202289 suitable sets and 3767481163 partitions!℄In 1965, M. J. Povah paked all of the hexominoes into ontainers of shape ,using seven sets of �ve; see The Games and Puzzles Journal 2 (1996), 206.178. By exerise 175, mmust be odd, and less than 35. F. Hansson posed this questionin Fairy Chess Review 7 (1950), problem 8556. He gave a solution for m = 19,;and laimed without proof that 19 is optimum. The 13 dark gray hexominoes in thisdiagram annot be plaed in either \arm"; so they must go in the enter. (Medium grayindiates piees that have parity restritions in the arms.) Thus we annot havem � 25.When m = 23, there are 39 ways to plae all of the hard hexominoes, suh as:However, none of these is ompletable with the other 22; hene m � 21.When m = 21, the hard hexominoes an be plaed in 791792 ways, withoutreating a region whose size isn't a multiple of 6 and without reating more than oneregion that mathes a partiular hexomino. Those 791792 ways have 69507 essentiallydistint \footprints" of oupied ells, and the vast majority of those footprints appearto be impossible to �ll. But in 2016, George Siherman found the remarkable paking;whih not only solvesm = 21, it yields solutions for m = 19, 17, 15, 11, 9, 7, 5, and 3 bysimple modi�ations. Siherman also found separate solutions for m = 13 and m = 1.



January 29, 2017

7.2.2.1 ANSWERS TO EXERCISES 29 strongly three-olorabledynami programmingBenjaminKellerTorbijnMeeusnested parenthesesforestontinued frationBessel funtions, gen'lized
179. Stead's original solution makes a very pleasant three-olored design:[See Fairy Chess Review 9 (1954), 2{4; also FGbook, pages 659{662.℄This problem is best solved via the tehniques of dynami programming (Se-tion 7.7), not with Algorithm D, beause numerous subproblems are equivalent.181. Make rows for the pentominoes in ells xy for 0 � x < 8, 0 � y < 10 as in exerise140, and also for the tetrominoes in ells xy for 1 � x < 7, 1 � y < 9. In the latterrows inlude also olumns xy0:0 for all ells xy in the tetromino, as well as xy0:1 forall other ells xy touhing the tetromino, where the olumns xy0 for 0 � x < 8 and0 � y < 10 are seondary. We an also assume that the enter of the X pentomino liesin the upper left orner. There are 168 solutions, found after 1.5 T� of omputation.(Another way to keep the tetrominoes from touhing would be to introdue seondaryolumns for the verties of the grid. Suh olumns are more diÆult to implement,however, beause they behave di�erently under the rotations of answer 140.)[Many problems that involve plaing the tetrominoes and pentominoes togetherin a retangle were explored by H. D. Benjamin and others in the Fairy Chess Review,beginning already with its predeessor The Problemist: Fairy Chess Supplement (1936),problem 2171. But this partiular question seems to have been raised �rst by MihaelKeller in World Game Review 9, (1989), xx.℄182. At present, not a single solution to this puzzle is known, although intuitionsuggests that enormously many of them ought to be possible. P. J. Torbijn and J. Meeus[J. Rereational Mathematis 32 (2003), 78{79℄ have exhibited solutions for retanglesof sizes 6� 45, 9� 30, 10 � 27, and 15 � 18.198. (a) Represent the tree as a sequene a0a1 : : : a2n+1 of nested parentheses; thena1 : : : a2n will represent the orresponding root-deleted forest, as in Algorithm 7.2.1.6P.The left boundary of the orresponding parallomino is obtained by mapping eah `('into N or E, aording as it is immediately followed by `(' or `)'. The right boundary,similarly, maps eah `)' into N or E aording as it is immediately preeded by `)' or`('. For example, the parallomino for forest 7.2.1.6{(2) is shown below with part (d).(b) This series wxy + w2(xy2 + x2y) + w3(xy3 + 2x2y2 + x3y) + � � � an bewritten wxyH(w;wx;wy), where H(w; x; y) = 1=(1 � x � y � G(w; x; y)) generatesa sequene of \atoms" orresponding to plaes x, y, G where the juxtaposed boundarypaths have the respetive forms EE, NN, or NEhinneriEN. The area is thereby omputed bydiagonals between orresponding boundary points. (In the example from (a), the area is1+1+1+1+2+2+2+2+2+2+2+2+2+1+1; there's an \outer" G, whoseH is xyxyGy,and an \inner"G, whoseH is xyyxyxxyy.) Thus we an write G as a ontinued fration,G(w; x; y) = wxy/(1�x�y�wxy=(1�wx�wy�w3xy=(1�w2x�w2y�w5xy=( � � � )))):[A ompletely di�erent form is also possible, namely G(w; x; y) = xJ1(w;x;y)J0(w;x;y) , whereJ0(w; x; y) = 1Xn=0 (�1)nynwn(n+1)=2(1�w)(1�w2) : : : (1� wn)(1� xw)(1� xw2) : : : (1� xwn) ;J1(w; x; y) = 1Xn=1 (�1)n�1ynwn(n+1)=2(1�w)(1�w2) : : : (1� wn�1)(1� xw)(1� xw2) : : : (1� xwn) :This form, derived via horizontal slies, disguises the symmetry between x and y.℄
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30 ANSWERS TO EXERCISES 7.2.2.1 Catalan numberstatamistrongly three-olorableseondary olumnsgeek artKlarnerRivestBenderGouldenJaksonDelestViennotWoanShapiroRogersFlajoletSedgewikpendant vertex: of degree 1diameter
() Let G(w; z) = G(w; z; z). We want [zn℄G0(1; z), where di�erentiation is withrespet to the �rst parameter. From the formulas in (b) we know that G(1; z) =z(C(z)� 1), where C(z) = (1�p1�4z)=(2z) generates the Catalan numbers. Partialderivatives �=�w and �=�z then give G0(1; z) = z2=(1�4z) andG0(1; z) = 1=p1�4z�1.(d) This problem has four symmetries, beause we an reet about either diag-onal. When n = 5, Algorithm D �nds 4 � 801 solutions, of whih 4 � 129 satisfy thetatami ondition, and 4�16 are strongly three-olorable. (The tatami ondition is easilyenfored via seondary olumns in this ase, beause we need only stipulate that theupper right orner of one parallomino doesn't math the lower left orner of another.)When n = 6 there are oodles and oodles of solutions. All of the trees/parallominoesthereby appear together in an attrative ompat pattern.

2112 5344 85 a63f 78 976a 78 b93f 6a 6a db f3f 3f e ed3f e3f
[Referenes: D. A. Klarner and R. L. Rivest, Disrete Math. 8 (1974), 31{40;E. A. Bender, Disrete Math. 8 (1974), 219{226; I. P. Goulden and D. M. Jakson,Combinatorial Enumeration (New York: Wiley, 1983), exerise 5.5.2; M.-P. Delest andG. Viennot Theoretial Comp. Si. 34 (1984), 169{206; W.-J. Woan, L. Shapiro, andD. G. Rogers, AMM 104 (1997), 926{931; P. Flajolet and R. Sedgewik, AnalytiCombinatoris (Cambridge Univ. Press, 2009), 660{662.℄200. The same ideas apply, but with three oordinates instead of two, and with theelementary transformations (x; y; z) 7! (y; xmax � x; z), (x; y; z) 7! (y; z; x).Piees (1, 2, : : : , 7) have respetively (12, 24, 12, 12, 12, 12, 8) base plaements,leading to 144 + 144 + 72 + 72 + 96 + 96 + 64 rows for the 3� 3� 3 problem.202. It's tempting, but wrong, to try to ompute the Somap by onsidering only the240 solutions that have the tee in a �xed position and the law restrited; the pairwisesemidistanes between these speial solutions will miss many of the atual adjaenies.To deide if u���v, one must ompare u to the 48 solutions equivalent to v.(a) The strong Somap has vertex degrees 7167519431359263145015; so an \average"solution has (1 � 7+7 � 6+ � � �+15 � 0)=240 � 2:57 strong neighbors. (The unique vertexof degree 7 has the level-by-level struture 355335342 166175442 176776422 from bottom to top.)The full Somap has vertex degrees 21218116915131410131612171112101692882672562651641733211101, giving an average degree � 9:14. (Its unique isolated vertexis 344336322 447566562 177117552, and its only pendant vertex is 342332352 744566552 774716116. Two other noteworthy solutions,344336366 447156222 177157552 and 344336366 447156255 177157222, are the only ones that ontain the two-piee substruture .)(b) The Somap has just two omponents, namely the isolated vertex and the239 others. The latter has just three biomponents, namely the pendant vertex, itsneighbor, and the 237 others. Its diameter is 8 (or 21, if we use the edge lengths 2 and 3).The strong Somap has a muh sparser and more intriate struture. Besidesthe 15 isolated verties, there are 25 omponents of sizes f8 � 2; 6 � 3; 4; 3 � 5; 2 � 6;7; 8; 11; 16; 118g. Using the algorithm of Setion 7.4.1, the large omponent breaks downinto nine biomponents (one of size 2, seven of size 1, the other of size 109); the 16-vertex omponent breaks into seven; and so on, totalling 58 biomponents altogether.
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7.2.2.1 ANSWERS TO EXERCISES 31 GuyConwayGuyBerlekampConwayGuyGardnersymmetriesHeinParker BrothersCarlsonHallHillKenworthyMorganMurraySmileyFarhisymmetries
[The Somap was �rst onstruted by R. K. Guy, J. H. Conway, and M. J. T.Guy, without omputer help. It appears on pages 910{913 of Berlekamp, Conway, andGuy's Winning Ways, where all of the strong links are shown, and where enough otherlinks are given to establish near-onnetedness. Eah vertex in that illustration hasbeen given a ode name; for example, the �ve speial solutions mentioned in part (a)have ode names B5f, R7d, LR7g, YR3a, and R3, respetively.℄204. Let the ubie oordinates be 51z, 41z, 31z, 32z, 33z, 23z, 13z, 14z, 15z, for z 2f1; 2; 3g. Replae matrix A of the exat over problem by a simpli�ed matrix A0 havingonly olumns (1; 2; 3; 4; 5; 6; 7; S), where S is the sum of all olumns xyz of A where xyz isodd. Any solution to A yields a solution to A0 with olumn sums (1; 1; 1; 1; 1; 1; 1; 10).But that's impossible, beause the rows of A0 all have the forms `1 [S℄', `2 [S℄ [S℄',`3 [S℄ [S℄', `4 [S℄', `5 [S℄', `6 [S℄', `7 [S℄'. [See the Martin Gardner referene in answer 213.℄205. (a) The solution ounts, ignoring symmetry redution, are: 4 � 5 orral (2),gorilla (2), smile (2), 3 � 6 orral (4), fae (4), lobster (4), astle (6), benh (16),bed (24), doorway (28), piggybank (80), �ve-seat benh (104), piano (128), shift 2(132), 4� 4 oop (266), shift 1 (284), bathtub (316), shift 0 (408), grand piano (526),tower 4 (552), tower 3 (924), anal (1176), tower 2 (1266), ouh (1438), tower 1 (1520),stepping stones (2718). So the 4�5 orral, gorilla, and smile are tied for hardest, whilestepping stones are the easiest. (The bathtub, anal, bed, and doorway eah have foursymmetries; the ouh, stepping stones, tower 4, shift 0, benh, 4 � 4 oop, astle,�ve-seat benh, piggybank, lobster, piano, gorilla, fae, and smile eah have two. Toget the number of essentially distint solutions, divide by the number of symmetries.)(b) Notie that the anal, bed, and doorway appear also in (a), as does the dryer(whih is the same as \stepping stones"). The solution ounts are: W-wall (0), almostW-wall (12), bed (24), apartments 2 (28), doorway (28), lip (40), tunnel (52), zigzagwall 2 (52), zigzag wall 1 (92), underpass (132), hair (260), stile (328), �sh (332),apartments 1 (488), gold�sh (608), anal (1176), steps (2346), dryer (2718); hene\almost W-wall" is the hardest of the possible shapes. Notie that the dryer, hair,steps, and zigzag wall 2 eah have two symmetries, while the others in Fig. 80(b) allhave four. The 3� 3� 3 ube, with its 48 symmetries, probably is the easiest possibleshape to make from the Soma piees.[Piet Hein himself published the tower 1, shift 2, stile, and zigzag wall 1 in hisoriginal patent; he also inluded the bathtub, bed, anal, astle, hair, steps, stile,stepping stones, shift 1, �ve-seat benh, tunnel, W-wall, and both apartments in hisbooklet for Parker Brothers. Parker Brothers distributed four issues of The SOMA RAddit in 1970 and 1971, giving redit for new onstrutions to Noble Carlson (�sh,lobster), Mrs. C. L. Hall (lip, underpass), Gerald Hill (towers 2{4), Craig Kenworthy(gold�sh), John W. M. Morgan (ot, fae, gorilla, smile), Rik Murray (grand piano),and Dan Smiley (doorway, zigzag wall 2). Sivy Farhi published a booklet alledSomaubes in 1977, ontaining the solutions to more than one hundred Soma ubeproblems inluding the benh, the ouh, and the piggybank.℄206. By eliminating symmetries, there are (a) 421 distint ases with ubies omitted onboth layers, and (b) 129 with ubies omitted on only one layer. All are possible, exeptin the one ase where the omitted ubies disonnet a orner ell. The easiest of type (a)omits (111; 112; 311) and has 3599 solutions; the hardest omits (211; 222; 231) and has45�2 solutions. The easiest of type (b) omits (111; 151; 311) and has 3050 solutions; thehardest omits (211; 221; 251) and has 45 � 2 solutions. (The two examples illustratedhave 821� 2 and 68� 4 solutions. Early Soma solvers seem to have overlooked them!)
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207. (a) The 60 distint ases are all quite easy. The easiest has 3497 solutions and uses(113; 123; 213) on the top level; the hardest has 268 solutions and uses (113; 223; 313).(b) Sixteen of the 60 possibilities are disonneted. Three of the others are alsoimpossible|namely those that omit (12z; 24z; 32z) or (21z; 22z; 23z) or (21z; 22z; 24z).The easiest has 3554 solutions and omits (11z; 12z; 34z); the hardest of the possibleshas only 8 solutions and omits (11z; 23z; 24z).(The two examples illustrated have 132� 2 and 270� 2 solutions.)208. All but 216 are realizable. Five ases have unique (1� 2) solutions:
210. Every polyube has a minimum enlosing box for whih it touhes all six faes. Ifthose box dimensions a�b� aren't too large, we an generate suh polyubes uniformlyat random in a simple way: First hoose 27 of the ab possible ubies; try again if thathoie doesn't touh all faes; otherwise try again if that hoie isn't onneted.For example, when a = b =  = 4, about 99.98% of all hoies will touh all faes,and about 0.1% of those will be onneted. This means that about :001�6427� � 8� 1014of the 27-ubie polyubes have a 4� 4� 4 bounding box. Of these, about 5.8% an bebuilt with the seven Soma piees.But most of the relevant polyubes have a larger bounding box; and in suhases the hane of solvability goes down. For example, � 6:2�1018 ases have boundingbox 4� 5� 5; � 3:3� 1018 ases have bounding box 3� 5� 7; � 1:5� 1017 ases havebounding box 2� 7� 7; and only 1% or so of those ases are solvable.Setion 7.2.3 will disuss the enumeration of polyubes by their size.212. Eah interior position of the penthouse and pyramid that might or might notbe oupied an be treated as a seondary olumn in the orresponding exat overproblem. We obtain 10 � 2 solutions for the stairase; (223; 286) � 8 solutions for thepenthouse with hole at the (bottom;middle); and 32 � 2 solutions for the pyramid, ofwhih 2� 2 have all three holes on the diagonal and 3� 2 have no adjaent holes.213. A full simulation of gravity would be quite omplex, beause piees an beprevented from tipping with the help of their neighbors above and/or at their side.If we assume a reasonable oeÆient of frition and an auxiliary weight at the top, itsuÆes to de�ne stability by saying that a piee is stable if and only if at least one ofits ubies is immediately above either the oor or a stable piee.The given shapes an be paked in respetively 202� 2, 21� 2, 270� 2, 223� 8,and 122 � 2 ways, of whih 202 � 2, 8 � 2, 53 � 2, 1 � 8, and 6 � 2 are stable. Goingfrom the bottom level to the top, the layers 4.3... ...7.6 453453766776 5534.1... ... 222211... ... give a deently stable ot; afragile vulture omes from 2.3... ... .7. 233415476776 213215455466; a deliate mushroom omes from ... .7. ... 554776276 5345.4266 333214211; anda deliate antilever from .2. .2. .2. .2. .5. .5. ...557... 661377447 361361344. The author's herished set of Skj�de SkjernSoma piees, made of rosewood and purhased in 1967, inludes a small square basethat niely stabilizes both mushroom and antilever. The vulture needs a book on top.[The asserole and ot are due respetively to W. A. Kustes and J. W. M. Morgan.The mushroom, whih is hollow, is the same as B. L. Shwartz's \penthouse," butturned upside down; John Conway notied that it then has a unique stable solution.See Martin Gardner, Knotted Doughnuts (1986), Chapter 3.℄
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7.2.2.1 ANSWERS TO EXERCISES 33 gravitationally stableFranillonHo�mannMikusinski's CubeSteinhauspentaubesReidSihermanHoly GrailShindoNeo Diabolial Cube
214. In�nitely many ubies lie behind a wall; but it suÆes to onsider only the hiddenones whose distane is at most 27 � v from the v visible ones. For example, if the W-wall has oordinates as in answer 204, we have v = 25 and the two invisible ubies aref332; 331g. We're allowed to use any of f241; 242; 251; 252; 331; 332; 421; 422; 521; 522gat distane 1, and f341; 342; 351; 352; 431; 432; 531; 532; 621; 622g at distane 2. (Thestated projetion doesn't have left-right symmetry.) The X-wall is similar, but it hasv = 19 and potentially (9, 7, 6, 3, 3, 2, 1) hidden ubies at distanes 1 to 7 (omittingases like 450, whih is invisible at distane 2 but \below ground").Using seondary olumns for the optional ubies, we must examine eah solutionto the exat over problem and rejet those that are disonneted or violate the gravityonstraint of exerise 213. Those ground rules yield 282 solutions for the W-wall, 612for the X-wall, and a whopping 1,130,634 for the ube itself. (These solutions �llrespetively 33, 275, and 13842 di�erent sets of ubies.) Here are examples of some ofthe more exoti shapes that are possible, as seen from behind and below:There also are ten surprising ways to make the ube fa�ade if we allow hidden \un-derground" ubies: The remarkable onstrution ... ... ... ..5..5 4724..66. .55... 77247.46. .6. ... 322331311... ... raises the entireube one level above the oor, and is gravitationally stable, by exerise 213's riteria!Unfortunately, though, it falls apart|even with a heavy book on top.[The false-front idea was pioneered by Jean Paul Franillon, whose onstrutionof a fake W-wall was announed in The SOMA R Addit 2, 1 (spring 1971).℄215. (a) Eah of 13 solutions ours in 48 equivalent arrangements. To remove thesymmetry, plae piee 7 horizontally, either (i) at the bottom or (ii) in the middle.In ase (ii), add a seondary `s' olumn as in answer 150, and append `s' also to allplaements of piee 6 that touh the bottom more than the top. Run time: 400 K�.[This puzzle was number 39 in Ho�mann's Puzzles Old and New (1893). Another3 � 3 � 3 polyube dissetion of historial importane, \Mikusinski's Cube," wasdesribed by Hugo Steinhaus in the 2nd edition of his Mathematial Snapshots (1950).That one onsists of the ell and the two twist piees of the Soma ube, plus thepentaubes B, C, and f of exerise 220; it has 24 symmetries and just two solutions.℄(b) Yes: Mihael Reid, ira 1995, found the remarkable setwhih also makes 9 � 3 � 1 uniquely(!). George Siherman arried out an exhaustiveanalysis of all relevant at polyominoes in 2016, �nding exatly 320 sets that are uniquefor 3� 3� 3, of whih 19 are unique also for 9� 3� 1. In fat, one of those 19,� � � � � ;is the long-sought \Holy Grail" of 3 � 3 � 3 ube deompositions: Its piees not onlyhave atness and double uniqueness, they are nested (!!). There's also Yoshiya Shindo's;known as the \Neo Diabolial Cube" (1995); notie that it has 24 symmetries, not 48.
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217. The straight tetraube and the square tetraube , together withthe size-4 Soma piees in (30), make a omplete set.We an �x the tee's position in the twin towers, saving a fator of 32; and eahof the resulting 40 solutions has just one twist with the tee. Hene there are �veinequivalent solutions, and 5� 256 altogether.The double law has 63� 6 solutions. But the annon, with 1� 4 solutions, anbe formed in essentially only one way. (Hint: Both twists are in the barrel.)There are no solutions to `up 3'. But `up 4' and `up 5' eah have 218�8 solutions(related by turning them upside down). Gravitationally, four of those 218 are stablefor `up 5'; the stable solution for `up 4' is unique, and unrelated to those four.Referenes: Jean Meeus, Journal of Rereational Mathematis 6 (1973), 257{265;Nob Yoshigahara, Puzzle World No. 1 (San Jose: Ishi Press International, 1992), 36{38.218. All but 48 are realizable. The unique \hardest" realizable ase, , has 2 � 2solutions. The \easiest" ase is the 2� 4� 4 uboid, with 11120 = 695� 16 solutions.220. (a) A, B, C, D, E, F, a, b, , d, e, f, j, k, l, : : : , z. (It's a little hard to see whyreetion doesn't hange piee `l'. In fat, S. S. Besley one patented the pentaubesunder the impression that there were 30 di�erent kinds! See U.S. Patent 3065970(1962), where Figs. 22 and 23 illustrate the same piee in slight disguise.)Historial notes: R. J. Frenh, in Fairy Chess Review 4 (1940), problem 3930,was �rst to show that there are 23 di�erent pentaube shapes, if mirror images areonsidered to be idential. The full ount of 29 was established somewhat later byF. Hansson and others [Fairy Chess Review 6 (1948), 141{142℄; Hansson also ountedthe 35 + 77 = 112 mirror-inequivalent hexaubes. Complete ounts of hexaubes (166)and heptaubes (1023) were �rst established soon afterwards by J. Niemann, A. W.Baillie, and R. J. Frenh [Fairy Chess Review 7 (1948), 8, 16, 48℄.(b) The uboids 1�3�20, 1�4�15, 1�5�12, and 1�6�10 have of ourse alreadybeen onsidered. The 2� 3� 10 and 2� 5� 6 uboids an be handled by restriting Xto the bottom upper left, and sometimes also restriting Z, as in answers 150 and 152;we obtain 12 solutions (in 350 M�) and 264 solutions (in 2.5 G�), respetively.The 3 � 4 � 5 uboid is more diÆult. Without symmetry-breaking, we obtain3940 � 8 solutions in about 200 G�. To do better, notie that X an appear in 11essentially di�erent positions: (1+1�)(1+1�) in a 4�5 plane, 2�+2�� in a 3�5 plane,and 2� + 1�� in a 3 � 4 plane, where `�' denotes a ase where symmetry needs to bebroken down further beause X is �xed by some symmetry. With 11 separate runs wean �nd (923+558=2+402=2+376=4)+(1268=2+656=2+420=4+752=4)+(1480=2+720=2 + 352=4) = 3940 solutions, in 4:9 + 3:3 + 3:1 + 2:4 + � � � + 2:1 � 50 G�.[The fat that solid pentominoes will �ll these uboids was �rst demonstrated byD. Nixon and F. Hansson, Fairy Chess Review 6 (1948), problem 7560 and page 142.Exat enumeration was �rst performed by C. J. Bouwkamp in 1967; see J. Combina-torial Theory 7 (1969), 278{280, and Indagationes Math. 81 (1978), 177{186.℄() Almost any subset of 25 pentaubes an probably do the job. But a partiu-larly nie one is obtained if we simply omit o, q, s, and y, namely those that don't �t in a3�3�3 box. R. K. Guy proposed this subset in Nabla 7 (1960), 150, although he wasn'table to pak a 5� 5� 5 at that time. The same idea ourred independently to J. E.Dorie, who trademarked the name \Dorian ube" [U.S. Trademark 1,041,392 (1976)℄.An amusing way to form suh a ube is to make 5-level prisms in the shapes of theP, Q, R, U, and X pentominoes, using piees fa; e; j;m;wg, ff; k; l; p; rg, fA; d;D;E; ng,
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7.2.2.1 ANSWERS TO EXERCISES 35 Sillkepartitionf;C;F; u;vg, fb;B; t; x; zg; then use the paking in answer 151(!). This solution anbe found with six very short runs of Algorithm D, taking only 300 megamems overall.Another nie way, due to Torsten Sillke, is more symmetrial: There are 70,486ways to partition the piees into �ve sets of �ve that allow us to build an X-prism inthe enter (with piee x on top), surrounded by four P-prisms.One an also assemble a Dorian ube from �ve uboids, using one 1� 3� 5, one2�2�5, and three 2�3�5s. Indeed, there are zillions more ways, too many to ount.
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36 ANSWERS TO EXERCISES 7.2.2.1 authorgeek artSillkeK�unzellFarhi221. (a) Make an exat over problem in whih a and A, b and B, : : : , f and F arerequired to be in symmetrial position; there are respetively (86; 112; 172; 112; 52; 26)plaements for suh 10-ubie \super-piees." Furthermore, the author deided to forepiee m to be in the middle of the top wall. Solutions were found immediately! So pieex was plaed in the exat enter, as an additional desirable onstraint. Then there wereexatly 20 solutions; the one below has also n, o, and u in mirror-symmetrial loations.(b) The super-piees now have (59; 84; 120; 82; 42; 20) plaements; the author alsooptimistially fored j, k, and m to be symmetrial about the diagonal, with m in thenorthwest orner. A long and apparently fruitless omputation (34.3 teramems) ensued;but|hurrah|two losely related solutions were disovered at the last minute.() This omputation, due to Torsten Sillke [see Cubism For Fun 27(1991), 15℄, goes muh faster: The quarter-of-a-box shown here an be pakedwith seven non-x pentaubes in 55356 ways, found in 1.3 G�. As in answer 177,this yields a new exat over problem, with 33412 di�erent rows. Then 11.8 G�more omputation disovers seven suitable partitions into four sets of seven, one ofwhih is illustrated here.l l l q q q ql o o o o o qf f u u u F FD f u m u F dl l f D D D m m m d d d F q ql f f C C D D m d d   F F rv v v B C C C x    b r r rv w B B B B x x x b b b b r zv w w A A A A x a a a a z z zk k w w E E A n a e e y z j jk k s s s E E n e e y y y y js E n n n e ys s p t t t yk s p p t j yk k p p t j j(a)
m o o o o o sm m x q q q qm x x x b b br n x e e b am m m r r n e e a a a a b q st m r r n n n e a D D D b q st t t r E p p p v C C D D s st w w E E E p p v F C C C s zw w B E A A v v v F F F z z zw l B B A d  f f k k F z j jl l B A A d   f k k k u u jA d d  f f kB B d  u u ul l l y u j ul y y y y j j(b)

v E z z t A AE E z s t t tE z z s t F Ff f s s a F kv E E f B f s w a k k k F t Av E f f B B w w a k k D F F Av v v B B w w x a a D D y A Au u u j j j x x x D D y y y yu p u j m j C x  d o o o o op p e m m m C b  d d n n n lp p e e m C C b   d d n l le C q b b  de e q b r n np e q r r r lp q q r l l l()222. As in previous exerises, the key is to redue the searh spae drastially,by asking for solutions of a speial form. (Suh solutions are likely to exist,beause pentaubes are so versatile.) Here we an break the given shape intofour piees: Three modules of size 33 +23 to be paked with seven pentaubes,and one of size 43 � 3 � 23 to be paked with eight pentaubes. The smallerproblem has 13,587,963 solutions, found with 2.5 T� of omputation; theseredue to 737,695 distint sets of seven pentaubes. The larger problem has 15,840solutions, found with 400 M� and redued to 2075 sets of eight. Exatly overing thosesets yields 1,132,127,589 suitable partitions; the �rst one found, fa;A; b; ; j; q; t; yg,fB;C; d;D; e; k; og, fE; f; l; n; r; v; xg, fF;m;p; s; u;w; zg, works �ne. (We need only onepartition, so we needn't have omputed more than a thousand or so solutions to thesmaller problem.)Pentaubes galore: Sine the early 1970s, Ekkehard K�unzell and Sivy Farhi haveindependently published booklets that ontain hundreds of solved pentaube problems.999. : : :
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PopeHomerWHEATLEYINDEX AND GLOSSARYThere is a urious poetial index to the Iliad in Pope's Homer,referring to all the plaes in whih similes are used.| HENRY B. WHEATLEY, What is an Index? (1878)When an index entry refers to a page ontaining a relevant exerise, see also the answer tothat exerise for further information. An answer page is not indexed here unless it refers to atopi not inluded in the statement of the exerise.Barris, Harry, 1.DIMACS: DIMACS Series in DisreteMathematis and Theoretial ComputerSiene, inaugurated in 1990.Fields, Dorothy, 1.MPR: Mathematial Preliminaries Redux, v.Short, Robert Allen, iii. Nothing else is indexed yet (sorry).Preliminary notes for indexing appear in theupper right orner of most pages.If I've mentioned somebody's name andforgotten to make suh an index note,it's an error (worth $2.56).
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