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PREFACE

With this issue we have terminated the section “Short Notes.”

... It has never been ‘“crystal clear” why a Contribution cannot be short,
just as it has occasionally been verified in these pages

that a Short Note might be long.

— ROBERT A. SHORT, IEEE Transactions on Computers (1973)

THIS BOOKLET contains draft material that I'm circulating to experts in the
field, in hopes that they can help remove its most egregious errors before too
many other people see it. I am also, however, posting it on the Internet for
courageous and/or random readers who don’t mind the risk of reading a few
pages that have not yet reached a very mature state. Beware: This material
has not yet been proofread as thoroughly as the manuscripts of Volumes 1, 2, 3,
and 4A were at the time of their first printings. And alas, those carefully-checked
volumes were subsequently found to contain thousands of mistakes.

Given this caveat, I hope that my errors this time will not be so numerous
and/or obtrusive that you will be discouraged from reading the material carefully.
I did try to make the text both interesting and authoritative, as far as it goes.
But the field is vast; I cannot hope to have surrounded it enough to corral it
completely. So I beg you to let me know about any deficiencies that you discover.

To put the material in context, this portion of fascicle 5 previews Section
7.2.2.1 of The Art of Computer Programming, entitled “Dancing links.” It
develops an important data structure technique that is suitable for backtrack
programming, which is the main focus of Section 7.2.2. Several subsections
(7.2.2.2, 7.2.2.3, etc.) will follow.

The explosion of research in combinatorial algorithms since the 1970s has
meant that I cannot hope to be aware of all the important ideas in this field.
I've tried my best to get the story right, yet I fear that in many respects I’'m
woefully ignorant. So I beg expert readers to steer me in appropriate directions.

Please look, for example, at the exercises that I've classed as research
problems (rated with difficulty level 46 or higher), namely exercises 182, ...; I've
also implicitly mentioned or posed additional unsolved questions in the answers
to exercises 82, 210, .... Are those problems still open? Please inform me if
you know of a solution to any of these intriguing questions. And of course if no
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iv PREFACE

solution is known today but you do make progress on any of them in the future,
I hope you’ll let me know.

I urgently need your help also with respect to some exercises that I made
up as I was preparing this material. I certainly don’t like to receive credit for
things that have already been published by others, and most of these results are
quite natural “fruits” that were just waiting to be “plucked.” Therefore please
tell me if you know who deserves to be credited, with respect to the ideas found
in exercises 5, 6, 20, 21, 31, 40, 70, 158, 163, 177, 198(d), 206, 207, 208, 210,
218, 222, .... Furthermore I've credited exercises ... to unpublished work of
.... Have any of those results ever appeared in print, to your knowledge?

* * *

Special thanks are due to George Jellis for answering dozens of historical queries,
as well as to Wei-Hwa Huang, George Sicherman, and ... for their detailed
comments on my early attempts at exposition. And I want to thank numerous
other correspondents who have contributed crucial corrections.

* * *

I happily offer a “finder’s fee” of $2.56 for each error in this draft when it is first
reported to me, whether that error be typographical, technical, or historical.
The same reward holds for items that I forgot to put in the index. And valuable
suggestions for improvements to the text are worth 32¢ each. (Furthermore, if
you find a better solution to an exercise, I’ll actually do my best to give you
immortal glory, by publishing your name in the eventual book:—)

In the preface to Volume 4B I plan to introduce the abbreviation FGbook
for my book Selected Papers on Fun and Games (Stanford: CSLI Publications,
2011), because I will be making frequent reference to it in connection with
recreational problems.

Cross references to yet-unwritten material sometimes appear as ‘00’; this
impossible value is a placeholder for the actual numbers to be supplied later.

Happy reading!

Stanford, California D. E. K.
99 Umbruary 2016
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7.2.2.1 DANCING LINKS 1

What a dance
do they do
Lordy, how I'm tellin’ you!

— HARRY BARRIS, Mississippi Mud (1927).

Don’t lose your confidence if you slip,
Be grateful for a pleasant trip,
And pick yourself up, dust yourself off, start all over again.

— DOROTHY FIELDS, Pick Yourself Up (1936)

7.2.2.1. Dancing links. One of the chief characteristics of backtrack algo-
rithms is the fact that they usually need to undo everything that they do to
their data structures. Blah blah de blah blah blah.

Exact cover problems. We will be seeing many examples where links dance
happily and efficiently, as we study more and more examples of backtracking.
The beauty of the idea can perhaps be seen most naturally in an important
class of problems known as ezact covering: We're given an m X n matrix A of
0s and 1s, and the problem is to find a subset of rows whose sum is exactly 1 in
every column. For example, consider the 6 x 7 matrix

0010110
1001001

o1 10010

A=1900100 0 (20)
010000 1
00017101

Each row of A corresponds to a subset of a 7-element universe. A moment’s
thought shows that there’s only one way to cover all seven of these columns with
disjoint rows, namely by choosing rows 1, 4, and 5. We want to teach a computer
how to solve such problems, when there are many, many rows and many columns.
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2 COMBINATORIAL SEARCHING (F5C: 29 Jan 2017 @ 2201) 7.2.2.1

If mounted on cardboard, [these pieces]
will form a source of perpetual amusement in the home.

— HENRY E. DUDENEY, The Canterbury Puzzles (1907)

Very gently, he replaced the titanite cross
in its setting between the F, N, U, and V pentominoes.

— ARTHUR C. CLARKE, Imperial Earth (1976)

Which English nouns ending in -0 pluralize with -s and which with -es?

If the word is still felt as somewhat alien, it takes -s,

while if it has been fully naturalized into English, it takes -es.

Thus, echoes, potatoes, tomatoes, dingoes, embargoes, etc.,

whereas Italian musical terms are altos, bassos, cantos, pianos, solos, etc.,
and there are Spanish words like tangos, armadillos, etc.

I once held a trademark on ‘Pentomino(-es)’, but | now prefer

to let these words be my contribution to the language as public domain.

— SOLOMON W. GOLOMB, letter to Donald Knuth (16 February 1994)

Everybody agrees that seven of the pentominoes should be named after
seven consecutive letters of the alphabet:

THVYWR Yy L

T U A\ w X
But two different systems of nomenclature have been proposed for the other five:

S I N DU

F I L P N 0 P Q R S
(S. W. Golomb) (J. H. Conway)

where Golomb likes to think of the word ‘Filipino’ while Conway prefers to map
the twelve pentominoes onto the twelve consecutive letters. Conway’s scheme
tends to work better in computer programs.
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7.2.2.1 DANCING LINKS 3

A minimum number of blocks of simple form are employed. ...
Experiments and calculations have shown that from the set of seven blocks
it is possible to construct approximately the same number of geometrical
figures as could be constructed from twenty-seven separate cubes.

— PIET HEIN, United Kingdom Patent Specification 420,349 (1934)

The simplest polycubes are cuboids— also called rectangular parallelepipeds
by people who like long names. But things get even more interesting when we
consider noncuboidal shapes. Piet Hein noticed in 1933 that the seven smallest
shapes of that kind, namely

™ T 5 @ B 5 B.ow

1: bent 2: ell 3: tee  4: skew 5: L-twist 6: R-twist 7: claw

can be put together to form a 3 x 3 x 3 cube, and he liked the pieces so much that
he called them Soma. Notice that the first four pieces are essentially planar, while
the other three are inherently three-dimensional. Moreover, the two twists are
mirror images: We can’t change one into the other without entering the fourth
dimension. Martin Gardner wrote about the joys of Soma in Scientific American
199,3 (September 1958), 182-188, and it soon became wildly popular: More
than two million SOMA® cubes were sold in America alone, after Parker Brothers
began to market a well-made set with an instruction booklet written by Hein.

The task of packing these seven pieces into a cube is easy to formulate as an
exact cover problem, just as we did when packing pentominoes. This time we
have 24 3D-rotations of the pieces to consider, instead of 8 2D-rotations and/or
3D-reflections; so exercise 200 is used instead of exercise 140 to generate the rows
of the problem. It turns out that there are 688 rows, involving 34 columns that
we can call 1,2, ..., 7,111, 112, ..., 333. For example, the first row

1 111 121 211

characterizes one of the potential ways to place the “bent” piece 1.

Algorithm D needs just 407 megamems to find all 11,520 solutions to this
problem. Furthermore, we can save most of that time by taking advantage of
symmetry: Every solution can be rotated into a unique “canonical” solution
in which the “ell” piece 2 has not been rotated; hence we can restrict that
piece to only six placements, namely (111,121, 131,211), (112,122,132,212),...,
(213,223,233,313) —all shifts of each other. This removes 138 rows, and the
algorithm now finds the 480 canonical solutions in just 20 megamems. (These
canonical solutions form 240 mirror-image pairs.)

Factoring an exact cover problem. In fact, we can simplify the Soma cube
problem much further, so that all of its solutions can actually be found by hand
in a reasonable time, by factoring the problem in a clever way. ...
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4 COMBINATORIAL SEARCHING (F5C: 29 Jan 2017 @2201) 7.2.2.1

Color-controlled covering. Take a break! Before reading any further, please
spend a minute or two solving the “word search” puzzle in Fig. 71; comparatively
mindless puzzles like this one provide a low-stress way to sharpen your word-
recognition skills. It can be solved easily —for instance, by making eight passes
over the array — and the solution appears in Fig. 72.

Fig. 71. Find the mathematicians*:

X 0 THEJ ST CA AT AL ANTDA AT
Plﬁt OV?LS around th.e f(t):llov;l‘r)ng Iigmes T SEAPUSTHORSG RGGF

>< -
whaere tiey appear in the 1o ar TLSEEATYU RRTLTYHATPA
ray shown here, reading either for-

EPEARETLT RGO OT UEHMS STI

ward or backward or upward or down-
ward, or diagonally in any direction. VN ARRCVLTERTAADMA
After you’ve finished, the leftover let- I THRUOTEZKWTIANDEHM
ters will form a hidden message. (The LANTUNBSIMNICHMAALATW
solution appears on the next page.) LGDDNARTRETBTILTIHTCE
ABEL HENSEL MELLIN ERECIZECEPTNETDY
BERTRAND  HERMITE MINKOWSKI M EARSUHRIHTLTITPTEKATH
BOREL HILBERT NETTO E JENSEDNTGHERTIET DUNTET
CANTOR HURWITZ PERRON
CATALAN  JENSEN RUNGE HSUINESBOQORTFEUWNAR
FROBENIUS KIRCHHOFF STERN T M ARKOTFFO0FCS 0KM
GLAISHER  KNOPP STIELTJES PLUTERTPTFIRTUOETEKS GR A
GRAM LANDAU SYLVESTER
HADAMARD  MARKOFF  WEIERSTRASS GMMINSEJTLETITSGE

Our goal in this section is not to discuss how to solve such puzzles; instead, we
shall consider how to create them. It’s by no means easy to pack those 27 names
into the box in such a way that their 184 characters occupy only 135 cells, with
eight directions well mixed. How can that be done with reasonable efficiency?

For this purpose we shall extend the idea of exact covering by introducing
“color codes.” ...

* The journal Acta Mathematica celebrated its 21st birthday by publishing a special Table
Générale des Tomes 1-35, edited by Marcel Riesz (Uppsala: 1913), 179 pp. It contained a
complete list of all papers published so far in that journal, together with portraits and brief
biographies of all the authors. The 27 mathematicians mentioned in Fig. 71 are those who
were subsequently mentioned in Volumes 1, 2, or 3 of The Art of Computer Programming —
except for people like MITTAG-LEFFLER or POINCARE, whose names contain special characters.
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7.2.2.1

Fig. 72. Solution to the puzzle of the
hidden mathematicians (Fig.71). No-
tice that the central letter R actually
participates in six different names:

BERTRAND

GLAISHER

HERMITE

HILBERT

KIRCHHOFF

WEIERSTRASS

The T to its left participates in five.

Here’s what the leftover letters say:

These authors of early papers in Acta
Mathematica were cited years later
in The Art of Computer Program-
ming.
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E L| R M| s I
() v? Al M A
I EMKYW NND| E M
L T >S<IMICMAAW
L N (A RATKRKE B) L I@@E
é ¢ 1 GAEMCNEENT [v| E D ¥
W E A R S/AHARJ|H| LN\INPNK| A T
E@ENSE@HRIEON
H(SUINEBDRF)E@AR
T@ARKOFF}OFCSOM
WTERP@RDEKGRL\
GMM I NGEJTLEWIT 9SG
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COMBINATORIAL SEARCHING (F5C: 29 Jan2017 @ 2201) 7.2.2.1

EXERCISES — First Set

» 5.

[26] Let T be any tree. Construct an unsolvable exact cover problem for which T’

is the backtrack tree traversed by Algorithm D; a unique column should have the mini-
mum size whenever step D? is encountered. Illustrate your construction when T' = f).

6.

[25] Continuing exercise 5, let T' be a tree in which certain leaves have been

distinguished from the others and designated as “solutions.”

a)
b)

10.

Show that some such trees never match the behavior of Algorithm D.
Characterize all such trees that do arise, having solutions where indicated.

[M21] The solution to an exact cover problem with matrix A can be regarded as

a binary vector x such that A = 11...1. The distance between two solutions x and
x’ can then be defined as the Hamming distance d(z,z') = v(z & z'), the number of
places where = and z’ differ. The diversity of A is the minimum distance between two
of its solutions. (If A has at most one solution, its diversity is infinite.)

19.

Is it possible to have diversity 17

Is it possible to have diversity 27

Is it possible to have diversity 37

Prove that if A represents a uniform exact cover problem, the distance between
solutions is always even.

Most of the exact cover problems that arise in applications are at least quasi-
uniform, in the sense that they have a nonempty subset C' of primary columns
such that A | C has the same number of 1s in every row. (For example, every
polyomino or polycube packing problem is quasi-uniform, because every row of the
matrix specifies exactly one piece name.) Can such problems have odd distances?

[M16] Given an exact cover problem A, construct an exact cover problem A’ that

has exactly one more solution than A does. [Consequently it is NP-hard to determine
whether an exact cover problem with at least one solution has more than one solution.]
Assume that A contains no all-zero rows.

20.

[M25] Given an exact cover problem A, construct an exact cover problem A’ such

that (i) A’ has at most three 1s in every column; (ii) A" and A have exactly the same
number of solutions.

21.
> 24.

[M21] Continuing exercise 20, construct A’ having ezactly three 1s per column.

[80] Given an m x n exact cover problem A with exactly three 1s per column,

construct a generalized “instant insanity” problem with N = O(n) cubes and N colors
that is solvable if and only if A is solvable. (See 7.2.2-(36).)

> 26.

[M24] A grope is a set G together with a binary operation o, in which the identity

zo (yox) =y is satisfied for all z € G and y € G.

a)
b)

Prove that the identity (z o y) o x = y also holds, in every grope.
Which of the following “multiplication tables” define a grope on {0,1,2,3}?

0123 0321 0132 0231 0312
1032 3210 . 1023 3102, 2130
2301’ 2103’ 3210’ 1320’ 3021°
3210 1032 2301 2013 1203

(In the first example, x oy = x @ y; in the second, x oy = (—x — y) mod 4. The
last two have zoy = x @ f(x ® y) for certain functions f.)

c) For all n, construct a grope whose elements are {0,1,...,n —1}.
d) Consider the exact cover problem that has n* columns (z,y) for 0 < z,y < n and

the following n + (n® — n)/3 rows:

January 29, 2017
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7.2.2.1 DANCING LINKS 7

i) {(z,z)}, for 0 < z < n;

i) {(z,2),(z,y), (y,z)}, for 0 <z <y < m;
Show that its solutions are in one-to-one correspondence with the multiplication
tables of gropes on the elements {0,1,...,n —1}.

e) Element z of a grope is idempotent if x o x = z. If k elements are idempotent and
n — k are not, prove that k = n> (modulo 3).

27. [21] Modify the exact cover problem of exercise 26(d) in order to find the mul-
tiplication tables of (a) all idempotent gropes— gropes such that x o x = z for all x;
(b) all commutative gropes — gropes such that z oy = y o x for all z and y; (c) all
gropes with an identity element — gropes such that 00 =00z = z for all z.

30. [21] Dominosa is a solitaire game in which you “shuffle” the 28 pieces [},
B . BEH of double-six dominoes and place them at random into a 7 x 8 frame.
Then you write down the number of spots in each cell, put the dominoes away, and try
to reconstruct their positions based only on that 7 x 8 array of numbers. For example,

00 5 2 1 4 1 2
1 45 35 356
115 6 0 0 4 4
yields the array 4 4 5 6 2 2 2 3
005 6 1 3 3 6
6 6 2 0 3 2 5 1
15 0 4 40 3 2

a) Show that another placement of dominoes also yields the same matrix of numbers.
b) What domino placement yields the array

33 6 5 1 5 15
6 5 6 1 2 3 2 4
2 43 3 3 6 20
4 1 6 1 4 4 6 07
303 01 1 4 4
26 25 0 5 00
250 5 4 2 16

» 31. [20] Show that Dominosa reconstruction is a special case of 3D MATCHING.

32. [M22] Generate random instances of Dominosa, and estimate the probability of
obtaining a 7x 8 matrix with a unique solution. Use two models of randomness: (i) Each
matrix whose elements are permutations of the multiset {8x0,8x1,...,8x6} is equally
likely; (ii) each matrix obtained from a random shuffle of the dominoes is equally likely.

39. [20] By setting up an exact cover problem and solving it with Algorithm D, show
that the queen graph Qs (exercise 7.1.4-241) cannot be colored with eight colors.

40. [21] In how many ways can Qs be colored in a “balanced” fashion, using eight
queens of color 0 and seven each of colors 1 to 87

» 50. [21] If we merely want to count the number of solutions to an exact cover problem,
without actually constructing them, a completely different approach based on bitwise
manipulation instead of list processing is sometimes useful.

The following naive algorithm illustrates the idea: We're given an m x n matrix
of Os and 1s, represented as m-bit vectors ri, ..., rp. The algorithm works with a
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8 COMBINATORIAL SEARCHING (F5C: 29 Jan2017 @ 2201) 7.2.2.1

(potentially huge) database of pairs (sj,c;), where s; is an n-bit number representing primary columns
a set of columns, and ¢; is a positive integer representing the number of ways to cover E::X:zz 81;1{]3
that set exactly. Let p be the n-bit mask that represents the primary columns. nonprimary columns
N1. [Initialize.] Set N « 1, s; < 0, ¢1 < 1, k « 1. 7 queens problem
. ) N color controls
N2. [Done?] If k > m, terminate; the answer is } ., ¢;[s; &p=p]. gg—co?;ﬁ_ete
matchin
N3. [Append r; where possible.] Set t < ri. For N > 5 > 1, if s; &t = 0, insert word searchgpuzzle
(sj +t,cj) into the database (see below). presidents
I’m not sure
N4. [Loop on k.] Set k < k + 1 and return to N2. | how many of
To insert (s, c) there are.two cases: If s = s; for some (s;, ¢;) already present, we simply zﬁifﬁdnzgl?i
set ¢; < ¢; + ¢. Otherwise we set N « N + 1, sy < s, cy < c. the index
Show that this algorithm can be significantly improved by using the following trick: :V%’;gesngch
Set uy < 1 & fr, where fy = rg41 |-+ | rm is the bitwise OR of all future rows. If sudoku
ur, 7 0, we can remove any item from the database for which s; does not contain uy &p. polyomino sudoku

sudoku

We can also exploit the nonprimary columns of uj, to compress the database further. weighted exact cover problem
51. [25] Implement the improved algorithm of the previous exercise, and compare its

running time to that of Algorithm D when applied to the n queens problem.

52. [M21] Explain how the method of exercise 50 could be extended to give represen-
tations of all solutions, instead of simply counting them.

70. [25] Prove that the exact cover problem with color controls is NP-complete, even
if every row of the matrix has only two entries.
80. [22] Using the “word search puzzle” conventions of Figs. 71 and 72, show that the
words ONE, TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN, ELEVEN, and TWELVE
can all be packed into a 6 x 6 square, leaving one cell untouched.
81. [22] Also pack two copies of ONE, TWO, THREE, FOUR, FIVE into a 5 X 5 square.
82. [32] The first 44 presidents of the U.S.A. had 38 distinct surnames: ADAMS, ARTHUR,
BUCHANAN, BUSH, CARTER, CLEVELAND, CLINTON, COOLIDGE, EISENHOWER, FILLMORE, FORD,
GARFIELD, GRANT, HARDING, HARRISON, HAYES, HOOVER, JACKSON, JEFFERSON, JOHNSON,
KENNEDY, LINCOLN, MADISON, MCKINLEY, MONROE, NIXON, OBAMA, PIERCE, POLK, REAGAN,
ROOSEVELT, TAFT, TAYLOR, TRUMAN, TYLER, VANBUREN, WASHINGTON, WILSON.
a) What’s the smallest square into which all of these names can be packed, using
word search conventions, and requiring all words to be connected via overlaps?
b) What’s the smallest rectangle, under the same conditions?
83. [25] Pack as many of the following words as possible into a 9 x 9 array, simul-
taneously satisfying the rules of both word search and sudoku:

ACRE COMPARE CORPORATE MACRO MOTET ROAM
ART COMPUTER CROP META PARAMETER TAME

90. [2/] Find the unique solutions to the following examples of polyomino sudoku:

A

[¢

R

M

100. [M25] Consider a weighted exact cover problem in which we must choose 2 of 4
rows to cover column 1, and 5 of 7 rows to cover column 2; the rows don’t interact.
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7.2.2.1 DANCING LINKS 9

a) What’s the size of the search tree if we branch first on column 1, then on column 27
Would it better to branch first on column 2, then on column 1?7

b) Generalize part (a) to the case when column 1 needs p of p + d rows, while
column 2 needs q of ¢ + d rows, where ¢ > p and d > 0.

January 29, 2017



10 COMBINATORIAL SEARCHING (F5C: 29 Jan2017 @ 2201) 7.2.2.1

EXERCISES — Second Set

Hundreds of fascinating recreational problems have been based on polyominoes and
their cousins (the polycubes, polyiamonds, polyhexes, polysticks, ...). The following
exercises explore “the cream of the crop” of such classic puzzles, as well as a few gems
that were not discovered until recently.

In most cases the idea is to find a good way to discover all solutions, usually by
setting up an appropriate exact cover problem that can be solved without taking an
enormous amount of time.

140. [25] Sketch the design of a utility program that will create sets of rows by which
an exact cover solver will fill a given shape with a given set of polyominoes.

148. [18] Using Conway’s piece names, pack five pentominoes into the shape ‘ T

so that they spell a common English word when read from left to right. -

150. [21] There are 1010 ways to pack the twelve pentominoes into a 5 x 12 box, not
counting reflections. What’s a good way to find them all, using Algorithm D?

151. [21] How many of those 1010 packings decompose into 5 x k and 5 x (12—k)?

152. [21] In how many ways can the eleven nonstraight pentominoes be packed into
a 5 x 11 box, not counting reflections? (Reduce symmetry cleverly.)

154. [20] There are 2339 ways to pack the twelve pentominoes into a 6 x 10 box, not
counting reflections. What’s a good way to find them all, using Algorithm D?

155. [23] Continuing exercise 154, explain how to find special kinds of packings:
Those that decompose into 6 x k and 6 x (10—k).
Those that have all twelve pentominoes touching the outer boundary.

o T o

Those with all pentominoes touching that boundary ezcept for V, which doesn’t.

[N

Same as (c), with each of the other eleven pentominoes in place of V.

Those with the minimum number of pentominoes touching the outer boundary.
Those that are characterized by Arthur C. Clarke’s description, as quoted in the
text. (That is, the X should touch only the F, N, U, and V—no others.)

@

)
)
)
)
)
)

L)

157. [21] There are five different tetrominoes, namely

L = 27 = R
square straight skew ell tee

In how many essentially different ways can each of them be packed into an 8 x 8 square
together with the twelve pentominoes?

158. [21] If an 8x8 checkerboard is cut up into thirteen pieces, representing the twelve
pentominoes together with one of the tetrominoes, some of the pentominoes will have
more black cells than white. Is it possible to do this in such a way that U, V, W, X,
Y, Z have a black majority while the others do not?

159. [18] Design a nice, simple tiling pattern that’s based on the five tetrominoes.

160. [25] How many of the 6 x 10 pentomino packings are strongly three-colorable, in
the sense that each individual piece could be colored red, white, or blue in such a way
that no pentominoes of the same color touch each other —not even at corner points?
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» 162. [20] The black cells of a square n x n checkerboard form an interesting graph checkerboard

called the Aztec diamond of order n/2. For example, the cases n = 11 and 13 are Aztec diamond
symmetric

RERRLLS
“"z:“"‘ Benjamin

OO
S S

’ cube, wrapped

(S0 e o ien
KRR Garda,
fence
holes
tatami
where (ii) has a “hole” showing the case n = 3. Thus (i) has 61 cells, and (ii) has 80. Cor,(;;:fsgs
a) Find all ways to pack (i) with the twelve pentominoes and one monomino. one-sided pentominoes

b) Find all ways to pack (ii) with the 12 4+ 5 pentominoes and tetrominoes.
Speed up the process by not producing solutions that are symmetric to each other.
» 163. [M26] Arrange the twelve pentominoes into a Mdbius strip of width 4. The
pattern should be “fault-free”: Every straight line must intersect some piece.
164. [4/0] (H.D. Benjamin, 1948.) Show that the twelve pentominoes can be wrapped

around a cube of size v/10 x /10 X /10. For example, here are front and back views
of such a cube, made from twelve colorful fabrics by the author’s wife in 1993:

(Photos by
Hector Garcia)

What is the best way to do this, minimizing undesirable distortions at the corners?

» 165. [22] (Craig S. Kaplan.) A polyomino can sometimes be surrounded by non-
overlapping copies of itself that form a fence: Every cell that touches the polyomino—
even at a corner —is part of the fence; conversely, every piece of the fence touches the
inner polyomino. Furthermore, the pieces must not enclose any unoccupied “holes.”

Find the (a) smallest and (b) largest fences for each of the twelve pentominoes.
(Some of these patterns are unique, and quite pretty.)
166. [22] Solve exercise 165 for fences that satisfy the tatami condition of exercise
7.1.4-215: No four edges of the tiles should come together at any “crossroads.”

168. [21] (T.H. O'Beirne, 1961.) The one-sided pentominoes are the eighteen distinct
5-cell pieces that can arise if we aren’t allowed to flip pieces over:

Notice that there now are two versions of F, L, P, N, Y, and Z.

In how many ways can all eighteen of them be packed into rectangles?
169. [21] Suppose you want to pack the twelve pentominoes into a 6 x 10 box, without
turning any pieces over. Then 2° different problems arise, depending on which sides of
the one-sided pieces are present. Which of those 64 problems has (a) the fewest (b) the
most solutions?
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170. [21] When tetrominoes are both checkered and one-sided (see exercises 158 and tetrominoes
168), ten possible pieces arise. In how many ways can all ten of them fill a rectangle? gﬁicz‘g:g

175. [20] There are 35 hezominoes, first enumerated in 1934 }Ciheckel_fboard dissections
. . . . . exominoes
by the master puzzlist H. D. Benjamin. At Christmastime Benjamin
that year, he offered ten shillings to the first person who Kadner
could pack them into a 14 x 15 rectangle —although he wasn’t Hanss_‘;_ln u
sure whether or not it could be done. The prize was won by E?S?Cla;i;on
F. Kadner, who proved that the hexominoes actually can’t be castles
packed into any rectangle. Nevertheless, Benjamin continued EZ’ﬁgminoes
to play with them, eventually discovering that they fit nicely tetrominoes
into the triangle shown here. color controls
Prove Kadner’s theorem. Hint: See exercise 158. r— hexominoes

v

v

v

parallelogram polyomino
parallomino

skew Young tableau
Young tableaux

skew Ferrers board
Ferrers diagrams

176. [24] (Frans Hansson, 1947.) The fact that 35 = 12 4 3% + 57 suggests that we
might be able to pack the hexominoes into three boxes that represent a single hexomino
shape at three levels of magnification, such as

=

For which hexominoes can this be done?

177. [30] Show that the 35 hexominoes can be packed into five “castles”:

In how many ways can this be done?

178. [41] For which values of m can the hexominoes be packed into a box like this?

179. [41] Perhaps the best hexomino packing uses a 5 x 45 rectangle with 15 holes

proposed by W. Stead in 1954. In how many ways can the 35 hexominoes fill it?

181. [22] In how many ways can the twelve pentominoes be placed into
an 8 x 10 rectangle, leaving holes in the shapes of the five tetrominoes?
(The holes should not touch the boundary, nor should they touch each
other, even at corners; one example is shown at the right.) Explain how
to encode this puzzle as an exact cover problem with color controls.

182. [46] If possible, solve the analog of exercise 181 for the case of 35 hezominoes in
a b x b4 rectangle, leaving holes in the shapes of the twelve pentominoes.

198. [HMS85] A parallelogram polyomino, or “parallomino” for short, is a polyomino

whose boundary consists of two paths that each travel only north and/or east. (Equiv-
alently, it is a “skew Young tableau” or a “skew Ferrers board,” the difference between
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diagrams of two tableaux or partitions; see Sections 5.1.4 and 7.2.1.4.) For example,

there are five parallominoes whose boundary paths have length 4:

NNNE (— . NNEE . NNEE . NENE . NEEE
ENNN @ ; ENEN Bj’ EENN H} ; EENN [H ; EEEN [ |-

a) Find a one-to-one correspondence between the set of ordered trees with m leaves

b) Study the generating function G(w,z,y) =

and n nodes and the set of parallominoes with width m and height n —m. The

area of each parallomino should be the path length of its corresponding tree.

area ,,width,k height
Zpa.ra.llominoes w z Y .

¢) Prove that the parallominoes whose width-plus-height is n have total area 4™ 2.
d) Part (c) suggests that we might be able to pack all of those parallominoes into a

200.

2n—2 x 2n—2 gquare, without rotating them or flipping them over. Such a packing
is clearly impossible when n = 3 or n = 4; but is it possible when n = 5 or n = 67

[20] Extend exercise 140 to three dimensions. How many base placements do

each of the seven Soma pieces have?

202.

[22] The Somap is the graph whose vertices are the 240 distinct solutions to the

Soma cube problem, with © — v if and only if u can be obtained from v by changing

the

positions of at most three pieces. (Using the terminology of exercise 10(d), adjacent

vertices correspond to solutions of semidistance < 3.) The strong Somap is similar,

but

it has u —wv only when a change of just two pieces gets from one to the other.

a) What are the degree sequences of these graphs?

b

204.
205.

) How many connected components do they have? How many bicomponents?
[M25] Use factorization to prove that Fig. 80’s W-wall cannot be built.
[24] Figure 80(a) shows some of the many “low-rise” (2-level) shapes that can be

built from the seven Soma pieces. Which of them is hardest (has the fewest solutions)?
Which is easiest? Answer these questions also for the 3-level prism shapes in Fig. 80(b).

206.

[M23] Generalizing the first four examples of Fig. 80, study the set of all shapes

examples are shown here.) How many essentially different shapes

207.

3 x

[22] Similarly, consider (a) all shapes that c0n51st of a
4 x 3 box with just three cubies in the top level; (b) all

obtainable by deleting three cubies from a 3 x 5 x 2 box. (Two
are possible? Which shape is easiest? Which shape is hardest? @

3-level prisms that fit into a 3 x 4 x 3 box.

208.

the

210.

[25] How many of the 1285 nonominoes define a prism that can be realized by
Soma pieces? Do any of those packing problems have a unique solution?

[M40] Make empirical tests of Piet Hein’s belief that the number of shapes

achievable with seven Soma pieces is approximately the number of 27-cubie polycubes.

212.

app

[20] (B. L. Schwartz, 1969.) Show that the Soma pieces can make shapes that
ear to have more than 27 cubies, because of holes hidden inside or at the bottom:

%

staircase penthouse pyramid

In how many ways can these three shapes be constructed?
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) 2-level patterns

@@@@@

bathtub couch stepping stones canal

P P P P

tower 1 tower 2 tower 3 tower 4

=

shift 0 shift 1 shift 2

B @y P TP

bench 4 x 4 coop 3 X 6 corral 4 x 5 corral

) i P e AP

castle five-seat bench doorway piggybank lobster

P B P B 2B

grand piano piano gorilla face smile

) 3-level prisms based on nonominoes

@@ﬁﬁ@@

goldfish dryer chair steps stile
tunnel underpass doorway canal clip
zigzag wall 1  zigzag wall 2 apartments 1 apartments 2 almost W-wall W-wall

Fig. 80. Gallery of noteworthy polycubes that contain 27 cubies. All of them can be
built from the seven Soma pieces, except for the W-wall. Many constructions are also
stable when tipped on edge and/or when turned upside down. (See exercises 204-214.)
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213. [22] Show that the seven Soma pieces can also make structures such as

AP d

casserole vulture mushroom cantilever

which are “self-supporting” via gravity. (You may need to place a small book on top.)

v

214. [M32] Impossible structures can be built, if we insist only that they look genuine
when viewed from the front (like fagades in Hollywood movies)! Find all solutions to

F9 T T

W-wall X-wall cube

that are visually correct. (In order to solve this exercise, you need to know that the illus-
trations here use the non-isometric projection (z,y, z) — (30z — 42y, 14z 4+ 10y + 45z)u
from three dimensions to two, where u is a scale factor.) All seven pieces must be used.

215. [30] The earliest known example of a polycube puzzle is the “Cube Diabolique,”
manufactured in late nineteenth century France by Charles Watilliaux; it contains six
flat pieces of sizes 2, 3, , T

@sﬁ@@@@

a) In how many ways do these pieces make a 3 x 3 x 3 cube?
b) Are there six polycubes, of sizes 2, 3, ..., 7, that make a cube in just one way?

217. [22] Show that there are exactly eight different tetracubes — polycubes of size 4.
Which of the following shapes can they make, respecting gravity? How many solutions
are possible?

3 B

twin towers double claw cannon up 3 up 4 up 5

218. [25] How many of the 369 octominoes define a 4-level prism that can be realized
by the tetracubes? Do any of those packing problems have a unique solution?
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solid pentominoes

220. [30] There are 29 pentacubes, conveniently identified with one-letter codes: pentacubes
flat pentacubes
mirror images

e vty B o P
pentominoes
5 X 5 X b cube
ﬁ; % % F @ Dowler’s Box
% % chiral

mirror

Pieces o through z are called, not surprisingly, the solid pentominoes or flat pentacubes.
a) What are the mirror images of a, b, ¢, d, e, f, A, B,C, D, E, F,j, k, 1, ..., z?
b) In how many ways can the solid pentominoes be packed into an a X b x ¢ cuboid?
c) What “natural” set of 25 pentacubes is able to fill the 5 x 5 x 5 cube?

» 221. [25] The full set of 29 pentacubes can build an enormous vari-
ety of elegant structures, including a particularly stunning example
called “Dowler’s Box.” This 7 x 7 X 5 container, first considered by
R. W. M. Dowler in 1979, is constructed from five flat slabs. Yet
only 12 of the pentacubes lie flat; the other 17 must somehow be
worked into the edges and corners.

Despite these difficulties, Dowler’s Box has so many solutions that we can actually
impose many further conditions on its construction:
a) Build Dowler’s Box in such a way that the chiral pieces a, b, c, d, e, f and their
images A, B, C, D, E, F all appear in horizontally mirror-symmetric positions.

horizontally symmetric ¢ and C diagonally symmetric ¢ and C

b) Alternatively, build it so that those pairs are diagonally mirror-symmetric.
c) Alternatively, place piece x in the center, and build the remaining structure from
four congruent pieces that have seven pentacubes each.

222. [25] The 29 pentacubes can also be used to make the shape
shown here, exploiting the curious fact that 3* + 4®> = 29 . 5. But
Algorithm D will take a long, long time before telling us how to
construct it, unless we’re lucky, because the space of possibilities is
huge. How can we find a solution quickly?

999. [M00] this is a temporary exercise (for dummies)
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Dr Pell was wont to say, that in the Resolution of Questiones, Pell
the main matter is the well stating them: AUBREY
which requires a good mother-witt & Logick: as well as Algebra: izgjt‘:u‘istance
for let the Question be but well-stated, and it will worke of it selfe: Matsui
. By this way, an man cannot intangle his notions, & make a false Steppe. NP-complete

minimum remaining values heuristic

— JOHN AUBREY, An Idea of Education of Young Gentlemen (c. 1684)

SECTION 7.2.2.1

5. If T has only a root node, let there be one column, no rows. 01111110000000000

! 10111110000000000
Otherwise let T have d > 1 subtrees T4, ..., T4, and assume that 11011110000000000
7 ! 11100110000000000
we’ve constructed problems with rows R; and columns C; for each Tj. 11101010000000000
Let C =C1U---UCyUA{1,...,d}. The problem for T is obtained by 00000000111111000
. : . 00000001011111000
appending d+1 new columns {0, 1, ...,d} and the following new rows: (p000001101111000

(i) ‘0 anq all colum.ns of C\Cj ’., for 1 < j < d; (ii) ‘all columns of C\j.’, §§§§§§§iﬁ§?§i§§§
for 1 < j < d. This construction works except when d = 1 and T} is 09000001 11119999

a leaf; in that case we can use columns {0, 1,2, 3}, rows ‘0 1 2’ ‘1 3, 11111110000000111
11111111111111001

‘2 3’. The matrix for the example tree has 17 columns and 16 rows. 11111111111111010

6. (a) If a solution isn’t at the root, its parent must have exactly one child. (Alter-
natively, if duplicate rows are permitted, all siblings of a solution must be solutions.)
(b) Use the previous construction; a solution node corresponds to column 0, row ‘0.

10. (a) No. Otherwise A would have a row that’s zero in all primary columns.

(b) Yes, but only if A has two rows that are identical in all primary columns.

(¢) Yes, but only if A has two rows whose sum is also a row, when restricted to
primary columns.

(d) The number of places, j, where x = 1 and ' = 0 must be the same as the
number where x = 0 and ' = 1. For if A has exactly k primary 1s in every row,
exactly jk primary columns are being covered in different ways.

(e) Again the distances must be even, because every solution to A is also a solution
to the uniform problem A | C. (Therefore it makes sense to speak of the semidistance
d(z, ") /2 between solutions of quasi-uniform exact covering problem. The semidistance
in a polyform packing problem is the number of pieces that are packed differently.)

19. (Solution by T. Matsui.) Add one new column at the left of A, all 0s. Then add
two rows of length n 4+ 1 at the bottom: 10...0 and 11...1. This (m +2) x (n+ 1)
matrix A’ has one solution that chooses only the last row. All other solutions choose
the second-to-last row, together with rows that solve A.

20. (Solution by T. Matsui.) Assume that all 1s in column 1 appear in the first ¢ rows,
where t > 3. Add two new columns at the left, and two new rows 1100...0, 1010...0
of length n + 2 at the bottom. For 1 < k < ¢, if row k was lay, replace it by 010« if
kE <t/2,011lay if £ > t/2. Insert 00 at the left of the remaining rows ¢ 4+ 1 through m.

This construction can be repeated (with suitable row and column permutations)
until no column sum exceeds 3. If the original column sums were (ci,...,cn), the
new A’ has 27" more rows and 27 more columns than A did, where T'=Y_"_, (¢; = 3).

One consequence is that the exact cover problem is NP-complete even when
restricted to cases where all row and column sums are at most 3.

Notice, however, that this construction is not useful in practice, because it disguises
the structure of A: It essentially destroys the minimum remaining values heuristic,
because all columns whose sum is 2 look equally good to the solver!
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21. Take a matrix with column sums (ci,...,cpn), all < 3, and extend it with three
columns of 0Os at the right. Then add the following four rows: (zi,...,%,,0,1,1),
(y1,--yYn, 1,0,1), (21,...,2n,1,1,0), and (0,...,0,1,1,1), where z; = [¢; <3], y; =
[c; <2], zj = [¢j <1]. The bottom row must be chosen in any solution.

24. Consider a set of cubes and colors called {*,0,1,2,3,4,...}, where (i) all faces of
cube % are colored #; (ii) colors 1, 2, 3, 4 occur only on cubes 0, 1, 2, 3, 4; (iii) the op-
posite face-pairs of those five cubes are respectively (00, 12, *x), (11,12, 34), (22, 34, a),
(33,12, 3), (44, 34,), where «, 3, v are pairs of colors ¢ {1,2,3,4}. Any solution to
the cube problem has disjoint 2-regular graphs X and Y containing two faces of each
color. Since X and Y both contain ** from cube *, we can assume that X contains 00
and Y contains 12 from cube 0. Hence Y can’t contain 11 or 22; it must contain 12 from
cube 1 or cube 3. If X doesn’t contain 11 or 22, it must contain 12 from cube 1 and
cube 3. Hence X contains 11, 22, 33, and 44. We'’re left with only three possibilities
for Y from cubes 1, 2, 3, 4, namely (34, a,12,34), (12,34, 3,34), (34, 34,12, ).

Now let aj1, aj2, ajs denote the 1s in column j of A. We construct N = 8n + 1
cubes and colors called *, a;i, bji, where 1 < j <mn,1 <k <3,0<1<4. The opposite
face-pairs of * are (#x,#*,%x). Those of aji are (ajrajk,a;jkajk,ajrb;0), where j'
is the column of aj;’s cyclic successor to the right in its row. Those of bjo, bj1, bj2,
bjs, bja are respectively (bjobjo, bj1bj2, #*), (bj1bj1,bj1bj2,bjabja), (bj2bj2, bjsbja, bjoaji),
(bj3bj3,bj1bj2, bjoa]‘Q), (bj4b]‘4, b]‘3b]‘4, bjoa]‘;;). By the previous paragraph, solutions to
the cube problem correspond to 2-regular graphs X and Y such that, for each j, X
or Y contains all the pairs bj;b;; and the other “selects” one of the three pairs bjoa;.
The face-pairs of each selected a;i ensure that aji’s cyclic successor is also selected.

[See E. Robertson and I. Munro, Utilitas Mathematica 13 (1978), 99-116.]

26. (a) (zoy)oz=(zoy)o(yo(roy)) =y.

(b) All five are legitimate. (The last two are gropes because f(t + f(t)) = t for
0 <t < 4 in each case. They are isomorphic if we interchange any two elements. The
third is isomorphic to the second if we interchange 1 <+ 2. There are 18 grope tables of
order 4, of which (4, 12, 2) are isomorphic to the first, third, and last tables shown here.)

(c) For example, let x oy = (—z — y) mod n. (More generally, if G is any group
and if o € G satisfies a? = 1, we can let z oy = az”ay”«. If G is commutative and
a € G is arbitrary, we can let oy = 7y " a.)

(d) For each row of type (i) in an exact covering, define x o x = z; for each row of
type (ii), define zox =y, z oy = y o x = x; for each row of type (iii), define oy = z,
yoz =z, zox = y. Conversely, every grope table yields an exact covering in this way.

(e) Such a grope covers n” columns with k rows of size 1, all other rows of size 3.
[F. E. Bennett proved, in Discrete Mathematics 24 (1978), 139-146, that such gropes
exist for all k with 0 < k < n and k = n® (modulo 3), except when k = n = 6.]

Notes: The identity zo(yox) = y seems to have first been considered by E. Schréder
in Math. Annalen 10 (1876), 289-317 [see ‘(Co)’ on page 306], but he didn’t do much
with it. In a class for sophomore mathematics majors at Caltech in 1968, the author de-
fined gropes and asked the students to discover and prove as many theorems about them
as they could, by analogy with the theory of groups. The idea was to “grope for results.”
The official modern term for a grope is a real jawbreaker: semisymmetric quasigroup.

27. (a) Eliminate the n columns for (z, z); use only the 2(7) rows of type (iii) for which
y # z. (Idempotent gropes are equivalent to “Mendelsohn triples,” which are families
of n(n—1)/3 3-cycles (zyz) that include every ordered pair of distinct elements. N. S.
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Mendelsohn proved [Computers in Number Theory (New York: Academic Press, 1971),
323-338] that such systems exist for all n # 2 (modulo 3), except when n = 6.)

(b) Use only the (";1) columns (z,y) for 0 < z <y < n; replace rows of type (ii)
by {(z,z), (z,y)} and {(z,y), (y,y)} for 0 < z < y < n; replace those of type (iii) by
{(z,y), (z, 2), (y,2)} for 0 <z < y < z < n. (Such systems, Schroder’s ‘(C1) and (C-)’,
are called totally symmetric quasigroups; see S. K. Stein, Trans. Amer. Math. Soc. 85
(1957), 228-256, §8. If idempotent, they’re equivalent to Steiner triple systems.)

(¢) Omit columns for which = 0 or y = 0. Use only the 2("3") rows of type (iii)
for 1 <z <y,z<nandy # 2 (Indeed, such systems are equivalent to idempotent
gropes on the elements {1,...,n —1}.)

30. In (a), four pieces change; in (b) the solution is unique:

L
CE R B

Notice that the spot patterns i, fll, and B are rotated when a domino is placed ver-
tically; these visual clues, which would disambiguate (a), don’t show up in the matrix.

[Dominosa was invented in Germany by O. S. Adler [Reichs Patent #71539 (1893);
see his booklet written with F. Jahn, Sperr-Domino und Dominosa (1912), 23-64.
Similar problems of “quadrilles” had been studied earlier by E. Lucas and H. Delannoy;
see Lucas’s [Récréations Mathématiques 2 (Paris: Gauthier-Villars, 1883), 52-63].

31. Define 28 vertices Dzy for 0 <z < y < 6; 28 vertices ij for 0 <1< 7,0 < j <8,
and ¢ + j even; and 28 similar vertices ¢j with ¢ + j odd. The matching problem has
49 triples of the form {Dzy,ij,i(j+1)} for 0 < 4,5 < 7, as well as 48 of the form
{Dzy,ij, (i+1)j} for 0 < ¢ < 6 and 0 < j < 8, corresponding to potential horizontal
or vertical placements. For example, the triples for exercise 30(a) are {D00, 00,01},
{D05, 01,02}, ..., {D23,66,67}; {D01,00,10}, {D04, 01,11}, ..., {D12,57,67}.

32. Model (i) has M = 56!/8!" ~ 4.10 x 10*? equally likely possibilities; model (ii)
has N = 1292697 - 28! - 22! ~ 8.27 x 10%!, because there are 1292697 ways to pack 28
dominoes in a 7 x 8 frame. (Algorithm D will quickly list them all.) The expected
number of solutions per trial in model (i) is therefore N/M = 0.201.

Ten thousand random trials with model (i) gave 216 cases with at least one
solution, including 26 where the solution was unique. The total number > z of solutions
was 2256; and Zmz = 95918 indicated a heavy-tailed distribution whose empirical
standard deviation is &~ 3.1. The total running time was about 250 M.

Ten thousand random trials with model (ii), using random choices from a precom-
puted list of 1292687 packings, gave 106 cases with a unique solution; one case had 2652
of them! Here 3" x = 508506 and 3 2> = 144119964 indicated an empirical mean of
= 51 solutions per trial, with standard deviation ~ 109. Total time was about 650 Mu.
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39. Each of the 92 solutions to the eight queens problem (see Fig. 68) occupies eight of
the 64 cells; so we must find eight disjoint solutions. Only 1897 updates of Algorithm D
are needed to show that such a mission is impossible. [In fact no seven i234se7s
solutions can be disjoint, because each solution touches at least three of the eoooase
twenty cells 13, 14, 15, 16, 22, 27, 31, 38, 41, 48, 51, 58, 61, 68, 72, 77, 83, 2335217
84, 85, 86. See Thorold Gosset, Messenger of Mathematics 44 (1914), 48. B5lor2381
Henry E. Dudeney found the illustrated way to occupy all but two cells, in 512784

Tit-Bits 32 (11 September 1897), 439; 33 (2 October 1897), 3.]

07348652
18650437
40. This is an exact cover problem with 92 + 312 + 396 + - - - + 312 = 3284 sasas001
rows (see exercise 7.2.2-5). Algorithm D needs about 2 million updates to 23 aares

find the solution shown, and about 83 billion to find all 11,092 of them. 80564213

61207345

50. Set fm < 0 and fr—1 < fr | r& for m >k > 1. The bits of u;, represent columns
that are being changed for the last time.

Let up = o' + v, where v’ = uy, & p. If ur, # 0 at the beginning of step N4,
we compress the database as follows: For N > j > 1, if s; & u' # «/, delete (sj,¢;);
otherwise if s; & u'" # 0, delete (s;,c;) and insert ((s; & ux) | v, ;).

To delete (sj,c¢;j), set (sj,¢j) < (sn,cn) and N «— N — 1.

When this improved algorithm terminates in step N2, we always have N < 1.
Furthermore, if we let p = r1 | --- | rx—1, the size of N never exceeds 2"*, where
v, = v{prTkfr) is the size of the “frontier” (see exercise 7.1.4-55).

[In the special case of n queens, represented as the exact cover problem in (xx), this
algorithm is due to I. Rivin, R. Zabih, and J. Lamping, Inf. Proc. Letters 41 (1992),
253-256. They proved that the frontier for n queens never has more than 3n columns.]

51. The author has had reasonably good results using a triply linked binary search
tree for the database, with randomized search keys. (Beware: The swapping algorithm
used for deletion was difficult to get right.) This implementation was, however, limited
to exact cover problems whose matrix has at most 64 columns; hence it could do n
queens via (%%) only when n < 12. When n = 11 its database reached a maximum size
of 75,009, and its running time was about 25 megamems. But Algorithm D was a lot
better: It needed only about 780K updates to find all Q(11) = 2680 solutions.

In theory, this method will need only about 23" steps as n — oo, times a small
polynomial function of n. A backtracking algorithm such as Algorithm D, which enu-
merates each solution explicitly, will probably run asymptotically slower (see exercise
7.2.2-14). But in practice, a breadth-first approach needs too much space.

On the other hand, this method did beat Algorithm D on the n queen bees problem
of exercise 7.2.2-15: When n = 11 its database grew to 364,864 items; it computed
H(11) = 596,483 in just 30 My, while Algorithm D needed 27 mega-updates.

52. The set of solutions for s; can be represented as a regular expression «; instead of
by its size, ¢;. Instead of inserting (s; +¢,c¢;) in step N3, insert oj k. If inserting (s, a),
when (s;, ;) is already present with s; = s, change a; < a; Ua. [Alternatively, if only
one solution is desired, we could attach a single solution to each s; in the database.]

70. Given a 3SAT problem with cluases (l;1 V li2 V l;3) for 1 < i < m, with each
lij € {x1,Z1,...,Zn,ZTn}, contruct an exact cover problem with 3m primary columns
ij (1 <i<m,1<j<3) and n secondary columns zr (1 < k < n), having the
fOllOWing Trows: (1) Llil ln’, Lliz li37, ‘lig li17; (11) Llij iL'k-:].7 lf li]‘ = Tk, ‘li]‘ :L‘k:O’ lf lij = if'k-.
That problem has a solution if and only if the given clauses are satisfiable.
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80. There are just five solutions; the latter two
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are flawed by being disconnected:

21
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Historical note: Word search puzzles were invented by Norman E.

Algorithm ?, it needs just 24 megamems to prove that there are exactly eight

solutions; hence the solution shown here is essentially unique.

Gibat in 1968.

81. When Algorithm C is generalized to allow non-unit column sums as in

T
H
(]
E,
E,

82. (a,b) The author’s best solutions, thought to be minimal (but there is no proof),
are below. In both cases, and in Fig. 71, an interactive method was used: After the
longest words were placed strategically by hand, Algorithm C packed the others nicely.
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[Solution (b) applies an idea by which Leonard Gordon was able to pack the names of
presidents 1-42 with one less column. See A. Ross Eckler, Word Ways 27 (1994), 147.]
83. To pack w given words, use primary columns {Pij, Ric, Cic, Bic, #k | 1 <i,j <9,
1<k <w c€ {ACEMO0OP,R,T,U}} and secondary columns {ij | 1 < 4,5 < 9}.
There are 729 rows ‘Pij Ric Cjc Bbe ij:c’, where b = 3| (¢ — 1)/3] + [j/3], together

with a row ‘#k i171:c1

... 4151:¢’ for each placement of an [-letter word c; ...c¢ into

cells (41, 41), - .., (i1, 71). Furthermore, it’s important to modify step 77 of the algorithm
so that the “best column” always has the form #k, unless it has length < 1.

A brief run then establishes that COMPUTER and CORPORATE cannot
both be packed. But all of the words ezcept CORPORATE do fit together;
the (unique) solution shown is found after only 7.3 megamems, most of
which are needed simply to input the problem. [This exercise was inspired

by a puzzle in Sudoku Masterpieces (2010) by Huang and Snyder.]
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90. (The author designed these puzzles with the aid of exercises 77-77.)
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100. (a) To cover 2 of 4, we have 3 choices at the root, then 3 or 2 or 1 at the next
level, hence (1, 3, 6) nodes at levels (0, 1, 2). To cover 5 of 7, there are (1, 3, 6, 10,
15, 21) nodes at levels (0, 1, ..., 5). Thus the profile with column 1 first is (1, 3, 6,
6-3,6-6,6-10, 6-15, 6-21). The other way is better: (1, 3, 6, 10, 15, 21, 21-3, 21-6).

(b) With column 1 first the profile is (ao, a1, ..., ap, apas, ..., apay), where a; =
(jzd). We should branch on column 2 first because ap+1 < apai, apr2 < apaz, ..., ag <
ApQg—p, Qg1 < Aplg—p+1, .-, Ggap—1 < apaq—1. (These inequalities follow because
the sequence (a;) is strongly log-concave: It satisfies the condition a? > aj_1a;41 for
all j > 1. See exercise MPR-125.)

140. Let the given shape be specified as a set of integer pairs (z,y). These pairs might
simply be listed one by one in the input; but it’s much more convenient to accept a
more compact specification. For example, the utility program with which the author
prepared the examples of this book was designed to accept UNIX-like specifications such
as ‘[14-7]2 5[0-3]" for the seven pairs {(1,2), (4,2), (5,2), (6,2), (7,2), (5,0), (5,1),
(5,3)}. The range 0 < z,y < 62 has proved to be sufficient in almost all instances, with
such integers encoded as single “extended hexadecimal digits” 0,1,...,9,a,b, ..., z,
A, B, ..., Z. The specification ‘[1-3] [1-k]’ is one way to define a 3 x 20 rectangle.

Similarly, each of the given polyominoes is specified by stating its piece name and
a set T of typical positions that it might occupy. Such positions (z,y) are specified using
the same conventions that were used for the shape; they needn’t lie within that shape.

The program computes base placements by rotating and/or reflecting the elements
of that set T'. The first base placement is the shifted set To =T — (Zmin, Ymin), whose
coordinates are nonnegative and as small as possible. Then it repeatedly applies an
elementary transformation, either (z,y) — (¥, Tmax — x) or (z,y) — (y,z), to every
existing base placement, until no further placements arise. (That process becomes easy
when each base placement is represented as a sorted list of packed integers (z <16)+y.)
For example, the typical positions of the straight tromino might be specified as ‘1[1-31";
it will have two base placements, {(0,0), (0, 1), (0,2)} and {(0,0), (1,0), (2,0)}.

After digesting the input specifications, the program defines the columns of the
exact problem, which are the piece names together with the cells zy of the given shape.

Finally, it defines the rows: For each piece p and for each base placement T’ of p,
and for each offset (d,,d,) such that T' + (d5,d,) lies fully within the given shape,
there’s a row that names the columns {p} U {(z + 6.,y + &) | (z,y) € T'}.

(The output of this program is often edited by hand, to take account of special
circumstances. For example, some columns may change from primary to secondary;
some rows may be eliminated in order to break symmetry. The author’s implementation
also allows the specification of secondary columns with color controls, along with base
placements that include such controls.)

148. RUSTY. [Leigh Mercer posed a similar question to Martin Gardner in 1960.]
150. As in the 3 x 20 example considered in the text, we can set up an exact cover
problem with 12 + 60 columns, and with rows for every potential placement of each
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piece. This gives respectively (52, 292, 232, 240, 232, 120, 146, 120, 120, 30, 232, 120)
rows for pieces (O, P, ..., Z) in Conway’s nomenclature, thus 1936 rows in all.

To reduce symmetry, we can insist that the X occurs in the upper left corner; then
it contributes just 10 rows instead of 30. But some solutions are still counted twice,
when X is centered in the middle row. To prevent this we can add a secondary column
‘s’, and append ‘s’ to the five rows that correspond to those centered appearances; we
also append ‘s’ to the 60 rows that correspond to placements where the Z is flipped over.

Without those changes, Algorithm D would use 9.76 G to find 4040 solutions;
with them, it needs just 2.86 Gp to find 1010.

This approach to symmetry breaking in pentomino problems is due to Dana Scott
[Technical Report No. 1 (Princeton University Dept. of Electrical Engineering, 10 June
1958)]. Another way to break symmetry would be to allow X anywhere, but to restrict
the W to its 30 unrotated placements. That works almost as well: 2.87 Gpu.

151. There’s a unique way to pack P, Q, R, U, X into a 5 x 5 square, and to pack
the other seven into a 5 x 7. (See below.) With independent reflections, together with
rotation of the square, we obtain 16 of the 1010. There’s also a unique way to pack
P, R, U into a 5 x 3 and the others into a 5 x 9 (noticed by R. A. Fairbairn in 1967),
yielding 8 more. And there’s a unique way to pack O, Q, T, W, Y, Z into a 5 x 6, plus
two ways to pack the others, yielding another 16. (These paired 5 x 6 patterns were
apparently first noticed by J. Pestiau; see answer 169.) Finally, the packings in the
next exercise give us 264 decomposable 5 x 12s altogether.

[Similarly, C. J. Bouwkamp discovered that S, V, T, Y pack uniquely into a 4 x 5,
while the other eight can be put into an 4 x 10 in five ways, thus accounting for 40 of
the 368 distinct 4 x 15s. See Journal of Recreational Mathematics 3 (1970), 125.]

152. Without symmetry reduction, 448 solutions are found in 1.21 Gu. But we can
restrict X to the upper left corner, flagging its placements with ‘s’ when centered in the
middle row or middle column (but not both). Again the ‘s’ is appended to flipped Z’s.
Finally, when X is placed in dead center, we append another secondary column ‘c’, and
append ‘c’ to the 90 rotated placements of W. This yields 112 solutions, after 0.34 Gpu.
Or we could leave X unhindered but curtail W to 1/4 of its placements. That’s
easier to do (although not quite as clever) and it finds those 112 in 0.42 Gpu.
Incidentally, there aren’t actually any solutions with X in dead center.

154. The exact cover problem analogous to that in exercise 150 has 12 + 60 columns
and (56, 304, 248, 256, 248, 128, 1152, 128, 128, 32, 248, 128) rows. It finds 9356
solutions after 15.93 Gpu of computation, without symmetry reduction. But if we insist
that X be centered in the upper left quarter, by removing all but 8 of its placements,
we get 2339 solutions after just 3.93 Gu. (The alternative of restricting W’s rotations
is not as effective in this case: 5.43 Gu.) These solutions were first enumerated by
C. B. and Jenifer Haselgrove [Eureka: The Archimedeans’ Journal 23 (1960), 16-18].

155. (a) Obviously only £ = 5 is feasible. All such packings can be obtained by
omitting all rows of the cover problem that straddle the “cut.” That leaves 1507 of the
original 2032 rows, and yields 16 solutions after 104 Myu. (Those 16 boil down to just
the two 5 X 6 decompositions that we already saw in answer 151.)
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(b) Now we remove the 763 rows for placements that don’t touch the boundary,
and obtain just the two solutions below, after 100 My. (This result was first noticed
by Tony Potts, who posted it to Martin Gardner on 9 February 1960.)

(c) Now there are 1237 placements/rows; the unique solution is found after 83 My.

(d) There are respectively (0, 9, 3, 47, 16, 8, 3, 1, 30, 22, 5, 11) solutions for
pentominoes (O, P, Q, ..., Z). (The I/O pentomino can be “framed” by the others in
11 ways; but all of those packings also have at least one other interior pentomino.)

(e) Despite many ways to cover all boundary cells with just seven pentominoes,
none of them lead to an overall solution. Thus the minimum is eight; 207 of the 2339
solutions attain it. To find them we might as well generate and examine all 2339.

(f) The question is ambiguous: If we’re willing to allow the X to touch unnamed
pieces at a corner, but not at an edge, there are 25 solutions (8 of which happen to
be answers to part (a)). In each of these solutions, X also touches the outer boundary.
(The cover and frontispiece of Clarke’s book show a packing in which X doesn’t touch
the boundary, but it doesn’t solve this problem: There’s an edge where X meets I, and
there’s a point where X meets P.) There also are two packings in which the edges of X
touch only F, N, U, and the boundary, but not V.

On the other hand, there are just 6 solutions if we allow only F, N, U, V to touch
X’s corner points. One of them, shown below, has X touching the short side and seems
to match the quotation best. These 6 solutions can be found in just 47 My, by introduc-
ing 60 secondary columns as sort of an “upper level” to the board: All placements of X
occupy the normal five lower-level cells, plus up to 16 upper-level cells that touch them;
all placements of F, N, U, V are unchanged; all placements of the other seven pieces
occupy both the lower and the upper level. This nicely forbids them from touching X.

157. Restrict X to five essentially different positions; if X is on the diagonal, also keep
Z unflipped by using the second column ‘s’ as in answer 152. There are respectively
(16146, 24600, 23619, 60608, 25943) solutions, found in (19.8, 35.4, 27.3, 66.6, 34.5) Gpu.

o o L o

In each case the tetromino can be placed anywhere that doesn’t immediately cut off
a region of one or two squares. [The twelve pentominoes first appeared in print when
H. E. Dudeney published The Canterbury Puzzles in 1907. His puzzle #74, “The
Broken Chessboard,” presented the first solution shown above, with pieces checkered
in black and white. That parity restriction, with the further condition that no piece is
turned over, would reduce the number of solutions to only 4, findable in 120 My.]

The 60-element subsets of the chessboard that can’t be packed with the pentomi-
noes has been characterized by M. Reid in J. Recreational Math. 26 (1994), 153-154.

January 29, 2017

Potts

Gardner

secondary columns
Dudeney

parity

one-sided pentominoes
Reid



ANSWERS TO EXERCISES 25

A

159. These shapes can’t be packed in a rectangle. But we can use the “supertile” E

, or even use a generalized torus such as Eﬁl (see exercise 7-137).
That supertile was used in 2009 by George Sicherman to make tetromino wallpaper.

7.2.2.1

158. Yes, in seven essentially different ways. To remove symmetry, we can make
the I vertical and put the X in the right half. (The pentominoes will have a total
of 6 x 2 +5 x 3+ 4 = 31 black squares; therefore the tetromino must be & -.)

to make an infinite strip --- . We can also tile the plane with a

supertile like

160. The 2339 solutions contain 563 that satisfy the “tatami” condition: No four pieces
meet at any one point. Each of those 563 leads to a simple 12-vertex graph coloring
problem; for example, the SAT methods of Section 7.2.2.2 typically need at most two
or three kilomems to decide each case.

It turns out that exactly 94 are three-colorable, including the second solution to
exercise 155(b). Here are the three for which W, X, Y, Z all have the same color:

162. Both shapes have 8-fold symmetry, so we can save a factor of nearly 8 by placing
the X in (say) the north-northwest octant. If X thereby falls on the diagonal, or in
the middle column, we can insist that the Z is not flipped, by introducing a secondary
column ‘s’ as in answer 152. Furthermore, if X occurs in dead center — this is possible
only for shape (i) —we use ‘c’ as in that answer to prohibit also any rotation of the W.

Thus find (a) 10 packings, in 3.5 Gu; (b) 7302 packings, in 353 Gpu; for instance

It turns out that the monomino must appear in or next to a corner, as shown. [The
first solution to shape (i) with monomino in the corner was sent to Martin Gardner
by H. Hawkins in 1958. The first solution of the other type was published by J. A.
Lindon in Recreational Mathematics Magazine #6 (December 1961), 22. Shape (ii)
was introduced and solved much earlier, by G. Fuhlendorf in The Problemist: Fairy
Chess Supplement 2,17 and 18 (April and June, 1936), problem 2410.]

163. (Notice that width 3 would be impossible, because every fault-free placement of
the V needs width 4 or more.) We can set up an exact cover problem for a 4 x 19
rectangle in the usual way; but then we make cell (z,y + 15) identical to (3 — x,y) for
0 <z <4 and0 <y <5, essentially making a half-twist when the pattern begins to
wrap around. There are 60 symmetries, and care is needed to remove them properly.
The easiest way is to put X into a fixed position, and allow W to rotate at most 90°.
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This exact cover problem has 850 solutions, 502 of which are fault-free. Here’s
one of the 29 strongly three-colorable ones, shown before and after its ends are joined:

164. It’s also possible to wrap two cubes of size v/5x v/5x /5,
as shown by F. Hansson; see Fairy Chess Review 6 (1947—
1948), problems 7124 and 7591. A full discussion appears in
FGbook, pages 685—689.

165. It’s easy to set up an exact cover problem in which the cells touching the poly-
omino are primary columns, while other cells are secondary, and with rows restricted to
placements that contain at least one primary column. Postprocessing can then remove
spurious solutions that contain holes. Typical answers for (a) are

bottom:

representing respectively (9, 2153, 37, 2, 17, 28, 18, 10, 9, 2, 4, 1) cases. For (b) they’re

=[F 3 BF & 7 5
oh e g2 & < O

representing (16, 642, 1, 469, 551, 18, 24, 6, 4, 2, 162, 1). The total number of fences
is respectively (3120, 1015033, 8660380, 284697, 1623023, 486, 150, 2914, 15707, 2,
456676, 2074), after weeding out respectively (0, 0, 16387236, 398495, 2503512, 665,
600, 11456, 0, 0, 449139, 5379) cases with holes. (See MAA Focus 36,3 (June/July
2016), 26; 36,4 (August/September 2016), 33.) Of course we can also make fences for
one shape by using other shapes; for example, there’s a beautiful way to fence a Z with
12 Ws, and a unique way to fence one pentomino with only three copies of another.

166. The small fences of answer 165(a) already meet this condition — except for the
X, which has no tatami fence. The large fences for T and U in 165(b) are also good.
But the other nine fences can no longer be as large:

TS sk A TS

[The tatami condition can be incorporated into the exact cover problem by using
color controls Introduce a secondary column for every potential edge between tiles,
with values t and f. Also introduce a primary column p for every corner point; p will
appear only in four rows ‘p e:f’, one for each edge e that touches p. In every row for the
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placement of a piece, include the columns ‘e:f’ for every edge internal to that piece,
and ‘e:t’ for every edge at the boundary of that piece. Then every point will be next
to a nonedge. However, for this exercise it’s best simply to apply the tatami condition
directly to each ordinary solution, before postprocessing for hole-removal.]

168. This exercise, with 3 x 30, 5 x 18, 6 x 15, and 9 x 10 rectangles, yields four
increasingly difficult benchmarks for the exact cover problem, having respectively (46,
686628, 2562928, 10440433) solutions. Symmetry can be broken as in exercise 152.
The 3 x 30 case was first resolved by J. Haselgrove; the 9 x 10 packings were first
enumerated by A. Wassermann and P. Ostergird, independently. [See New Scientist
12 (1962), 260-261; J. Meeus, J. Recreational Math. 6 (1973), 215-220; and FGbook
pages 455, 468-469.] Algorithm D needs (.006, 5.234, 15.576, 63.386) teramems to find
them. (I plan to give statistics for improved versions too; please stay tuned.)

169. Two solutions are now equivalent only when related by 180° rotation. Thus there
are 2 - 2339/64 = 73.09375 solutions per problem, on average. The minimum (42) and
maximum (136) solution counts occur for the cases

[In U.S. Patent 2900190 (1959, filed 1956), J. Pestiau remarked that these 64 problems
would give his pentomino puzzle “unlimited life and utility.”]

170. There are no ways to fill 2 x 20; 4 x 66 ways to fill 4 x 10;
4 x 84 ways to fill 5 x 8. None of the solutions are symmetrical. s E:,EI:‘_F‘L

[See R. K. Guy, Nabla 7 (1960), 99-101.]

175. Most of the hexominoes will have three black cells and three white cells, in any
“checkering” of the board. However, eleven of them (shown as darker gray in the
illustration) will have a two-to-four split. Thus the total number of black cells will
always be an even number between 94 and 116, inclusive. But a 210-cell rectangle
always contains exactly 105 black cells. [See The Problemist: Fairy Chess Supplement
2,9-10 (1934-1935), 92, 104-105; Fairy Chess Review 3,4-5 (1937), problem 2622.]
Benjamin’s triangular shape, on the other hand, has 14+3+54---4+19 = 10? = 100
cells of one parity and (220) — 10? = 110 of the other. It can be packed with the 35
hexominoes in a huge number of ways, probably not feasible to count exactly.

176. The parity considerations in answer 175 tell us that this is possible only for the
“unbalanced” hexominoes, such as the one shown. And in fact, Algorithm D readily
finds solutions for all eleven of those, too numerous to count. Here’s an example:

= wliE”

[See Fairy Chess Review 6 (April 1947) through 7 (June 1949), problems 7252, 7326,
7388, 7460, 7592, 7728, 7794, 7865, 7940, 7995, 8080. See also the similar problem 7092.]

177. Each castle must contain an odd number of the eleven unbalanced hexominoes
(see answer 175). Thus we can begin by finding all sets of seven hexominoes that can
be packed into a castle: This amounts to solving (111) + (131) + (151) + (171) = 968 exact
cover problems, one for each potential choice of unbalanced elements. Each of those
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problems is fairly easy; the 24 balanced hexominoes provide secondary columns, while
the castle cells and the chosen unbalanced elements are primary. In this way we obtain
39411 suitable sets of seven hexominoes, with only a moderate amount of computation.

That gives us another exact cover problem, having 35 columns and 39411 rows.
This secondary problem turns out to have exactly 1201 solutions (found in just 115 Gu),
each of which leads to at least one of the desired overall packings. Here’s one:

=t Ok B2 B e

In this example, two of the hexominoes in the rightmost castle can be flipped vertically;
and of course the entire contents of each castle can independently be flipped horizon-
tally. Thus we get 64 packings from this particular partition of the hexominoes (or
maybe 64 x 5!, by permuting the castles), but only two of them are “really” distinct.
Taking multiplicities into account, there are 1803 “really” distinct packings altogether.

[Frans Hansson found the first way to pack the hexominoes into five equal shapes,
using [ as the container; see Fairy Chess Review 8 (1952-1953), problem 9442. His
container admits 123189 suitable sets of seven, and 9298602 partitions into five suitable
sets instead of only 1201. Even more packings are possible with the container
which has 202289 suitable sets and 3767481163 partitions!]

In 1965, M. J. Povah packed all of the hexominoes into containers of shape & 7,
using seven sets of five; see The Games and Puzzles Journal 2 (1996), 206.

)

178. By exercise 175, m must be odd, and less than 35. F. Hansson posed this question
in Fairy Chess Review 7 (1950), problem 8556. He gave a solution for m = 19,

= Wﬁﬂﬁwmﬁﬂ
| =)

and claimed without proof that 19 is optimum. The 13 dark gray hexominoes in this
diagram cannot be placed in either “arm”; so they must go in the center. (Medium gray
indicates pieces that have parity restrictions in the arms.) Thus we cannot have m > 25.

When m = 23, there are 39 ways to place all of the hard hexominoes, such as

=El|
Hrodbe

However, none of these is completable with the other 22; hence m < 21.

When m = 21, the hard hexominoes can be placed in 791792 ways, without
creating a region whose size isn’t a multiple of 6 and without creating more than one
region that matches a particular hexomino. Those 791792 ways have 69507 essentially
distinct “footprints” of occupied cells, and the vast majority of those footprints appear
to be impossible to fill. But in 2016, George Sicherman found the remarkable packing

WﬁW
| 2| leenry

which not only solves m = 21, it yields solutions for m = 19, 17, 15, 11, 9, 7, 5, and 3 by
simple modifications. Sicherman also found separate solutions for m = 13 and m = 1.
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179. Stead’s original solution makes a very pleasant three-colored design:

ok TBF g T

[See Fairy Chess Review 9 (1954), 2—4; also FGbook, pages 659-662.]
This problem is best solved via the techniques of dynamic programming (Sec-
tion 7.7), not with Algorithm D, because numerous subproblems are equivalent.

181. Make rows for the pentominoes in cells zy for 0 < z < 8,0 < y < 10 as in exercise
140, and also for the tetrominoes in cells zy for 1 <z < 7,1 <y < 9. In the latter
rows include also columns zy':0 for all cells zy in the tetromino, as well as zy':1 for
all other cells xy touching the tetromino, where the columns zy’ for 0 < z < 8 and
0 <y < 10 are secondary. We can also assume that the center of the X pentomino lies
in the upper left corner. There are 168 solutions, found after 1.5 Ty of computation.
(Another way to keep the tetrominoes from touching would be to introduce secondary
columns for the wertices of the grid. Such columns are more difficult to implement,
however, because they behave differently under the rotations of answer 140.)

[Many problems that involve placing the tetrominoes and pentominoes together
in a rectangle were explored by H. D. Benjamin and others in the Fairy Chess Review,
beginning already with its predecessor The Problemist: Fairy Chess Supplement (1936),
problem 2171. But this particular question seems to have been raised first by Michael
Keller in World Game Review 9, (1989), xx.]

182. At present, not a single solution to this puzzle is known, although intuition
suggests that enormously many of them ought to be possible. P. J. Torbijn and J. Meeus
[J. Recreational Mathematics 32 (2003), 78-79] have exhibited solutions for rectangles
of sizes 6 x 45, 9 x 30, 10 x 27, and 15 x 18.

198. (a) Represent the tree as a sequence aoai ...a2n+1 of nested parentheses; then
ai ...az, will represent the corresponding root-deleted forest, as in Algorithm 7.2.1.6P.
The left boundary of the corresponding parallomino is obtained by mapping each ‘(’
into N or E, according as it is immediately followed by ‘(" or )’. The right boundary,
similarly, maps each ‘)’ into N or E according as it is immediately preceded by ‘)’ or
‘(. For example, the parallomino for forest 7.2.1.6—(2) is shown below with part (d).
(b) This series wzy + w?(zy? + 2%y) + w*(zy® + 22%y> + 2®y) + --- can be
written wryH (w, wz,wy), where H(w,z,y) = 1/(1 — z — y — G(w,z,y)) generates
a sequence of “atoms” corresponding to places z, y, G where the juxtaposed boundary
paths have the respective forms E, g, or g(inner)ﬁ. The area is thereby computed by
diagonals between corresponding boundary points. (In the example from (a), the area is
14+1+14+1424242+42424+24+2+2+424141; there’s an “outer” G, whose H is zyxyGy,
and an “inner” G, whose H is zyyzyzryy.) Thus we can write G as a continued fraction,

Glw,z,y) = wmy/(l—a:—y—wmy/(l—wm—wy—w%y/(l—me—wa—wsa:y/( ).

[A completely different form is also possible, namely G(w, z,y) = m%, where
oo (_1)nynwn(n+l)/2
J = ;
o(w,z,9) ;::0 1—w)(l—w?)...1—w")(1—zw)(l—zw?).. (I —zw")’
el (_1)n lynwn(n+1)/2
J = .
1(w,z,9) n; 1 —w)(1—w?)...(1—w—1)(1 —zw)(l —zw?)...(l — zw")

This form, derived via horizontal slices, disguises the symmetry between z and y.]
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(c) Let G(w, z) = G(w, 2z,z). We want [2"] G'(1, z), where differentiation is with
respect to the first parameter. From the formulas in (b) we know that G(1,z) =
2(C(z) — 1), where C(z) = (1 — y/1—42)/(22) generates the Catalan numbers. Partial
derivatives 3/0w and 8/0z then give G'(1, z) = 2°/(1—4z) and G,(1,2) = 1/4/1—4z—1.

(d) This problem has four symmetries, because we can reflect about either diag-
onal. When n = 5, Algorithm D finds 4 x 801 solutions, of which 4 x 129 satisfy the
tatami condition, and 4x 16 are strongly three-colorable. (The tatami condition is easily
enforced via secondary columns in this case, because we need only stipulate that the
upper right corner of one parallomino doesn’t match the lower left corner of another.)
When n = 6 there are oodles and oodles of solutions. All of the trees/parallominoes
thereby appear together in an attractive compact pattern.

3f|ce
3f 3f|ce|ed
3f|6a|6a|db|fc
6a 78|b9
3£|78(97
44/85|a6
12/53

[References: D. A. Klarner and R. L. Rivest, Discrete Math. 8 (1974), 31-40;
E. A. Bender, Discrete Math. 8 (1974), 219-226; I. P. Goulden and D. M. Jackson,
Combinatorial Enumeration (New York: Wiley, 1983), exercise 5.5.2; M.-P. Delest and
G. Viennot Theoretical Comp. Sci. 34 (1984), 169-206; W.-J. Woan, L. Shapiro, and
D. G. Rogers, AMM 104 (1997), 926-931; P. Flajolet and R. Sedgewick, Analytic
Combinatorics (Cambridge Univ. Press, 2009), 660-662.]

200. The same ideas apply, but with three coordinates instead of two, and with the
elementary transformations (z,y, z) — (¥, Tmax — T, 2), (z,9,2) — (y, 2, T).

Pieces (1, 2, ..., 7) have respectively (12, 24, 12, 12, 12, 12, 8) base placements,
leading to 144 + 144 + 72 4+ 72 4+ 96 + 96 + 64 rows for the 3 x 3 x 3 problem.

202. It’s tempting, but wrong, to try to compute the Somap by considering only the
240 solutions that have the tee in a fixed position and the claw restricted; the pairwise
semidistances between these special solutions will miss many of the actual adjacencies.
To decide if w — v, one must compare u to the 48 solutions equivalent to v.

(a) The strong Somap has vertex degrees 7' 6759431 359263145015, 50 an “average”
solution has (1-74+7-6+---+15-0)/240 = 2.57 strong neighbors. (The unique vertex
of degree 7 has the level-by-level structure £ 4 2 from bottom to top.)

The full Somap has vertex degrees 21218'16°15'314'013'6121711121('69?88%¢
7256265'641733211' 0", giving an average degree ~ 9.14. (Its unique isolated vertex
is

15 M M 333 7556 771 H
1§, and its only pendant vertex is i3 i 7i1. Two other noteworthy solutions,

R
S8

3
2
2

b

5.
it
6

R&o
R

5 333 412 112

5 and #§ 42 132, are the only ones that contain the two-piece substructure @)

333
436
466 466 765 7727

e
ey

L
5
G

e

(b) The Somap has just two components, namely the isolated vertex and the
239 others. The latter has just three bicomponents, namely the pendant vertex, its
neighbor, and the 237 others. Its diameter is 8 (or 21, if we use the edge lengths 2 and 3).

The strong Somap has a much sparser and more intricate structure. Besides
the 15 isolated vertices, there are 25 components of sizes {8 x 2,6 x 3,4,3 x 5,2 x 6,
7,8,11,16,118}. Using the algorithm of Section 7.4.1, the large component breaks down
into nine bicomponents (one of size 2, seven of size 1, the other of size 109); the 16-
vertex component breaks into seven; and so on, totalling 58 bicomponents altogether.
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[The Somap was first constructed by R. K. Guy, J. H. Conway, and M. J. T.
Guy, without computer help. It appears on pages 910-913 of Berlekamp, Conway, and
Guy’s Winning Ways, where all of the strong links are shown, and where enough other
links are given to establish near-connectedness. Each vertex in that illustration has
been given a code name; for example, the five special solutions mentioned in part (a)
have code names B5f, R7d, LR7g, YR3a, and R3c, respectively.]

204. Let the cubie coordinates be 51z, 41z, 31z, 32z, 33z, 23z, 13z, 14z, 15z, for z €
{1,2,3}. Replace matrix A of the exact cover problem by a simplified matrix A’ having
only columns (1,2, 3,4,5,6,7,S), where S is the sum of all columns zyz of A where zyz is
odd. Any solution to A yields a solution to A" with column sums (1,1,1,1,1,1,1,10).
But that’s impossible, because the rows of A’ all have the forms ‘1 [S]’, ‘2 [S] [S],
‘3[S][S], ‘4 [S]’, B [S]’, ‘6 [S]’, ‘7 [S]’- [See the Martin Gardner reference in answer 213.]

205. (a) The solution counts, ignoring symmetry reduction, are: 4 X 5 corral (2),
gorilla (2), smile (2), 3 x 6 corral (4), face (4), lobster (4), castle (6), bench (16),
bed (24), doorway (28), piggybank (80), five-seat bench (104), piano (128), shift 2
(132), 4 x 4 coop (266), shift 1 (284), bathtub (316), shift 0 (408), grand piano (526),
tower 4 (552), tower 3 (924), canal (1176), tower 2 (1266), couch (1438), tower 1 (1520),
stepping stones (2718). So the 4 x 5 corral, gorilla, and smile are tied for hardest, while
stepping stones are the easiest. (The bathtub, canal, bed, and doorway each have four
symmetries; the couch, stepping stones, tower 4, shift 0, bench, 4 x 4 coop, castle,
five-seat bench, piggybank, lobster, piano, gorilla, face, and smile each have two. To
get the number of essentially distinct solutions, divide by the number of symmetries.)

(b) Notice that the canal, bed, and doorway appear also in (a), as does the dryer
(which is the same as “stepping stones”). The solution counts are: W-wall (0), almost
W-wall (12), bed (24), apartments 2 (28), doorway (28), clip (40), tunnel (52), zigzag
wall 2 (52), zigzag wall 1 (92), underpass (132), chair (260), stile (328), fish (332),
apartments 1 (488), goldfish (608), canal (1176), steps (2346), dryer (2718); hence
“almost W-wall” is the hardest of the possible shapes. Notice that the dryer, chair,
steps, and zigzag wall 2 each have two symmetries, while the others in Fig. 80(b) all
have four. The 3 x 3 x 3 cube, with its 48 symmetries, probably is the easiest possible
shape to make from the Soma pieces.

[Piet Hein himself published the tower 1, shift 2, stile, and zigzag wall 1 in his
original patent; he also included the bathtub, bed, canal, castle, chair, steps, stile,
stepping stones, shift 1, five-seat bench, tunnel, W-wall, and both apartments in his
booklet for Parker Brothers. Parker Brothers distributed four issues of The SOMA®
Addict in 1970 and 1971, giving credit for new constructions to Noble Carlson (fish,
lobster), Mrs. C. L. Hall (clip, underpass), Gerald Hill (towers 2-4), Craig Kenworthy
(goldfish), John W. M. Morgan (cot, face, gorilla, smile), Rick Murray (grand piano),
and Dan Smiley (doorway, zigzag wall 2). Sivy Farhi published a booklet called
Somacubes in 1977, containing the solutions to more than one hundred Soma cube
problems including the bench, the couch, and the piggybank.]

206. By eliminating symmetries, there are (a) 421 distinct cases with cubies omitted on
both layers, and (b) 129 with cubies omitted on only one layer. All are possible, except
in the one case where the omitted cubies disconnect a corner cell. The easiest of type (a)
omits (111,112,311) and has 3599 solutions; the hardest omits (211, 222,231) and has
45 %2 solutions. The easiest of type (b) omits (111,151, 311) and has 3050 solutions; the
hardest omits (211,221, 251) and has 45 X 2 solutions. (The two examples illustrated
have 821 x 2 and 68 x 4 solutions. Early Soma solvers seem to have overlooked them!)
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207. (a) The 60 distinct cases are all quite easy. The easiest has 3497 solutions and uses
(113,123, 213) on the top level; the hardest has 268 solutions and uses (113,223, 313).
(b) Sixteen of the 60 possibilities are disconnected. Three of the others are also
impossible —namely those that omit (122, 24z, 322) or (212, 22z, 232) or (212,222, 24z).
The easiest has 3554 solutions and omits (11z,12z,34z); the hardest of the possibles
has only 8 solutions and omits (11z, 23z, 24z).
(The two examples illustrated have 132 x 2 and 270 x 2 solutions.)

208. All but 216 are realizable. Five cases have unique (1 X 2) solutions:

HENE e

210. Every polycube has a minimum enclosing box for which it touches all six faces. If
those box dimensions a xbx c aren’t too large, we can generate such polycubes uniformly
at random in a simple way: First choose 27 of the abc possible cubies; try again if that
choice doesn’t touch all faces; otherwise try again if that choice isn’t connected.

For example, when a = b = ¢ = 4, about 99.98% of all choices will touch all faces,
and about 0.1% of those will be connected. This means that about .001(57) ~ 8 x 10™
of the 27-cubie polycubes have a 4 x 4 x 4 bounding box. Of these, about 5.8% can be
built with the seven Soma pieces.

But most of the relevant polycubes have a larger bounding box; and in such
cases the chance of solvability goes down. For example, = 6.2x10"® cases have bounding
box 4 x 5 x 5; & 3.3 x 10'® cases have bounding box 3 x 5 x 7; & 1.5 x 10'7 cases have
bounding box 2 X 7 x 7; and only 1% or so of those cases are solvable.

Section 7.2.3 will discuss the enumeration of polycubes by their size.

212. Each interior position of the penthouse and pyramid that might or might not
be occupied can be treated as a secondary column in the corresponding exact cover
problem. We obtain 10 x 2 solutions for the staircase; (223,286) x 8 solutions for the
penthouse with hole at the (bottom, middle); and 32 x 2 solutions for the pyramid, of
which 2 x 2 have all three holes on the diagonal and 3 x 2 have no adjacent holes.

213. A full simulation of gravity would be quite complex, because pieces can be
prevented from tipping with the help of their neighbors above and/or at their side.
If we assume a reasonable coefficient of friction and an auxiliary weight at the top, it
suffices to define stability by saying that a piece is stable if and only if at least one of
its cubies is immediately above either the floor or a stable piece.

The given shapes can be packed in respectively 202 x 2, 21 x 2, 270 x 2, 223 x §,
and 122 x 2 ways, of which 202 x 2, 8 x 2, 53 x 2, 1 x 8, and 6 x 2 are stable. Going
from the bottom level to the top, the layers ;7 ;3%2 §i1 82 give a decently stable cot; a
fragile vulture comes from :::7 3177 113%; a delicate mushroom comes from ‘7: §7 3% 1; and
a delicate cantilever from 222 355 & 933 §8. The author’s cherished set of Skjgde Skjern

466 446 341)
77 114

Soma pieces, made of rosewood and purchased in 1967, includes a small square base
that nicely stabilizes both mushroom and cantilever. The vulture needs a book on top.

[The casserole and cot are due respectively to W. A. Kustes and J. W. M. Morgan.
The mushroom, which is hollow, is the same as B. L. Schwartz’s “penthouse,” but
turned upside down; John Conway noticed that it then has a unique stable solution.
See Martin Gardner, Knotted Doughnuts (1986), Chapter 3.]
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214. Infinitely many cubies lie behind a wall; but it suffices to consider only the hidden
ones whose distance is at most 27 — v from the v visible ones. For example, if the W-
wall has coordinates as in answer 204, we have v = 25 and the two invisible cubies are
{332,331}. We’re allowed to use any of {241,242, 251, 252,331, 332,421, 422, 521, 522}
at distance 1, and {341, 342, 351, 352,431, 432, 531, 532, 621,622} at distance 2. (The
stated projection doesn’t have left-right symmetry.) The X-wall is similar, but it has
v = 19 and potentially (9, 7, 6, 3, 3, 2, 1) hidden cubies at distances 1 to 7 (omitting
cases like 450, which is invisible at distance 2 but “below ground”).

Using secondary columns for the optional cubies, we must examine each solution
to the exact cover problem and reject those that are disconnected or violate the gravity
constraint of exercise 213. Those ground rules yield 282 solutions for the W-wall, 612
for the X-wall, and a whopping 1,130,634 for the cube itself. (These solutions fill
respectively 33, 275, and 13842 different sets of cubies.) Here are examples of some of
the more exotic shapes that are possible, as seen from behind and below:

=

There also are ten surprising ways to make the cube facade if we allow hidden “un-
derground” cubies: The remarkable construction ;. 1'% fres' 381 raises the entire
cube one level above the floor, and is gravitationally stable, by exercise 213’s criteria!
Unfortunately, though, it falls apart —even with a heavy book on top.

[The false-front idea was pioneered by Jean Paul Francillon, whose construction

of a fake W-wall was announced in The SOMA® Addict 2,1 (spring 1971).]

215. (a) Each of 13 solutions occurs in 48 equivalent arrangements. To remove the
symmetry, place piece 7 horizontally, either (i) at the bottom or (ii) in the middle.
In case (ii), add a secondary ‘s’ column as in answer 150, and append ‘s’ also to all
placements of piece 6 that touch the bottom more than the top. Run time: 400 Kpu.
[This puzzle was number 39 in Hoffmann’s Puzzles Old and New (1893). Another
3 x 3 x 3 polycube dissection of historical importance, “Mikusinski’s Cube,” was
described by Hugo Steinhaus in the 2nd edition of his Mathematical Snapshots (1950).
That one consists of the ell and the two twist pieces of the Soma cube, plus the
pentacubes B, C, and f of exercise 220; it has 24 symmetries and just two solutions.]
(b) Yes: Michael Reid, circa 1995, found the remarkable set

P F TP 5 o &

which also makes 9 x 3 x 1 uniquely(!). George Sicherman carried out an exhaustive
analysis of all relevant flat polyominoes in 2016, finding exactly 320 sets that are unique
for 3 x 3 x 3, of which 19 are unique also for 9 x 3 x 1. In fact, one of those 19,

PcH T TH T

is the long-sought “Holy Grail” of 3 x 3 x 3 cube decompositions: Its pieces not only
have flatness and double uniqueness, they are nested (!!). There’s also Yoshiya Shindo’s

» o % &5 59

known as the “Neo Diabolical Cube” (1995); notice that it has 24 symmetries, not 48.
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217. The straight tetracube % and the square tetracube @, together with
the size-4 Soma pieces in (30), make a complete set.

We can fix the tee’s position in the twin towers, saving a factor of 32; and each
of the resulting 40 solutions has just one twist with the tee. Hence there are five
inequivalent solutions, and 5 x 256 altogether.

The double claw has 63 x 6 solutions. But the cannon, with 1 x 4 solutions, can
be formed in essentially only one way. (Hint: Both twists are in the barrel.)

There are no solutions to ‘up 3’. But ‘up 4’ and ‘up 5’ each have 218 x 8 solutions
(related by turning them upside down). Gravitationally, four of those 218 are stable
for ‘up 5’; the stable solution for ‘up 4’ is unique, and unrelated to those four.

References: Jean Meeus, Journal of Recreational Mathematics 6 (1973), 257-265;
Nob Yoshigahara, Puzzle World No. 1 (San Jose: Ishi Press International, 1992), 36-38.

218. All but 48 are realizable. The unique “hardest” realizable case, @, has 2 x 2
solutions. The “easiest” case is the 2 x 4 x 4 cuboid, with 11120 = 695 x 16 solutions.

220. (a) A,B,C,D,E, F,a,b,c,d, e, f jk, 1 ...,z (It's a little hard to see why
reflection doesn’t change piece ‘I’. In fact, S. S. Besley once patented the pentacubes
under the impression that there were 30 different kinds! See U.S. Patent 3065970
(1962), where Figs. 22 and 23 illustrate the same piece in slight disguise.)

Historical notes: R. J. French, in Fairy Chess Review 4 (1940), problem 3930,
was first to show that there are 23 different pentacube shapes, if mirror images are
considered to be identical. The full count of 29 was established somewhat later by
F. Hansson and others [Fairy Chess Review 6 (1948), 141-142]; Hansson also counted
the 35 + 77 = 112 mirror-inequivalent hexacubes. Complete counts of hexacubes (166)
and heptacubes (1023) were first established soon afterwards by J. Niemann, A. W.
Baillie, and R. J. French [Fairy Chess Review 7 (1948), 8, 16, 48].

(b) The cuboids 1x3x20, 1x4x15, 1x5x12, and 1x6x 10 have of course already
been considered. The 2 x 3 x 10 and 2 x 5 x 6 cuboids can be handled by restricting X
to the bottom upper left, and sometimes also restricting Z, as in answers 150 and 152;
we obtain 12 solutions (in 350 Myu) and 264 solutions (in 2.5 Gu), respectively.

The 3 x 4 x 5 cuboid is more difficult. Without symmetry-breaking, we obtain
3940 x 8 solutions in about 200 Gu. To do better, notice that X can appear in 11
essentially different positions: (1+1*)(14+1%) in a 4 x 5 plane, 2* +2** in a 3 X 5 plane,
and 2" + 1" in a 3 x 4 plane, where ‘*’ denotes a case where symmetry needs to be
broken down further because X is fixed by some symmetry. With 11 separate runs we
can find (923 + 558/2+402/2+376/4) + (1268/2 + 656/2 +420/4+ 752/4) + (1480/2 +
720/2 4 352/4) = 3940 solutions, in 4.9 4+3.3+3.1+24+---+2.1 = 50 Gpu.

[The fact that solid pentominoes will fill these cuboids was first demonstrated by
D. Nixon and F. Hansson, Fairy Chess Review 6 (1948), problem 7560 and page 142.
Exact enumeration was first performed by C. J. Bouwkamp in 1967; see J. Combina-
torial Theory 7 (1969), 278-280, and Indagationes Math. 81 (1978), 177-186.]

(c) Almost any subset of 25 pentacubes can probably do the job. But a particu-
larly nice one is obtained if we simply omit o, q, s, and y, namely those that don’t fit in a
3%x3x%x3 box. R. K. Guy proposed this subset in Nabla 7 (1960), 150, although he wasn’t
able to pack a 5 x 5 x 5 at that time. The same idea occurred independently to J. E.
Dorie, who trademarked the name “Dorian cube” [U.S. Trademark 1,041,392 (1976)].

An amusing way to form such a cube is to make 5-level prisms in the shapes of the
P, Q, R, U, and X pentominoes, using pieces {a,e,j,m,w}, {f,k,1,p,r}, {A,d,D,E n},
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{¢,C,F,u,v}, {b,B,t,x,z}; then use the packing in answer 151(!). This solution can
be found with six very short runs of Algorithm D, taking only 300 megamems overall.
Another nice way, due to Torsten Sillke, is more symmetrical: There are 70,486
ways to partition the pieces into five sets of five that allow us to build an X-prism in
the center (with piece x on top), surrounded by four P-prisms.
One can also assemble a Dorian cube from five cuboids, using one 1 x 3 x 5, one
2 x 2 x 5, and three 2 x 3 x 5s. Indeed, there are zillions more ways, too many to count.
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221. (a) Make an exact cover problem in which a and A, b and B, ..., f and F are
required to be in symmetrical position; there are respectively (86,112,172,112, 52, 26)
placements for such 10-cubie “super-pieces.” Furthermore, the author decided to force
piece m to be in the middle of the top wall. Solutions were found immediately! So piece
x was placed in the exact center, as an additional desirable constraint. Then there were
exactly 20 solutions; the one below has also n, o, and u in mirror-symmetrical locations.
(b) The super-pieces now have (59, 84,120, 82, 42, 20) placements; the author also
optimistically forced j, k, and m to be symmetrical about the diagonal, with m in the
northwest corner. A long and apparently fruitless computation (34.3 teramems) ensued;
but — hurrah —two closely related solutions were discovered at the last minute.
(c) This computation, due to Torsten Sillke [see Cubism For Fun 27
(1991), 15], goes much faster: The quarter-of-a-box shown here can be packed
with seven non-x pentacubes in 55356 ways, found in 1.3 Gu. As in answer 177,
this yields a new exact cover problem, with 33412 different rows. Then 11.8 Gp
more computation discovers seven suitable partitions into four sets of seven, one of
which is illustrated here.

1/1|1l|q|q|q|a m|o|o|o|o|o|s v|iE|z|z|t]|A|A
llo|lojo|o|o|qg mim|{x|(q|q|q|qg E|E|lz|s|t|t]|t
flflujufu|F|F m|(x|x|x|b|b|b Elz|z|s|t|F|F
D|f|{u|m|u|F|d rin|x|e|e|b|a flf|s|s|a|F|k
1/1|£|D|D|Dim|m|{m|d|d|d|F|qg|q mim|m|r|r|n|e|e|ajajala|b|qg]|s v|E|E|f|B|f|s|w|la|k|k|k|F|t|A
1|/f|(f|C|C|D|D|m|d|d|c|c|F|F|r t|m|r|r|n|in|nje|la|D|D|D|b|q|s v|E|f|f|B|B|w|w|a|k|k|D|F|F|A
v|iv|v|B|C|C|C|x|c|c|c|b|r|r|T t|t|t|r|E|p|lp|p|Vv|C|C|D|D|s|s v|iv|v|B|B|w/w|x|aja|D|D|y|AA
v|w|B|B|B[B|x|x|x|b|b|b|b|r|z t|w|w|E|E|E|p|p|Vv|F|C|C|C|s|z uluju|j|j|ilx|[x|x|D|D|y|y|y|y
viw|w|A|A|A|A|x|a|a|a|a|z|z|z w|w|B|E|A|A|v|v|Vv|F|F|F|z|z|z ulp|u|j|m|j|C|x]c|d|o]o|o|o]o
k| k|w/w| E|E|A|ln|ale|e|y|z|]|] w|l|B|B|A|d|c|f|f|k|k|F|z|]j|] plple|mm|m|C|b|c|d|d|n|n|n|l
k|k|s|s|s|E|E|ln|e|le|y|y|v|Vv]|i] 1|1|B|A|A|d|c|c|f|k|k|klu|ul|] plple|e|m|C|C|b|c|c|d|d|n|l]|1
s|E|ln|n|n|e|y Ald|d|c|f|f|k e|Clq|b|b|c|d
s|s|plt|t|t B|B|ld|c|uju|u ele|q|b|r|n|n
k|s|p|p|t|]i]|V 1|1|1l|y|u|j|u plelq|r|r|r|l
klkjp[p[t[i|] 1lylylyly[ifi plajqrjlj1fl
(a) (b) (c)

222. As in previous exercises, the key is to reduce the search space drastically,
by asking for solutions of a special form. (Such solutions are likely to exist,
because pentacubes are so versatile.) Here we can break the given shape into @
four pieces: Three modules of size 3% 4+ 22 to be packed with seven pentacubes,
and one of size 4> — 3 - 2% to be packed with eight pentacubes. The smaller
problem has 13,587,963 solutions, found with 2.5 Tpu of computation; these
reduce to 737,695 distinct sets of seven pentacubes. The larger problem has 1]
solutions, found with 400 My and reduced to 2075 sets of eight. Exactly covering those
sets yields 1,132,127,589 suitable partitions; the first one found, {a,A,b,c,j,q,t,y},
{B,C,d,D,ek, o}, {E,{,In r v x}, {F,m,p,s, u,w,z}, works fine. (We need only one
partition, so we needn’t have computed more than a thousand or so solutions to the
smaller problem.)

Pentacubes galore: Since the early 1970s, Ekkehard Kiinzell and Sivy Farhi have
independently published booklets that contain hundreds of solved pentacube problems.

999. ...
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INDEX AND GLOSSARY  roe

Homer

. . , . . WHEATLEY
There is a curious poetical index to the lliad in Pope’s Homer,

referring to all the places in which similes are used.
— HENRY B. WHEATLEY, What is an Index? (1878)

When an index entry refers to a page containing a relevant exercise, see also the answer to
that exercise for further information. An answer page is not indexed here unless it refers to a
topic not included in the statement of the exercise.

Barris, Harry, 1. Nothing else is indexed yet (sorry).

DIMACS: DIMACS Series in Discrete
Mathematics and Theoretical Computer
Science, inaugurated in 1990.

Preliminary notes for indexing appear in the
upper right corner of most pages.

Fields, Dorothy, 1. If I’ve mentioned somebody’s name and
MPR: Mathematical Preliminaries Redux, v. forgotten to make such an index note,
Short, Robert Allen, iii. it’s an error (worth $2.56).
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