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SHORTInternetPREFACEWith this issue we have terminated the se
tion \Short Notes.". . . It has never been \
rystal 
lear" why a Contribution 
annot be short,just as it has o

asionally been veri�ed in these pagesthat a Short Note might be long.| ROBERT A. SHORT, IEEE Transa
tions on Computers (1973)This booklet 
ontains draft material that I'm 
ir
ulating to experts in the�eld, in hopes that they 
an help remove its most egregious errors before toomany other people see it. I am also, however, posting it on the Internet for
ourageous and/or random readers who don't mind the risk of reading a fewpages that have not yet rea
hed a very mature state. Beware: This materialhas not yet been proofread as thoroughly as the manus
ripts of Volumes 1, 2, 3,and 4A were at the time of their �rst printings. And alas, those 
arefully-
he
kedvolumes were subsequently found to 
ontain thousands of mistakes.Given this 
aveat, I hope that my errors this time will not be so numerousand/or obtrusive that you will be dis
ouraged from reading the material 
arefully.I did try to make the text both interesting and authoritative, as far as it goes.But the �eld is vast; I 
annot hope to have surrounded it enough to 
orral it
ompletely. So I beg you to let me know about any de�
ien
ies that you dis
over.To put the material in 
ontext, this portion of fas
i
le 5 previews Se
tion7.2.2.1 of The Art of Computer Programming, entitled \Dan
ing links." Itdevelops an important data stru
ture te
hnique that is suitable for ba
ktra
kprogramming, whi
h is the main fo
us of Se
tion 7.2.2. Several subse
tions(7.2.2.2, 7.2.2.3, et
.) will follow.� � �The explosion of resear
h in 
ombinatorial algorithms sin
e the 1970s hasmeant that I 
annot hope to be aware of all the important ideas in this �eld.I've tried my best to get the story right, yet I fear that in many respe
ts I'mwoefully ignorant. So I beg expert readers to steer me in appropriate dire
tions.Please look, for example, at the exer
ises that I've 
lassed as resear
hproblems (rated with diÆ
ulty level 46 or higher), namely exer
ises 182, : : : ; I'vealso impli
itly mentioned or posed additional unsolved questions in the answersto exer
ises 82, 210, : : : . Are those problems still open? Please inform me ifyou know of a solution to any of these intriguing questions. And of 
ourse if noiii
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iv PREFACE JellisHuangSi
hermanFGbookKnuthsolution is known today but you do make progress on any of them in the future,I hope you'll let me know.I urgently need your help also with respe
t to some exer
ises that I madeup as I was preparing this material. I 
ertainly don't like to re
eive 
redit forthings that have already been published by others, and most of these results arequite natural \fruits" that were just waiting to be \plu
ked." Therefore pleasetell me if you know who deserves to be 
redited, with respe
t to the ideas foundin exer
ises 5, 6, 20, 21, 31, 40, 70, 158, 163, 177, 198(d), 206, 207, 208, 210,218, 222, : : : . Furthermore I've 
redited exer
ises : : : to unpublished work of: : : . Have any of those results ever appeared in print, to your knowledge?� � �Spe
ial thanks are due to George Jellis for answering dozens of histori
al queries,as well as to Wei-Hwa Huang, George Si
herman, and : : : for their detailed
omments on my early attempts at exposition. And I want to thank numerousother 
orrespondents who have 
ontributed 
ru
ial 
orre
tions.� � �I happily o�er a \�nder's fee" of $2.56 for ea
h error in this draft when it is �rstreported to me, whether that error be typographi
al, te
hni
al, or histori
al.The same reward holds for items that I forgot to put in the index. And valuablesuggestions for improvements to the text are worth 32/
 ea
h. (Furthermore, ifyou �nd a better solution to an exer
ise, I'll a
tually do my best to give youimmortal glory, by publishing your name in the eventual book:�)In the prefa
e to Volume 4B I plan to introdu
e the abbreviation FGbookfor my book Sele
ted Papers on Fun and Games (Stanford: CSLI Publi
ations,2011), be
ause I will be making frequent referen
e to it in 
onne
tion withre
reational problems.Cross referen
es to yet-unwritten material sometimes appear as `00'; thisimpossible value is a pla
eholder for the a
tual numbers to be supplied later.Happy reading!Stanford, California D. E. K.99 Umbruary 2016
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7.2.2.1 DANCING LINKS 1 BARRISFIELDSundoingexa
t 
overing{0s and 1sWhat a dan
edo they doLordy, how I'm tellin' you!| HARRY BARRIS, Mississippi Mud (1927).Don't lose your 
on�den
e if you slip,Be grateful for a pleasant trip,And pi
k yourself up, dust yourself o�, start all over again.| DOROTHY FIELDS, Pi
k Yourself Up (1936)7.2.2.1. Dan
ing links. One of the 
hief 
hara
teristi
s of ba
ktra
k algo-rithms is the fa
t that they usually need to undo everything that they do totheir data stru
tures. Blah blah de blah blah blah.� � �Exa
t 
over problems. We will be seeing many examples where links dan
ehappily and eÆ
iently, as we study more and more examples of ba
ktra
king.The beauty of the idea 
an perhaps be seen most naturally in an important
lass of problems known as exa
t 
overing : We're given an m � n matrix A of0s and 1s, and the problem is to �nd a subset of rows whose sum is exa
tly 1 inevery 
olumn. For example, 
onsider the 6� 7 matrixA = 0BBBBB� 0 0 1 0 1 1 01 0 0 1 0 0 10 1 1 0 0 1 01 0 0 1 0 0 00 1 0 0 0 0 10 0 0 1 1 0 1
1CCCCCA : (20)Ea
h row of A 
orresponds to a subset of a 7-element universe. A moment'sthought shows that there's only one way to 
over all seven of these 
olumns withdisjoint rows, namely by 
hoosing rows 1, 4, and 5. We want to tea
h a 
omputerhow to solve su
h problems, when there are many, many rows and many 
olumns.
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2 COMBINATORIAL SEARCHING (F5C: 29 Jan 2017�2201) 7.2.2.1 DUDENEYCLARKEGOLOMBGolombConwayIf mounted on 
ardboard, [these pie
es℄will form a sour
e of perpetual amusement in the home.| HENRY E. DUDENEY, The Canterbury Puzzles (1907)Very gently, he repla
ed the titanite 
rossin its setting between the F, N, U, and V pentominoes.| ARTHUR C. CLARKE, Imperial Earth (1976)Whi
h English nouns ending in -o pluralize with -s and whi
h with -es?If the word is still felt as somewhat alien, it takes -s,while if it has been fully naturalized into English, it takes -es.Thus, e
hoes, potatoes, tomatoes, dingoes, embargoes, et
.,whereas Italian musi
al terms are altos, bassos, 
antos, pianos, solos, et
.,and there are Spanish words like tangos, armadillos, et
.I on
e held a trademark on `Pentomino(-es)', but I now preferto let these words be my 
ontribution to the language as publi
 domain.| SOLOMON W. GOLOMB, letter to Donald Knuth (16 February 1994)Everybody agrees that seven of the pentominoes should be named afterseven 
onse
utive letters of the alphabet:
T U V W X Y ZBut two di�erent systems of nomen
lature have been proposed for the other �ve:

F I L P N or O P Q R S(S. W. Golomb) (J. H. Conway)where Golomb likes to think of the word `Filipino' while Conway prefers to mapthe twelve pentominoes onto the twelve 
onse
utive letters. Conway's s
hemetends to work better in 
omputer programs.
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7.2.2.1 DANCING LINKS 3 HEIN
uboidsparallelepipedsHeinSomaGardnerParker Brotherspentominoes
anoni
alfa
toring
A minimum number of blo
ks of simple form are employed. . . .Experiments and 
al
ulations have shown that from the set of seven blo
ksit is possible to 
onstru
t approximately the same number of geometri
al�gures as 
ould be 
onstru
ted from twenty-seven separate 
ubes.| PIET HEIN, United Kingdom Patent Spe
i�
ation 420,349 (1934)� � �The simplest poly
ubes are 
uboids|also 
alled re
tangular parallelepipedsby people who like long names. But things get even more interesting when we
onsider non
uboidal shapes. Piet Hein noti
ed in 1933 that the seven smallestshapes of that kind, namely1: bent 2: ell 3: tee 4: skew 5: L-twist 6: R-twist 7: 
law , (30)
an be put together to form a 3�3�3 
ube, and he liked the pie
es so mu
h thathe 
alled them Soma. Noti
e that the �rst four pie
es are essentially planar, whilethe other three are inherently three-dimensional. Moreover, the two twists aremirror images: We 
an't 
hange one into the other without entering the fourthdimension. Martin Gardner wrote about the joys of Soma in S
ienti�
 Ameri
an199, 3 (September 1958), 182{188, and it soon be
ame wildly popular: Morethan two million SOMA R
 
ubes were sold in Ameri
a alone, after Parker Brothersbegan to market a well-made set with an instru
tion booklet written by Hein.The task of pa
king these seven pie
es into a 
ube is easy to formulate as anexa
t 
over problem, just as we did when pa
king pentominoes. This time wehave 24 3D-rotations of the pie
es to 
onsider, instead of 8 2D-rotations and/or3D-re
e
tions; so exer
ise 200 is used instead of exer
ise 140 to generate the rowsof the problem. It turns out that there are 688 rows, involving 34 
olumns thatwe 
an 
all 1, 2, : : : , 7, 111, 112, : : : , 333. For example, the �rst row1 111 121 211
hara
terizes one of the potential ways to pla
e the \bent" pie
e 1.Algorithm D needs just 407 megamems to �nd all 11,520 solutions to thisproblem. Furthermore, we 
an save most of that time by taking advantage ofsymmetry: Every solution 
an be rotated into a unique \
anoni
al" solutionin whi
h the \ell" pie
e 2 has not been rotated; hen
e we 
an restri
t thatpie
e to only six pla
ements, namely (111; 121; 131; 211), (112; 122; 132; 212), : : : ,(213; 223; 233; 313)|all shifts of ea
h other. This removes 138 rows, and thealgorithm now �nds the 480 
anoni
al solutions in just 20 megamems. (These
anoni
al solutions form 240 mirror-image pairs.)Fa
toring an exa
t 
over problem. In fa
t, we 
an simplify the Soma 
ubeproblem mu
h further, so that all of its solutions 
an a
tually be found by handin a reasonable time, by fa
toring the problem in a 
lever way. : : :
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4 COMBINATORIAL SEARCHING (F5C: 29 Jan 2017�2201) 7.2.2.1 
olor-
ontrolled{word sear
h
olor 
odesColor-
ontrolled 
overing. Take a break! Before reading any further, pleasespend a minute or two solving the \word sear
h" puzzle in Fig. 71; 
omparativelymindless puzzles like this one provide a low-stress way to sharpen your word-re
ognition skills. It 
an be solved easily| for instan
e, by making eight passesover the array|and the solution appears in Fig. 72.Fig. 71. Find the mathemati
ians*:Put ovals around the following nameswhere they appear in the 15 � 15 ar-ray shown here, reading either for-ward or ba
kward or upward or down-ward, or diagonally in any dire
tion.After you've �nished, the leftover let-ters will form a hidden message. (Thesolution appears on the next page.)ABEL HENSEL MELLINBERTRAND HERMITE MINKOWSKIBOREL HILBERT NETTOCANTOR HURWITZ PERRONCATALAN JENSEN RUNGEFROBENIUS KIRCHHOFF STERNGLAISHER KNOPP STIELTJESGRAM LANDAU SYLVESTERHADAMARD MARKOFF WEIERSTRASS

O T H E S C A T A L A N D A UT S E A P U S T H O R S R O FT L S E E A Y R R L Y H A P AE P E A R E L R G O U E M S IN N A R R C V L T R T A A M AI T H U O T E K W I A N D E ML A N T N B S I M I C M A A WL G D N A R T R E B L I H C EE R E C I Z E C E P T N E D YM E A R S H R H L I P K A T HE J E N S E N H R I E O N E TH S U I N E B O R F E W N A RT M A R K O F F O F C S O K MP L U T E R P F R O E K G R AG M M I N S E J T L E I T S GOur goal in this se
tion is not to dis
uss how to solve su
h puzzles; instead, weshall 
onsider how to 
reate them. It's by no means easy to pa
k those 27 namesinto the box in su
h a way that their 184 
hara
ters o

upy only 135 
ells, witheight dire
tions well mixed. How 
an that be done with reasonable eÆ
ien
y?For this purpose we shall extend the idea of exa
t 
overing by introdu
ing\
olor 
odes." : : :
* The journal A
ta Mathemati
a 
elebrated its 21st birthday by publishing a spe
ial TableG�en�erale des Tomes 1{35, edited by Mar
el Riesz (Uppsala: 1913), 179 pp. It 
ontained a
omplete list of all papers published so far in that journal, together with portraits and briefbiographies of all the authors. The 27 mathemati
ians mentioned in Fig. 71 are those whowere subsequently mentioned in Volumes 1, 2, or 3 of The Art of Computer Programming|ex
ept for people like MITTAG-LEFFLER or POINCAR�E, whose names 
ontain spe
ial 
hara
ters.



January 29, 2017

7.2.2.1 DANCING LINKS 5Fig. 72. Solution to the puzzle of thehidden mathemati
ians (Fig. 71). No-ti
e that the 
entral letter R a
tuallyparti
ipates in six di�erent names:BERTRANDGLAISHERHERMITEHILBERTKIRCHHOFFWEIERSTRASSThe T to its left parti
ipates in �ve.Here's what the leftover letters say:These authors of early papers inA
taMathemati
a were 
ited years laterin The Art of Computer Program-ming.

O T H E S C A T A L A N D A UT S E A P U S T H O R S R O FT L S E E A Y R R L Y H A P AE P E A R E L R G O U E M S IN N A R R C V L T R T A A M AI T H U O T E K W I A N D E ML A N T N B S I M I C M A A WL G D N A R T R E B L I H C EE R E C I Z E C E P T N E D YM E A R S H R H L I P K A T HE J E N S E N H R I E O N E TH S U I N E B O R F E W N A RT M A R K O F F O F C S O K MP L U T E R P F R O E K G R AG M M I N S E J T L E I T S G
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6 COMBINATORIAL SEARCHING (F5C: 29 Jan 2017�2201) 7.2.2.1 ba
ktra
k treedistan
eHamming distan
ediversityuniformquasi-uniformNP-hardunique solutioninstant insanitygropebinary operationmultipli
ation tables
EXERCISES|First Setx 5. [26 ℄ Let T be any tree. Constru
t an unsolvable exa
t 
over problem for whi
h Tis the ba
ktra
k tree traversed by Algorithm D; a unique 
olumn should have the mini-mum size whenever step D? is en
ountered. Illustrate your 
onstru
tion when T = .6. [25 ℄ Continuing exer
ise 5, let T be a tree in whi
h 
ertain leaves have beendistinguished from the others and designated as \solutions."a) Show that some su
h trees never mat
h the behavior of Algorithm D.b) Chara
terize all su
h trees that do arise, having solutions where indi
ated.10. [M21 ℄ The solution to an exa
t 
over problem with matrix A 
an be regarded asa binary ve
tor x su
h that xA = 11 : : : 1. The distan
e between two solutions x andx0 
an then be de�ned as the Hamming distan
e d(x; x0) = �(x� x0), the number ofpla
es where x and x0 di�er. The diversity of A is the minimum distan
e between twoof its solutions. (If A has at most one solution, its diversity is in�nite.)a) Is it possible to have diversity 1?b) Is it possible to have diversity 2?
) Is it possible to have diversity 3?d) Prove that if A represents a uniform exa
t 
over problem, the distan
e betweensolutions is always even.e) Most of the exa
t 
over problems that arise in appli
ations are at least quasi-uniform, in the sense that they have a nonempty subset C of primary 
olumnssu
h that A j C has the same number of 1s in every row. (For example, everypolyomino or poly
ube pa
king problem is quasi-uniform, be
ause every row of thematrix spe
i�es exa
tly one pie
e name.) Can su
h problems have odd distan
es?19. [M16 ℄ Given an exa
t 
over problem A, 
onstru
t an exa
t 
over problem A0 thathas exa
tly one more solution than A does. [Consequently it is NP-hard to determinewhether an exa
t 
over problem with at least one solution has more than one solution.℄Assume that A 
ontains no all-zero rows.20. [M25 ℄ Given an exa
t 
over problem A, 
onstru
t an exa
t 
over problem A0 su
hthat (i) A0 has at most three 1s in every 
olumn; (ii) A0 and A have exa
tly the samenumber of solutions.21. [M21 ℄ Continuing exer
ise 20, 
onstru
t A0 having exa
tly three 1s per 
olumn.x 24. [30 ℄ Given an m � n exa
t 
over problem A with exa
tly three 1s per 
olumn,
onstru
t a generalized \instant insanity" problem with N = O(n) 
ubes and N 
olorsthat is solvable if and only if A is solvable. (See 7.2.2{(36).)x 26. [M24 ℄ A grope is a set G together with a binary operation Æ, in whi
h the identityx Æ (y Æ x) = y is satis�ed for all x 2 G and y 2 G.a) Prove that the identity (x Æ y) Æ x = y also holds, in every grope.b) Whi
h of the following \multipli
ation tables" de�ne a grope on f0; 1; 2; 3g?0123103223013210 ; 0321321021031032 ; 0132102332102301 ; 0231310213202013 ; 0312213030211203 :(In the �rst example, x Æ y = x� y; in the se
ond, x Æ y = (�x� y) mod 4. Thelast two have x Æ y = x� f(x� y) for 
ertain fun
tions f .)
) For all n, 
onstru
t a grope whose elements are f0; 1; : : : ; n � 1g.d) Consider the exa
t 
over problem that has n2 
olumns (x; y) for 0 � x; y < n andthe following n + (n3 � n)=3 rows:
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7.2.2.1 DANCING LINKS 7 idempotent
ommutativeidentity elementDominosasolitairegamePijanowski solitaire, see Dominosadominoes3D MATCHINGpermutations of the multisetqueen graph
oloredexa
t 
over problembitwise manipulationbreadth-�rst0s and 1s
i) f(x; x)g, for 0 � x < n;ii) f(x; x); (x; y); (y; x)g, for 0 � x < y < n;iii) f(x; y); (y; z); (z; x)g, for 0 � x < y; z < n.Show that its solutions are in one-to-one 
orresponden
e with the multipli
ationtables of gropes on the elements f0; 1; : : : ; n � 1g.e) Element x of a grope is idempotent if x Æ x = x. If k elements are idempotent andn� k are not, prove that k � n2 (modulo 3).27. [21 ℄ Modify the exa
t 
over problem of exer
ise 26(d) in order to �nd the mul-tipli
ation tables of (a) all idempotent gropes|gropes su
h that x Æ x = x for all x;(b) all 
ommutative gropes|gropes su
h that x Æ y = y Æ x for all x and y; (
) allgropes with an identity element|gropes su
h that x Æ 0 = 0 Æ x = x for all x.30. [21 ℄ Dominosa is a solitaire game in whi
h you \shu�e" the 28 pie
es <0>0,<0>1, : : : ,<6>6 of double-six dominoes and pla
e them at random into a 7� 8 frame.Then you write down the number of spots in ea
h 
ell, put the dominoes away, and tryto re
onstru
t their positions based only on that 7� 8 array of numbers. For example,0̂0̂5̂<2>1<4>1²̂v1v4v5<3>5<3>5v¶<1>1<5>6<0>04̂4̂4̂<4>5¶̂<2>2v²v³v00̂5̂v¶<1>3<3>6¶̂v¶v²<0>3²̂<5>1v1<5>0<4>4v0<3>2 yields the array 0BBBBBBB� 0 0 5 2 1 4 1 21 4 5 3 5 3 5 61 1 5 6 0 0 4 44 4 5 6 2 2 2 30 0 5 6 1 3 3 66 6 2 0 3 2 5 11 5 0 4 4 0 3 2

1CCCCCCCA :a) Show that another pla
ement of dominoes also yields the same matrix of numbers.b) What domino pla
ement yields the array0BBBBBBB� 3 3 6 5 1 5 1 56 5 6 1 2 3 2 42 4 3 3 3 6 2 04 1 6 1 4 4 6 03 0 3 0 1 1 4 42 6 2 5 0 5 0 02 5 0 5 4 2 1 6
1CCCCCCCA ?x 31. [20 ℄ Show that Dominosa re
onstru
tion is a spe
ial 
ase of 3D MATCHING.32. [M22 ℄ Generate random instan
es of Dominosa, and estimate the probability ofobtaining a 7�8 matrix with a unique solution. Use two models of randomness: (i) Ea
hmatrix whose elements are permutations of the multiset f8�0; 8�1; : : : ; 8�6g is equallylikely; (ii) ea
h matrix obtained from a random shu�e of the dominoes is equally likely.39. [20 ℄ By setting up an exa
t 
over problem and solving it with Algorithm D, showthat the queen graph Q8 (exer
ise 7.1.4{241) 
annot be 
olored with eight 
olors.40. [21 ℄ In how many ways 
an Q8 be 
olored in a \balan
ed" fashion, using eightqueens of 
olor 0 and seven ea
h of 
olors 1 to 8?x 50. [21 ℄ If we merely want to 
ount the number of solutions to an exa
t 
over problem,without a
tually 
onstru
ting them, a 
ompletely di�erent approa
h based on bitwisemanipulation instead of list pro
essing is sometimes useful.The following na��ve algorithm illustrates the idea: We're given an m � n matrixof 0s and 1s, represented as n-bit ve
tors r1, : : : , rm. The algorithm works with a



January 29, 2017

8 COMBINATORIAL SEARCHING (F5C: 29 Jan 2017�2201) 7.2.2.1 primary 
olumnsbitwise ANDbitwise ORnonprimary 
olumnsn queens problem
olor 
ontrolsNP-
omplete2D mat
hingword sear
h puzzlepresidentsI'm not surehow many ofthese namesshould go inthe index
onne
tedword sear
hsudokupolyomino sudokusudokuweighted exa
t 
over problem

(potentially huge) database of pairs (sj ; 
j), where sj is an n-bit number representinga set of 
olumns, and 
j is a positive integer representing the number of ways to 
overthat set exa
tly. Let p be the n-bit mask that represents the primary 
olumns.N1. [Initialize.℄ Set N  1, s1  0, 
1  1, k 1.N2. [Done?℄ If k > m, terminate; the answer is PNj=1 
j [sj & p= p℄.N3. [Append rk where possible.℄ Set t  rk. For N � j � 1, if sj & t = 0, insert(sj + t; 
j) into the database (see below).N4. [Loop on k.℄ Set k  k + 1 and return to N2.To insert (s; 
) there are two 
ases: If s = si for some (si; 
i) already present, we simplyset 
i  
i + 
. Otherwise we set N  N + 1, sN  s, 
N  
.Show that this algorithm 
an be signi�
antly improved by using the following tri
k:Set uk  rk & �fk, where fk = rk+1 j � � � j rm is the bitwise OR of all future rows. Ifuk 6= 0, we 
an remove any item from the database for whi
h sj does not 
ontain uk&p.We 
an also exploit the nonprimary 
olumns of uk to 
ompress the database further.51. [25 ℄ Implement the improved algorithm of the previous exer
ise, and 
ompare itsrunning time to that of Algorithm D when applied to the n queens problem.52. [M21 ℄ Explain how the method of exer
ise 50 
ould be extended to give represen-tations of all solutions, instead of simply 
ounting them.70. [25 ℄ Prove that the exa
t 
over problem with 
olor 
ontrols is NP-
omplete, evenif every row of the matrix has only two entries.80. [22 ℄ Using the \word sear
h puzzle" 
onventions of Figs. 71 and 72, show that thewords ONE, TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN, ELEVEN, and TWELVE
an all be pa
ked into a 6� 6 square, leaving one 
ell untou
hed.81. [22 ℄ Also pa
k two 
opies of ONE, TWO, THREE, FOUR, FIVE into a 5� 5 square.x 82. [32 ℄ The �rst 44 presidents of the U.S.A. had 38 distin
t surnames: ADAMS, ARTHUR,BUCHANAN, BUSH, CARTER, CLEVELAND, CLINTON, COOLIDGE, EISENHOWER, FILLMORE, FORD,GARFIELD, GRANT, HARDING, HARRISON, HAYES, HOOVER, JACKSON, JEFFERSON, JOHNSON,KENNEDY, LINCOLN, MADISON, MCKINLEY, MONROE, NIXON, OBAMA, PIERCE, POLK, REAGAN,ROOSEVELT, TAFT, TAYLOR, TRUMAN, TYLER, VANBUREN, WASHINGTON, WILSON.a) What's the smallest square into whi
h all of these names 
an be pa
ked, usingword sear
h 
onventions, and requiring all words to be 
onne
ted via overlaps?b) What's the smallest re
tangle, under the same 
onditions?x 83. [25 ℄ Pa
k as many of the following words as possible into a 9 � 9 array, simul-taneously satisfying the rules of both word sear
h and sudoku:ACREART COMPARECOMPUTER CORPORATECROP MACROMETA MOTETPARAMETER ROAMTAME90. [24 ℄ Find the unique solutions to the following examples of polyomino sudoku:D A N C I N G L I N K S C O M P U T E R
A L G O R I T H M

S O L V I N G S U D O K U P U Z Z L E100. [M25 ℄ Consider a weighted exa
t 
over problem in whi
h we must 
hoose 2 of 4rows to 
over 
olumn 1, and 5 of 7 rows to 
over 
olumn 2; the rows don't intera
t.
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7.2.2.1 DANCING LINKS 9a) What's the size of the sear
h tree if we bran
h �rst on 
olumn 1, then on 
olumn 2?Would it better to bran
h �rst on 
olumn 2, then on 
olumn 1?b) Generalize part (a) to the 
ase when 
olumn 1 needs p of p + d rows, while
olumn 2 needs q of q + d rows, where q > p and d > 0.
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10 COMBINATORIAL SEARCHING (F5C: 29 Jan 2017�2201) 7.2.2.1 Conway�ve-letter wordspentominoesnonstraightsymmetrypentominoesClarketetrominoestetrominoesthree-
olorablegraph 
oloring
EXERCISES|Se
ond SetHundreds of fas
inating re
reational problems have been based on polyominoes andtheir 
ousins (the poly
ubes, polyiamonds, polyhexes, polysti
ks, : : : ). The followingexer
ises explore \the 
ream of the 
rop" of su
h 
lassi
 puzzles, as well as a few gemsthat were not dis
overed until re
ently.In most 
ases the idea is to �nd a good way to dis
over all solutions, usually bysetting up an appropriate exa
t 
over problem that 
an be solved without taking anenormous amount of time.x 140. [25 ℄ Sket
h the design of a utility program that will 
reate sets of rows by whi
han exa
t 
over solver will �ll a given shape with a given set of polyominoes.148. [18 ℄ Using Conway's pie
e names, pa
k �ve pentominoes into the shapeso that they spell a 
ommon English word when read from left to right.x 150. [21 ℄ There are 1010 ways to pa
k the twelve pentominoes into a 5� 12 box, not
ounting re
e
tions. What's a good way to �nd them all, using Algorithm D?151. [21 ℄ How many of those 1010 pa
kings de
ompose into 5� k and 5� (12�k)?152. [21 ℄ In how many ways 
an the eleven nonstraight pentominoes be pa
ked intoa 5� 11 box, not 
ounting re
e
tions? (Redu
e symmetry 
leverly.)154. [20 ℄ There are 2339 ways to pa
k the twelve pentominoes into a 6� 10 box, not
ounting re
e
tions. What's a good way to �nd them all, using Algorithm D?155. [23 ℄ Continuing exer
ise 154, explain how to �nd spe
ial kinds of pa
kings:a) Those that de
ompose into 6� k and 6� (10�k).b) Those that have all twelve pentominoes tou
hing the outer boundary.
) Those with all pentominoes tou
hing that boundary ex
ept for V, whi
h doesn't.d) Same as (
), with ea
h of the other eleven pentominoes in pla
e of V.e) Those with the minimum number of pentominoes tou
hing the outer boundary.f) Those that are 
hara
terized by Arthur C. Clarke's des
ription, as quoted in thetext. (That is, the X should tou
h only the F, N, U, and V|no others.)157. [21 ℄ There are �ve di�erent tetrominoes, namelysquare; straight ; skew ; ell ; tee :In how many essentially di�erent ways 
an ea
h of them be pa
ked into an 8�8 squaretogether with the twelve pentominoes?158. [21 ℄ If an 8�8 
he
kerboard is 
ut up into thirteen pie
es, representing the twelvepentominoes together with one of the tetrominoes, some of the pentominoes will havemore bla
k 
ells than white. Is it possible to do this in su
h a way that U, V, W, X,Y, Z have a bla
k majority while the others do not?159. [18 ℄ Design a ni
e, simple tiling pattern that's based on the �ve tetrominoes.160. [25 ℄ How many of the 6� 10 pentomino pa
kings are strongly three-
olorable, inthe sense that ea
h individual pie
e 
ould be 
olored red, white, or blue in su
h a waythat no pentominoes of the same 
olor tou
h ea
h other|not even at 
orner points?
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7.2.2.1 DANCING LINKS 11 
he
kerboardAzte
 diamondsymmetri
M�obius stripfault-freeBenjamin
ube, wrappedKnuth, JillGar
ia, He
torKaplanfen
eholestatami
rossroadsO'Beirneone-sided pentominoes
x 162. [20 ℄ The bla
k 
ells of a square n � n 
he
kerboard form an interesting graph
alled the Azte
 diamond of order n=2. For example, the 
ases n = 11 and 13 are(i) and (ii) ;where (ii) has a \hole" showing the 
ase n = 3. Thus (i) has 61 
ells, and (ii) has 80.a) Find all ways to pa
k (i) with the twelve pentominoes and one monomino.b) Find all ways to pa
k (ii) with the 12 + 5 pentominoes and tetrominoes.Speed up the pro
ess by not produ
ing solutions that are symmetri
 to ea
h other.x 163. [M26 ℄ Arrange the twelve pentominoes into a M�obius strip of width 4. Thepattern should be \fault-free": Every straight line must interse
t some pie
e.164. [40 ℄ (H. D. Benjamin, 1948.) Show that the twelve pentominoes 
an be wrappedaround a 
ube of size p10 �p10 �p10. For example, here are front and ba
k viewsof su
h a 
ube, made from twelve 
olorful fabri
s by the author's wife in 1993:

(Photos byHe
tor Gar
ia)What is the best way to do this, minimizing undesirable distortions at the 
orners?x 165. [22 ℄ (Craig S. Kaplan.) A polyomino 
an sometimes be surrounded by non-overlapping 
opies of itself that form a fen
e: Every 
ell that tou
hes the polyomino|even at a 
orner| is part of the fen
e; 
onversely, every pie
e of the fen
e tou
hes theinner polyomino. Furthermore, the pie
es must not en
lose any uno

upied \holes."Find the (a) smallest and (b) largest fen
es for ea
h of the twelve pentominoes.(Some of these patterns are unique, and quite pretty.)166. [22 ℄ Solve exer
ise 165 for fen
es that satisfy the tatami 
ondition of exer
ise7.1.4{215: No four edges of the tiles should 
ome together at any \
rossroads."168. [21 ℄ (T. H. O'Beirne, 1961.) The one-sided pentominoes are the eighteen distin
t5-
ell pie
es that 
an arise if we aren't allowed to 
ip pie
es over:Noti
e that there now are two versions of F, L, P, N, Y, and Z.In how many ways 
an all eighteen of them be pa
ked into re
tangles?169. [21 ℄ Suppose you want to pa
k the twelve pentominoes into a 6�10 box, withoutturning any pie
es over. Then 26 di�erent problems arise, depending on whi
h sides ofthe one-sided pie
es are present. Whi
h of those 64 problems has (a) the fewest (b) themost solutions?
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12 COMBINATORIAL SEARCHING (F5C: 29 Jan 2017�2201) 7.2.2.1 tetrominoes
he
keredone-sided
he
kerboard disse
tionshexominoesBenjaminKadnerHanssonmagni�
ationtripli
ation
astlesSteadpentominoestetrominoes
olor 
ontrolshexominoesparallelogram polyominoparallominoskew Young tableauYoung tableauxskew Ferrers boardFerrers diagrams

170. [21 ℄ When tetrominoes are both 
he
kered and one-sided (see exer
ises 158 and168), ten possible pie
es arise. In how many ways 
an all ten of them �ll a re
tangle?175. [20 ℄ There are 35 hexominoes, �rst enumerated in 1934by the master puzzlist H. D. Benjamin. At Christmastimethat year, he o�ered ten shillings to the �rst person who
ould pa
k them into a 14�15 re
tangle|although he wasn'tsure whether or not it 
ould be done. The prize was won byF. Kadner, who proved that the hexominoes a
tually 
an't bepa
ked into any re
tangle. Nevertheless, Benjamin 
ontinuedto play with them, eventually dis
overing that they �t ni
elyinto the triangle shown here.Prove Kadner's theorem. Hint: See exer
ise 158.176. [24 ℄ (Frans Hansson, 1947.) The fa
t that 35 = 12 + 32 + 52 suggests that wemight be able to pa
k the hexominoes into three boxes that represent a single hexominoshape at three levels of magni�
ation, su
h as :For whi
h hexominoes 
an this be done?x 177. [30 ℄ Show that the 35 hexominoes 
an be pa
ked into �ve \
astles": :In how many ways 
an this be done?178. [41 ℄ For whi
h values of m 
an the hexominoes be pa
ked into a box like this?m179. [41 ℄ Perhaps the best hexomino pa
king uses a 5� 45 re
tangle with 15 holes;proposed by W. Stead in 1954. In how many ways 
an the 35 hexominoes �ll it?x 181. [22 ℄ In how many ways 
an the twelve pentominoes be pla
ed intoan 8� 10 re
tangle, leaving holes in the shapes of the �ve tetrominoes?(The holes should not tou
h the boundary, nor should they tou
h ea
hother, even at 
orners; one example is shown at the right.) Explain howto en
ode this puzzle as an exa
t 
over problem with 
olor 
ontrols.182. [46 ℄ If possible, solve the analog of exer
ise 181 for the 
ase of 35 hexominoes ina 5� 54 re
tangle, leaving holes in the shapes of the twelve pentominoes.x 198. [HM35 ℄ A parallelogram polyomino, or \parallomino" for short, is a polyominowhose boundary 
onsists of two paths that ea
h travel only north and/or east. (Equiv-alently, it is a \skew Young tableau" or a \skew Ferrers board," the di�eren
e between
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7.2.2.1 DANCING LINKS 13 tableauxpartitionstreespath lengthgenerating fun
tionbase pla
ementsSomapSoma 
ubesemidistan
edegree sequen
es
onne
ted 
omponentsbi
omponentsfa
torizationW-wallSoma pie
esnonominoesHeinS
hwartz
the diagrams of two tableaux or partitions; see Se
tions 5.1.4 and 7.2.1.4.) For example,there are �ve parallominoes whose boundary paths have length 4:NNNEENNN ; NNEEENEN ; NNEEEENN ; NENEEENN ; NEEEEEEN :a) Find a one-to-one 
orresponden
e between the set of ordered trees with m leavesand n nodes and the set of parallominoes with width m and height n �m. Thearea of ea
h parallomino should be the path length of its 
orresponding tree.b) Study the generating fun
tion G(w; x; y) =Pparallominoes wareaxwidthyheight.
) Prove that the parallominoes whose width-plus-height is n have total area 4n�2.d) Part (
) suggests that we might be able to pa
k all of those parallominoes into a2n�2� 2n�2 square, without rotating them or 
ipping them over. Su
h a pa
kingis 
learly impossible when n = 3 or n = 4; but is it possible when n = 5 or n = 6?200. [20 ℄ Extend exer
ise 140 to three dimensions. How many base pla
ements doea
h of the seven Soma pie
es have?x 202. [22 ℄ The Somap is the graph whose verti
es are the 240 distin
t solutions to theSoma 
ube problem, with u���v if and only if u 
an be obtained from v by 
hangingthe positions of at most three pie
es. (Using the terminology of exer
ise 10(d), adja
entverti
es 
orrespond to solutions of semidistan
e � 3.) The strong Somap is similar,but it has u���v only when a 
hange of just two pie
es gets from one to the other.a) What are the degree sequen
es of these graphs?b) How many 
onne
ted 
omponents do they have? How many bi
omponents?x 204. [M25 ℄ Use fa
torization to prove that Fig. 80's W-wall 
annot be built.205. [24 ℄ Figure 80(a) shows some of the many \low-rise" (2-level) shapes that 
an bebuilt from the seven Soma pie
es. Whi
h of them is hardest (has the fewest solutions)?Whi
h is easiest? Answer these questions also for the 3-level prism shapes in Fig. 80(b).x 206. [M23 ℄ Generalizing the �rst four examples of Fig. 80, study the set of all shapesobtainable by deleting three 
ubies from a 3� 5� 2 box. (Twoexamples are shown here.) How many essentially di�erent shapesare possible? Whi
h shape is easiest? Whi
h shape is hardest?207. [22 ℄ Similarly, 
onsider (a) all shapes that 
onsist of a3 � 4 � 3 box with just three 
ubies in the top level; (b) all3-level prisms that �t into a 3� 4� 3 box.208. [25 ℄ How many of the 1285 nonominoes de�ne a prism that 
an be realized bythe Soma pie
es? Do any of those pa
king problems have a unique solution?210. [M40 ℄ Make empiri
al tests of Piet Hein's belief that the number of shapesa
hievable with seven Soma pie
es is approximately the number of 27-
ubie poly
ubes.212. [20 ℄ (B. L. S
hwartz, 1969.) Show that the Soma pie
es 
an make shapes thatappear to have more than 27 
ubies, be
ause of holes hidden inside or at the bottom:

stair
ase penthouse pyramidIn how many ways 
an these three shapes be 
onstru
ted?
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14 COMBINATORIAL SEARCHING (F5C: 29 Jan 2017�2201) 7.2.2.1(a) 2-level patternsbathtub 
ou
h stepping stones 
anal bedtower 1 tower 2 tower 3 tower 4shift 0 shift 1 shift 2ben
h 4� 4 
oop 3� 6 
orral 4� 5 
orral
astle �ve-seat ben
h doorway piggybank lobstergrand piano piano gorilla fa
e smile(b) 3-level prisms based on nonominoes�sh gold�sh dryer 
hair steps stiletunnel underpass doorway 
anal bed 
lipzigzag wall 1 zigzag wall 2 apartments 1 apartments 2 almost W-wall W-wallFig. 80. Gallery of noteworthy poly
ubes that 
ontain 27 
ubies. All of them 
an bebuilt from the seven Soma pie
es, ex
ept for the W-wall. Many 
onstru
tions are alsostable when tipped on edge and/or when turned upside down. (See exer
ises 204{214.)
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7.2.2.1 DANCING LINKS 15 self-supportinggravityfa�
adesmoviesisometri
proje
tionthree dimensionsCube DiaboliqueDiaboli
al CubeWatilliauxtetra
ubesgravityo
tominoes
213. [22 ℄ Show that the seven Soma pie
es 
an also make stru
tures su
h as


asserole 
ot vulture mushroom 
antilever ,whi
h are \self-supporting" via gravity. (You may need to pla
e a small book on top.)x 214. [M32 ℄ Impossible stru
tures 
an be built, if we insist only that they look genuinewhen viewed from the front (like fa�
ades in Hollywood movies)! Find all solutions toW-wall X-wall 
ubethat are visually 
orre
t. (In order to solve this exer
ise, you need to know that the illus-trations here use the non-isometri
 proje
tion (x; y; z) 7! (30x�42y; 14x+10y+45z)ufrom three dimensions to two, where u is a s
ale fa
tor.) All seven pie
es must be used.215. [30 ℄ The earliest known example of a poly
ube puzzle is the \Cube Diabolique,"manufa
tured in late nineteenth 
entury Fran
e by Charles Watilliaux; it 
ontains six
at pie
es of sizes 2, 3, : : : , 7:a) In how many ways do these pie
es make a 3� 3� 3 
ube?b) Are there six poly
ubes, of sizes 2, 3, : : : , 7, that make a 
ube in just one way?217. [22 ℄ Show that there are exa
tly eight di�erent tetra
ubes |poly
ubes of size 4.Whi
h of the following shapes 
an they make, respe
ting gravity? How many solutionsare possible?
twin towers double 
law 
annon up 3 up 4 up 5218. [25 ℄ How many of the 369 o
tominoes de�ne a 4-level prism that 
an be realizedby the tetra
ubes? Do any of those pa
king problems have a unique solution?
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16 COMBINATORIAL SEARCHING (F5C: 29 Jan 2017�2201) 7.2.2.1 penta
ubessolid pentominoes
at penta
ubesmirror imagespentominoes5� 5� 5 
ubeDowler's Box
hiralmirror
220. [30 ℄ There are 29 penta
ubes, 
onveniently identi�ed with one-letter 
odes:a b 
 d e fA B C D E Fj k l m no p q r s tu v w x y zPie
es o through z are 
alled, not surprisingly, the solid pentominoes or 
at penta
ubes.a) What are the mirror images of a, b, 
, d, e, f, A, B, C, D, E, F, j, k, l, : : : , z?b) In how many ways 
an the solid pentominoes be pa
ked into an a� b� 
 
uboid?
) What \natural" set of 25 penta
ubes is able to �ll the 5� 5� 5 
ube?x 221. [25 ℄ The full set of 29 penta
ubes 
an build an enormous vari-ety of elegant stru
tures, in
luding a parti
ularly stunning example
alled \Dowler's Box." This 7� 7� 5 
ontainer, �rst 
onsidered byR. W. M. Dowler in 1979, is 
onstru
ted from �ve 
at slabs. Yetonly 12 of the penta
ubes lie 
at; the other 17 must somehow beworked into the edges and 
orners.Despite these diÆ
ulties, Dowler's Box has so many solutions that we 
an a
tuallyimpose many further 
onditions on its 
onstru
tion:a) Build Dowler's Box in su
h a way that the 
hiral pie
es a, b, 
, d, e, f and theirimages A, B, C, D, E, F all appear in horizontally mirror-symmetri
 positions.horizontally symmetri
 
 and C diagonally symmetri
 
 and Cb) Alternatively, build it so that those pairs are diagonally mirror-symmetri
.
) Alternatively, pla
e pie
e x in the 
enter, and build the remaining stru
ture fromfour 
ongruent pie
es that have seven penta
ubes ea
h.222. [25 ℄ The 29 penta
ubes 
an also be used to make the shapeshown here, exploiting the 
urious fa
t that 34 + 43 = 29 � 5. ButAlgorithm D will take a long, long time before telling us how to
onstru
t it, unless we're lu
ky, be
ause the spa
e of possibilities ishuge. How 
an we �nd a solution qui
kly?999. [M00 ℄ this is a temporary exer
ise (for dummies)
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7.2.2.1 ANSWERS TO EXERCISES 17 PellAUBREYsemidistan
eMatsuiMatsuiNP-
ompleteminimum remaining values heuristi
Dr Pell was wont to say, that in the Resolution of Questiones,the main matter is the well stating them:whi
h requires a good mother-witt & Logi
k: as well as Algebra:for let the Question be but well-stated, and it will worke of it selfe:. . . By this way, an man 
annot intangle his notions, & make a false Steppe.| JOHN AUBREY, An Idea of Edu
ation of Young Gentlemen (
. 1684)SECTION 7.2.2.15. If T has only a root node, let there be one 
olumn, no rows.Otherwise let T have d � 1 subtrees T1, : : : , Td, and assume thatwe've 
onstru
ted problems with rows Rj and 
olumns Cj for ea
h Tj .Let C = C1 [ � � � [Cd [ f1; : : : ; dg. The problem for T is obtained byappending d+1 new 
olumns f0; 1; : : : ; dg and the following new rows:(i) `0 and all 
olumns of CnCj ', for 1 � j � d; (ii) `all 
olumns of Cnj',for 1 � j � d. This 
onstru
tion works ex
ept when d = 1 and T1 isa leaf; in that 
ase we 
an use 
olumns f0; 1; 2; 3g, rows `0 1 2', `1 3',`2 3'. The matrix for the example tree has 17 
olumns and 16 rows.
011111100000000001011111000000000011011110000000000111001100000000001110101000000000011100110000000000000000001111110000000000101111100000000001101111000000000011100110000000000111010100000000001110110000000000011111111111111111000000011111111111111111001111111111111110106. (a) If a solution isn't at the root, its parent must have exa
tly one 
hild. (Alter-natively, if dupli
ate rows are permitted, all siblings of a solution must be solutions.)(b) Use the previous 
onstru
tion; a solution node 
orresponds to 
olumn 0, row `0'.10. (a) No. Otherwise A would have a row that's zero in all primary 
olumns.(b) Yes, but only if A has two rows that are identi
al in all primary 
olumns.(
) Yes, but only if A has two rows whose sum is also a row, when restri
ted toprimary 
olumns.(d) The number of pla
es, j, where x = 1 and x0 = 0 must be the same as thenumber where x = 0 and x0 = 1. For if A has exa
tly k primary 1s in every row,exa
tly jk primary 
olumns are being 
overed in di�erent ways.(e) Again the distan
es must be even, be
ause every solution to A is also a solutionto the uniform problem A j C. (Therefore it makes sense to speak of the semidistan
ed(x; x0)=2 between solutions of quasi-uniform exa
t 
overing problem. The semidistan
ein a polyform pa
king problem is the number of pie
es that are pa
ked di�erently.)19. (Solution by T. Matsui.) Add one new 
olumn at the left of A, all 0s. Then addtwo rows of length n + 1 at the bottom: 10 : : : 0 and 11 : : : 1. This (m+ 2) � (n + 1)matrix A0 has one solution that 
hooses only the last row. All other solutions 
hoosethe se
ond-to-last row, together with rows that solve A.20. (Solution by T. Matsui.) Assume that all 1s in 
olumn 1 appear in the �rst t rows,where t > 3. Add two new 
olumns at the left, and two new rows 1100 : : : 0, 1010 : : : 0of length n + 2 at the bottom. For 1 � k � t, if row k was 1�k, repla
e it by 010�k ifk � t=2, 011�k if k > t=2. Insert 00 at the left of the remaining rows t+ 1 through m.This 
onstru
tion 
an be repeated (with suitable row and 
olumn permutations)until no 
olumn sum ex
eeds 3. If the original 
olumn sums were (
1; : : : ; 
n), thenew A0 has 2T more rows and 2T more 
olumns than A did, where T =Pnj=1(
j .� 3).One 
onsequen
e is that the exa
t 
over problem is NP-
omplete even whenrestri
ted to 
ases where all row and 
olumn sums are at most 3.Noti
e, however, that this 
onstru
tion is not useful in pra
ti
e, be
ause it disguisesthe stru
ture of A: It essentially destroys the minimum remaining values heuristi
,be
ause all 
olumns whose sum is 2 look equally good to the solver!
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18 ANSWERS TO EXERCISES 7.2.2.1 2-regular graphsRobertsonMunroisomorphi
isomorphi
BennettCalte
hauthorgroupsquasigroupsemisymmetri
 quasigroupMendelsohn triples
21. Take a matrix with 
olumn sums (
1; : : : ; 
n), all � 3, and extend it with three
olumns of 0s at the right. Then add the following four rows: (x1; : : : ; xn; 0; 1; 1),(y1; : : : ; yn; 1; 0; 1), (z1; : : : ; zn; 1; 1; 0), and (0; : : : ; 0; 1; 1; 1), where xj = [
j < 3℄, yj =[
j < 2℄, zj = [
j < 1℄. The bottom row must be 
hosen in any solution.24. Consider a set of 
ubes and 
olors 
alled f�; 0; 1; 2; 3; 4; : : : g, where (i) all fa
es of
ube � are 
olored �; (ii) 
olors 1, 2, 3, 4 o

ur only on 
ubes 0, 1, 2, 3, 4; (iii) the op-posite fa
e-pairs of those �ve 
ubes are respe
tively (00; 12; ��), (11; 12; 34), (22; 34; �),(33; 12; �), (44; 34; 
), where �, �, 
 are pairs of 
olors =2 f1; 2; 3; 4g. Any solution tothe 
ube problem has disjoint 2-regular graphs X and Y 
ontaining two fa
es of ea
h
olor. Sin
e X and Y both 
ontain �� from 
ube �, we 
an assume that X 
ontains 00and Y 
ontains 12 from 
ube 0. Hen
e Y 
an't 
ontain 11 or 22; it must 
ontain 12 from
ube 1 or 
ube 3. If X doesn't 
ontain 11 or 22, it must 
ontain 12 from 
ube 1 and
ube 3. Hen
e X 
ontains 11, 22, 33, and 44. We're left with only three possibilitiesfor Y from 
ubes 1, 2, 3, 4, namely (34; �; 12; 34), (12; 34; �; 34), (34; 34; 12; 
).Now let aj1, aj2, aj3 denote the 1s in 
olumn j of A. We 
onstru
t N = 8n + 1
ubes and 
olors 
alled �, ajk, bjl, where 1 � j � n, 1 � k � 3, 0 � l � 4. The oppositefa
e-pairs of � are (��; ��; ��). Those of ajk are (ajkajk; ajkajk; ajkbj00), where j0is the 
olumn of ajk's 
y
li
 su

essor to the right in its row. Those of bj0, bj1, bj2,bj3, bj4 are respe
tively (bj0bj0; bj1bj2; ��), (bj1bj1; bj1bj2; bj3bj4), (bj2bj2; bj3bj4; bj0aj1),(bj3bj3; bj1bj2; bj0aj2), (bj4bj4; bj3bj4; bj0aj3). By the previous paragraph, solutions tothe 
ube problem 
orrespond to 2-regular graphs X and Y su
h that, for ea
h j, Xor Y 
ontains all the pairs bjlbjl and the other \sele
ts" one of the three pairs bj0ajk.The fa
e-pairs of ea
h sele
ted ajk ensure that ajk's 
y
li
 su

essor is also sele
ted.[See E. Robertson and I. Munro, Utilitas Mathemati
a 13 (1978), 99{116.℄26. (a) (x Æ y) Æ x = (x Æ y) Æ (y Æ (x Æ y)) = y.(b) All �ve are legitimate. (The last two are gropes be
ause f(t + f(t)) = t for0 � t < 4 in ea
h 
ase. They are isomorphi
 if we inter
hange any two elements. Thethird is isomorphi
 to the se
ond if we inter
hange 1$ 2. There are 18 grope tables oforder 4, of whi
h (4, 12, 2) are isomorphi
 to the �rst, third, and last tables shown here.)(
) For example, let x Æ y = (�x� y) mod n. (More generally, if G is any groupand if � 2 G satis�es �2 = 1, we 
an let x Æ y = �x��y��. If G is 
ommutative and� 2 G is arbitrary, we 
an let x Æ y = x�y��.)(d) For ea
h row of type (i) in an exa
t 
overing, de�ne x Æ x = x; for ea
h row oftype (ii), de�ne x Æ x = y, x Æ y = y Æ x = x; for ea
h row of type (iii), de�ne x Æ y = z,y Æ z = x, z Æ x = y. Conversely, every grope table yields an exa
t 
overing in this way.(e) Su
h a grope 
overs n2 
olumns with k rows of size 1, all other rows of size 3.[F. E. Bennett proved, in Dis
rete Mathemati
s 24 (1978), 139{146, that su
h gropesexist for all k with 0 � k � n and k � n2 (modulo 3), ex
ept when k = n = 6.℄Notes: The identity xÆ(yÆx) = y seems to have �rst been 
onsidered by E. S
hr�oderin Math. Annalen 10 (1876), 289{317 [see `(C0)' on page 306℄, but he didn't do mu
hwith it. In a 
lass for sophomore mathemati
s majors at Calte
h in 1968, the author de-�ned gropes and asked the students to dis
over and prove as many theorems about themas they 
ould, by analogy with the theory of groups. The idea was to \grope for results."The oÆ
ial modern term for a grope is a real jawbreaker: semisymmetri
 quasigroup.27. (a) Eliminate the n 
olumns for (x; x); use only the 2�n3� rows of type (iii) for whi
hy 6= z. (Idempotent gropes are equivalent to \Mendelsohn triples," whi
h are familiesof n(n� 1)=3 3-
y
les (xyz) that in
lude every ordered pair of distin
t elements. N. S.
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7.2.2.1 ANSWERS TO EXERCISES 19 S
hr�odertotally symmetri
 quasigroupsSteinSteiner triple systemsAdlerJahnquadrillesLu
asDelannoydimer tilingsheavy-tailed distributionempiri
al standard deviation
Mendelsohn proved [Computers in Number Theory (New York: A
ademi
 Press, 1971),323{338℄ that su
h systems exist for all n 6� 2 (modulo 3), ex
ept when n = 6.)(b) Use only the �n+12 � 
olumns (x; y) for 0 � x � y < n; repla
e rows of type (ii)by f(x; x); (x; y)g and f(x; y); (y; y)g for 0 � x < y < n; repla
e those of type (iii) byf(x; y); (x; z); (y; z)g for 0 � x < y < z < n. (Su
h systems, S
hr�oder's `(C1) and (C2)',are 
alled totally symmetri
 quasigroups; see S. K. Stein, Trans. Amer. Math. So
. 85(1957), 228{256, x8. If idempotent, they're equivalent to Steiner triple systems.)(
) Omit 
olumns for whi
h x = 0 or y = 0. Use only the 2�n�13 � rows of type (iii)for 1 � x < y; z < n and y 6= z. (Indeed, su
h systems are equivalent to idempotentgropes on the elements f1; : : : ; n � 1g.)30. In (a), four pie
es 
hange; in (b) the solution is unique:(a) 0̂0̂5̂²̂1̂<4>1²̂v1v4v5v³v5<3>5v¶<1>1<5>6<0>04̂4̂4̂<4>5¶̂<2>2v²v³v00̂5̂v¶<1>3<3>6¶̂v¶v²<0>3²̂5̂1̂v1<5>0<4>4v0v³v² ; (b) <3>3¶̂<5>15̂1̂5̂<6>5v¶1̂²̂v³v²v4<2>4³̂v³v³¶̂<2>04̂1̂v¶<1>4v4<6>0v³v0<3>0<1>1<4>4²̂<6>25̂0̂5̂<0>0v²<5>0v5v4v²<1>6 :Noti
e that the spot patterns2,3, and6 are rotated when a domino is pla
ed ver-ti
ally; these visual 
lues, whi
h would disambiguate (a), don't show up in the matrix.[Dominosa was invented in Germany by O. S. Adler [Rei
hs Patent #71539 (1893);see his booklet written with F. Jahn, Sperr-Domino und Dominosa (1912), 23{64.Similar problems of \quadrilles" had been studied earlier by E. Lu
as and H. Delannoy;see Lu
as's [R�e
r�eations Math�ematiques 2 (Paris: Gauthier-Villars, 1883), 52{63℄.31. De�ne 28 verti
es Dxy for 0 � x � y � 6; 28 verti
es ij for 0 � i < 7, 0 � j < 8,and i + j even; and 28 similar verti
es ij with i + j odd. The mat
hing problem has49 triples of the form fDxy; ij; i(j+1)g for 0 � i; j < 7, as well as 48 of the formfDxy; ij; (i+1)jg for 0 � i < 6 and 0 � j < 8, 
orresponding to potential horizontalor verti
al pla
ements. For example, the triples for exer
ise 30(a) are fD00; 00; 01g,fD05; 01; 02g, : : : , fD23; 66; 67g; fD01; 00; 10g, fD04; 01; 11g, : : : , fD12; 57; 67g.32. Model (i) has M = 56!=8!7 � 4:10 � 1042 equally likely possibilities; model (ii)has N = 1292697 � 28! � 221 � 8:27 � 1041, be
ause there are 1292697 ways to pa
k 28dominoes in a 7 � 8 frame. (Algorithm D will qui
kly list them all.) The expe
tednumber of solutions per trial in model (i) is therefore N=M � 0:201.Ten thousand random trials with model (i) gave 216 
ases with at least onesolution, in
luding 26 where the solution was unique. The total numberPx of solutionswas 2256; and Px2 = 95918 indi
ated a heavy-tailed distribution whose empiri
alstandard deviation is � 3:1. The total running time was about 250 M�.Ten thousand random trials with model (ii), using random 
hoi
es from a pre
om-puted list of 1292687 pa
kings, gave 106 
ases with a unique solution; one 
ase had 2652of them! Here Px = 508506 and Px2 = 144119964 indi
ated an empiri
al mean of� 51 solutions per trial, with standard deviation � 109. Total time was about 650 M�.
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20 ANSWERS TO EXERCISES 7.2.2.1 eight queens problemGossetDudeneyfrontiern queensRivinZabihLampingauthortriply linkedbinary sear
h treeba
ktra
king algorithmasymptoti
allytheory vs pra
ti
epra
ti
e vs theoryn queen beesregular expression3SAT
39. Ea
h of the 92 solutions to the eight queens problem (see Fig. 68) o

upies eight ofthe 64 
ells; so we must �nd eight disjoint solutions. Only 1897 updates of Algorithm Dare needed to show that su
h a mission is impossible. [In fa
t no sevensolutions 
an be disjoint, be
ause ea
h solution tou
hes at least three of thetwenty 
ells 13, 14, 15, 16, 22, 27, 31, 38, 41, 48, 51, 58, 61, 68, 72, 77, 83,84, 85, 86. See Thorold Gosset, Messenger of Mathemati
s 44 (1914), 48.Henry E. Dudeney found the illustrated way to o

upy all but two 
ells, inTit-Bits 32 (11 September 1897), 439; 33 (2 O
tober 1897), 3.℄40. This is an exa
t 
over problem with 92 + 312 + 396 + � � � + 312 = 3284rows (see exer
ise 7.2.2{5). Algorithm D needs about 2 million updates to�nd the solution shown, and about 83 billion to �nd all 11,092 of them.

12345678785634124671823523854167842367515167238467481523512784073486521865043775421860268350713407218652183704805642136120734550. Set fm  0 and fk�1  fk j rk for m � k > 1. The bits of uk represent 
olumnsthat are being 
hanged for the last time.Let uk = u0 + u00, where u0 = uk & p. If uk 6= 0 at the beginning of step N4,we 
ompress the database as follows: For N � j � 1, if sj & u0 6= u0, delete (sj ; 
j);otherwise if sj & u00 6= 0, delete (sj ; 
j) and insert ((sj & �uk) j u0; 
j).To delete (sj ; 
j), set (sj ; 
j) (sN ; 
N ) and N  N � 1.When this improved algorithm terminates in step N2, we always have N � 1.Furthermore, if we let pk = r1 j � � � j rk�1, the size of N never ex
eeds 2�k , where�k = �hpkrkfki is the size of the \frontier" (see exer
ise 7.1.4{55).[In the spe
ial 
ase of n queens, represented as the exa
t 
over problem in (??), thisalgorithm is due to I. Rivin, R. Zabih, and J. Lamping, Inf. Pro
. Letters 41 (1992),253{256. They proved that the frontier for n queens never has more than 3n 
olumns.℄51. The author has had reasonably good results using a triply linked binary sear
htree for the database, with randomized sear
h keys. (Beware: The swapping algorithmused for deletion was diÆ
ult to get right.) This implementation was, however, limitedto exa
t 
over problems whose matrix has at most 64 
olumns; hen
e it 
ould do nqueens via (??) only when n < 12. When n = 11 its database rea
hed a maximum sizeof 75,009, and its running time was about 25 megamems. But Algorithm D was a lotbetter: It needed only about 780K updates to �nd all Q(11) = 2680 solutions.In theory, this method will need only about 23n steps as n ! 1, times a smallpolynomial fun
tion of n. A ba
ktra
king algorithm su
h as Algorithm D, whi
h enu-merates ea
h solution expli
itly, will probably run asymptoti
ally slower (see exer
ise7.2.2{14). But in pra
ti
e, a breadth-�rst approa
h needs too mu
h spa
e.On the other hand, this method did beat Algorithm D on the n queen bees problemof exer
ise 7.2.2{15: When n = 11 its database grew to 364,864 items; it 
omputedH(11) = 596;483 in just 30M�, while Algorithm D needed 27 mega-updates.52. The set of solutions for sj 
an be represented as a regular expression �j instead ofby its size, 
j . Instead of inserting (sj + t; 
j) in step N3, insert �jk. If inserting (s; �),when (si; �i) is already present with si = s, 
hange �i  �i [�. [Alternatively, if onlyone solution is desired, we 
ould atta
h a single solution to ea
h sj in the database.℄70. Given a 3SAT problem with 
luases (li1 _ li2 _ li3) for 1 � i � m, with ea
hlij 2 fx1; �x1; : : : ; xn; �xng, 
ontru
t an exa
t 
over problem with 3m primary 
olumnsij (1 � i � m, 1 � j � 3) and n se
ondary 
olumns xk (1 � k � n), having thefollowing rows: (i) `li1 li2', `li2 li3', `li3 li1'; (ii) `lij xk:1' if lij = xk, `lij xk:0' if lij = �xk.That problem has a solution if and only if the given 
lauses are satis�able.
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7.2.2.1 ANSWERS TO EXERCISES 21 dis
onne
tedGibatauthorintera
tive methodGordonE
klerbran
h, 
hoi
e of
hoi
e of 
olumn to 
overbest 
olumnHuangSnyder
80. There are just �ve solutions; the latter two are 
awed by being dis
onne
ted:N E V E S TT E N . I WH R V I X EG H U E N LI T W O L VE E V I F E N E V E S TT E N . I WH R V I X EG H U E N LI T W O L VE V I F F E N E V E S OE V E N I NV L V R X EE E I G H TL W F . W TE T F O U R N E I G H TN E V E S WF I V E . ES O N E T LI W U E L VX T H R E E N E I G H TN E V E S WF I V E . EX O N E T LI W U E L VS T H R E EHistori
al note: Word sear
h puzzles were invented by Norman E. Gibat in 1968.81. When Algorithm C is generalized to allow non-unit 
olumn sums as inAlgorithm ?, it needs just 24 megamems to prove that there are exa
tly eightsolutions; hen
e the solution shown here is essentially unique. T H R E EH W U N VR U O F IE N F W FE V I F T82. (a, b) The author's best solutions, thought to be minimal (but there is no proof),are below. In both 
ases, and in Fig. 71, an intera
tive method was used: After thelongest words were pla
ed strategi
ally by hand, Algorithm C pa
ked the others ni
ely.. N Y E L N I K C M . . T N V. O . C O O L I D G E . A L A. T . S . R E T R A C R Y O N. N L . J D N A L E V E L C B. I A T F A T O . . V W O N UW L . G R I C A M . . O R I RA C J G A U L K D . B H O L ES . E N . E M L S A . N . H NH . F I H C R A M O M E . O OI R F D A R . A N O N S X F SN U E R Y E D H A R R I S O NG H R A E I Y D E N N E K R HT T S H S P G A R F I E L D OO R O O S E V E L T . . O Y JN A N A H C U B U S H . P . TP I E R C E I S E N H O W E R U H T R A H A R D I N G A R F I E L D N A L E V E L C TO B A M A D I S O N O S L I W A S H I N G T O N O S I R R A H O O V E R E A G A N A FL I N C O L N O S K C A J E F F E R S O N E R U B N A V A D A M S E Y A H S U B F O .K E N N E D Y E L N I K C M O N R O E J O H N S O N O X I N A N A H C U B R E T R A CF I L L M O R E L Y T A Y L O R O O S E V E L T R U M A N O T N I L C O O L I D G E .[Solution (b) applies an idea by whi
h Leonard Gordon was able to pa
k the names ofpresidents 1{42 with one less 
olumn. See A. Ross E
kler, Word Ways 27 (1994), 147.℄83. To pa
k w given words, use primary 
olumns fPij;Ri
;Ci
;Bi
;#k j 1 � i; j � 9;1 � k � w; 
 2 fA; C; E; M; O; P; R; T; Ugg and se
ondary 
olumns fij j 1 � i; j � 9g.There are 729 rows `Pij Ri
 Cj
 Bb
 ij:
', where b = 3b(i � 1)=3
 + dj=3e, togetherwith a row `#k i1j1:
1 : : : iljl:
l' for ea
h pla
ement of an l-letter word 
1 : : : 
l into
ells (i1; j1), : : : , (il; jl). Furthermore, it's important to modify step ?? of the algorithmso that the \best 
olumn" always has the form #k, unless it has length � 1.A brief run then establishes that COMPUTER and CORPORATE 
annotboth be pa
ked. But all of the words ex
ept CORPORATE do �t together;the (unique) solution shown is found after only 7.3 megamems, most ofwhi
h are needed simply to input the problem. [This exer
ise was inspiredby a puzzle in Sudoku Masterpie
es (2010) by Huang and Snyder.℄ P M O T E U R C AT A U C R P O M EE C R O A M U T PU R M A P C E O TA O E U M T P R CC P T R O E A U MO E A M C R T P UR U C P T A M E OM T P E U O C A R
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22 ANSWERS TO EXERCISES 7.2.2.1 authorpro�lelog-
on
aveauthorUNIXextended hexade
imal digitshexade
imal notation, extendedbase pla
ementssortedpa
ked integersstraight trominose
ondarybreak symmetryauthor
olor 
ontrolsMer
erGardner
90. (The author designed these puzzles with the aid of exer
ises ??{??.)D A N C I N GD G C I A . NN A I G . D CG D N A C I .I . A C N G D. N G D I C AA C D . G N IC I . N D A G L I N K SL K S N IN I K S LI S N L KS L I K NK N L I S C O M P U T E R

C P T M R E O UU O P R E C T ME C M U O R P TR T U P M O C EO R E T U P M CM U C E P T R OT M R O C U E PP E O C T M U R
A L G O R I T H M
A I L T G H O M RI L T G H O M R AL T G H O M R A IT G H O M R A I LG H O M R A I L TH O M R A I L T GO M R A I L T G HM R A I L T G H OR A I L T G H O M

S O L V I N GS V O G L I NN O I S V G LI N L O G S VL I G V N O SV G S N I L OG S V L O N IO L N I S V S S U D O K US K O . D UD U S K . OO . D U S KU D K O . S. S U D K OK O . S D U P U Z Z L EP L E . Z UZ U P L E .E . Z U P LU E L Z . P. P U E L ZL Z . P U E100. (a) To 
over 2 of 4, we have 3 
hoi
es at the root, then 3 or 2 or 1 at the nextlevel, hen
e (1, 3, 6) nodes at levels (0, 1, 2). To 
over 5 of 7, there are (1, 3, 6, 10,15, 21) nodes at levels (0, 1, : : : , 5). Thus the pro�le with 
olumn 1 �rst is (1, 3, 6,6 � 3, 6 � 6, 6 � 10, 6 � 15, 6 � 21). The other way is better: (1, 3, 6, 10, 15, 21, 21 � 3, 21 � 6).(b) With 
olumn 1 �rst the pro�le is (a0, a1, : : : , ap, apa1, : : : , apaq), where aj =�j+dd �. We should bran
h on 
olumn 2 �rst be
ause ap+1 < apa1, ap+2 < apa2, : : : , aq <apaq�p, aqa1 < apaq�p+1, : : : , aqap�1 < apaq�1. (These inequalities follow be
ausethe sequen
e haji is strongly log-
on
ave: It satis�es the 
ondition a2j > aj�1aj+1 forall j � 1. See exer
ise MPR{125.)140. Let the given shape be spe
i�ed as a set of integer pairs (x; y). These pairs mightsimply be listed one by one in the input; but it's mu
h more 
onvenient to a

ept amore 
ompa
t spe
i�
ation. For example, the utility program with whi
h the authorprepared the examples of this book was designed to a

ept UNIX-like spe
i�
ations su
has `[14-7℄2 5[0-3℄' for the seven pairs f(1; 2), (4; 2), (5; 2), (6; 2), (7; 2), (5; 0), (5; 1),(5; 3)g. The range 0 � x; y < 62 has proved to be suÆ
ient in almost all instan
es, withsu
h integers en
oded as single \extended hexade
imal digits" 0, 1, : : : , 9, a, b, : : : , z,A, B, : : : , Z. The spe
i�
ation `[1-3℄[1-k℄' is one way to de�ne a 3� 20 re
tangle.Similarly, ea
h of the given polyominoes is spe
i�ed by stating its pie
e name anda set T of typi
al positions that it might o

upy. Su
h positions (x; y) are spe
i�ed usingthe same 
onventions that were used for the shape; they needn't lie within that shape.The program 
omputes base pla
ements by rotating and/or re
e
ting the elementsof that set T . The �rst base pla
ement is the shifted set T0 = T � (xmin; ymin), whose
oordinates are nonnegative and as small as possible. Then it repeatedly applies anelementary transformation, either (x; y) 7! (y; xmax � x) or (x; y) 7! (y; x), to everyexisting base pla
ement, until no further pla
ements arise. (That pro
ess be
omes easywhen ea
h base pla
ement is represented as a sorted list of pa
ked integers (x�16)+y.)For example, the typi
al positions of the straight tromino might be spe
i�ed as `1[1-3℄';it will have two base pla
ements, f(0; 0); (0; 1); (0; 2)g and f(0; 0); (1; 0); (2; 0)g.After digesting the input spe
i�
ations, the program de�nes the 
olumns of theexa
t problem, whi
h are the pie
e names together with the 
ells xy of the given shape.Finally, it de�nes the rows: For ea
h pie
e p and for ea
h base pla
ement T 0 of p,and for ea
h o�set (Æx; Æy) su
h that T 0 + (Æx; Æy) lies fully within the given shape,there's a row that names the 
olumns fpg [ f(x+ Æx; y + Æy) j (x; y) 2 T 0g.(The output of this program is often edited by hand, to take a

ount of spe
ial
ir
umstan
es. For example, some 
olumns may 
hange from primary to se
ondary;some rows may be eliminated in order to break symmetry. The author's implementationalso allows the spe
i�
ation of se
ondary 
olumns with 
olor 
ontrols, along with basepla
ements that in
lude su
h 
ontrols.)148. RUSTY. [Leigh Mer
er posed a similar question to Martin Gardner in 1960.℄150. As in the 3 � 20 example 
onsidered in the text, we 
an set up an exa
t 
overproblem with 12 + 60 
olumns, and with rows for every potential pla
ement of ea
h
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7.2.2.1 ANSWERS TO EXERCISES 23 Conwayse
ondary 
olumnS
ottbreak symmetryFairbairnPestiauBouwkampHaselgrove, ColinHaselgrove, Jenifer
pie
e. This gives respe
tively (52, 292, 232, 240, 232, 120, 146, 120, 120, 30, 232, 120)rows for pie
es (O, P, : : : , Z) in Conway's nomen
lature, thus 1936 rows in all.To redu
e symmetry, we 
an insist that the X o

urs in the upper left 
orner; thenit 
ontributes just 10 rows instead of 30. But some solutions are still 
ounted twi
e,when X is 
entered in the middle row. To prevent this we 
an add a se
ondary 
olumn`s', and append `s' to the �ve rows that 
orrespond to those 
entered appearan
es; wealso append `s' to the 60 rows that 
orrespond to pla
ements where the Z is 
ipped over.Without those 
hanges, Algorithm D would use 9.76 G� to �nd 4040 solutions;with them, it needs just 2.86 G� to �nd 1010.This approa
h to symmetry breaking in pentomino problems is due to Dana S
ott[Te
hni
al Report No. 1 (Prin
eton University Dept. of Ele
tri
al Engineering, 10 June1958)℄. Another way to break symmetry would be to allow X anywhere, but to restri
tthe W to its 30 unrotated pla
ements. That works almost as well: 2.87 G�.151. There's a unique way to pa
k P, Q, R, U, X into a 5 � 5 square, and to pa
kthe other seven into a 5� 7. (See below.) With independent re
e
tions, together withrotation of the square, we obtain 16 of the 1010. There's also a unique way to pa
kP, R, U into a 5� 3 and the others into a 5� 9 (noti
ed by R. A. Fairbairn in 1967),yielding 8 more. And there's a unique way to pa
k O, Q, T, W, Y, Z into a 5� 6, plustwo ways to pa
k the others, yielding another 16. (These paired 5 � 6 patterns wereapparently �rst noti
ed by J. Pestiau; see answer 169.) Finally, the pa
kings in thenext exer
ise give us 264 de
omposable 5� 12s altogether.[Similarly, C. J. Bouwkamp dis
overed that S, V, T, Y pa
k uniquely into a 4�5,while the other eight 
an be put into an 4� 10 in �ve ways, thus a

ounting for 40 ofthe 368 distin
t 4� 15s. See Journal of Re
reational Mathemati
s 3 (1970), 125.℄
152. Without symmetry redu
tion, 448 solutions are found in 1.21 G�. But we 
anrestri
t X to the upper left 
orner, 
agging its pla
ements with `s' when 
entered in themiddle row or middle 
olumn (but not both). Again the `s' is appended to 
ipped Z's.Finally, when X is pla
ed in dead 
enter, we append another se
ondary 
olumn `
', andappend `
' to the 90 rotated pla
ements of W. This yields 112 solutions, after 0.34 G�.Or we 
ould leave X unhindered but 
urtail W to 1/4 of its pla
ements. That'seasier to do (although not quite as 
lever) and it �nds those 112 in 0.42 G�.In
identally, there aren't a
tually any solutions with X in dead 
enter.154. The exa
t 
over problem analogous to that in exer
ise 150 has 12 + 60 
olumnsand (56, 304, 248, 256, 248, 128, 1152, 128, 128, 32, 248, 128) rows. It �nds 9356solutions after 15.93 G� of 
omputation, without symmetry redu
tion. But if we insistthat X be 
entered in the upper left quarter, by removing all but 8 of its pla
ements,we get 2339 solutions after just 3.93 G�. (The alternative of restri
ting W's rotationsis not as e�e
tive in this 
ase: 5.43 G�.) These solutions were �rst enumerated byC. B. and Jenifer Haselgrove [Eureka: The Ar
himedeans' Journal 23 (1960), 16{18℄.155. (a) Obviously only k = 5 is feasible. All su
h pa
kings 
an be obtained byomitting all rows of the 
over problem that straddle the \
ut." That leaves 1507 of theoriginal 2032 rows, and yields 16 solutions after 104 M�. (Those 16 boil down to justthe two 5� 6 de
ompositions that we already saw in answer 151.)
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24 ANSWERS TO EXERCISES 7.2.2.1 PottsGardnerse
ondary 
olumnsDudeneyparityone-sided pentominoesReid(b) Now we remove the 763 rows for pla
ements that don't tou
h the boundary,and obtain just the two solutions below, after 100 M�. (This result was �rst noti
edby Tony Potts, who posted it to Martin Gardner on 9 February 1960.)(
) Now there are 1237 pla
ements/rows; the unique solution is found after 83 M�.(d) There are respe
tively (0, 9, 3, 47, 16, 8, 3, 1, 30, 22, 5, 11) solutions forpentominoes (O, P, Q, : : : , Z). (The I/O pentomino 
an be \framed" by the others in11 ways; but all of those pa
kings also have at least one other interior pentomino.)(e) Despite many ways to 
over all boundary 
ells with just seven pentominoes,none of them lead to an overall solution. Thus the minimum is eight; 207 of the 2339solutions attain it. To �nd them we might as well generate and examine all 2339.(f) The question is ambiguous: If we're willing to allow the X to tou
h unnamedpie
es at a 
orner, but not at an edge, there are 25 solutions (8 of whi
h happen tobe answers to part (a)). In ea
h of these solutions, X also tou
hes the outer boundary.(The 
over and frontispie
e of Clarke's book show a pa
king in whi
h X doesn't tou
hthe boundary, but it doesn't solve this problem: There's an edge where X meets I, andthere's a point where X meets P.) There also are two pa
kings in whi
h the edges of Xtou
h only F, N, U, and the boundary, but not V.On the other hand, there are just 6 solutions if we allow only F, N, U, V to tou
hX's 
orner points. One of them, shown below, has X tou
hing the short side and seemsto mat
h the quotation best. These 6 solutions 
an be found in just 47 M�, by introdu
-ing 60 se
ondary 
olumns as sort of an \upper level" to the board: All pla
ements of Xo

upy the normal �ve lower-level 
ells, plus up to 16 upper-level 
ells that tou
h them;all pla
ements of F, N, U, V are un
hanged; all pla
ements of the other seven pie
eso

upy both the lower and the upper level. This ni
ely forbids them from tou
hing X.
157. Restri
t X to �ve essentially di�erent positions; if X is on the diagonal, also keepZ un
ipped by using the se
ond 
olumn `s' as in answer 152. There are respe
tively(16146, 24600, 23619, 60608, 25943) solutions, found in (19.8, 35.4, 27.3, 66.6, 34.5) G�.
In ea
h 
ase the tetromino 
an be pla
ed anywhere that doesn't immediately 
ut o�a region of one or two squares. [The twelve pentominoes �rst appeared in print whenH. E. Dudeney published The Canterbury Puzzles in 1907. His puzzle #74, \TheBroken Chessboard," presented the �rst solution shown above, with pie
es 
he
keredin bla
k and white. That parity restri
tion, with the further 
ondition that no pie
e isturned over, would redu
e the number of solutions to only 4, �ndable in 120 M�.℄The 60-element subsets of the 
hessboard that 
an't be pa
ked with the pentomi-noes has been 
hara
terized by M. Reid in J. Re
reational Math. 26 (1994), 153{154.
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7.2.2.1 ANSWERS TO EXERCISES 25 symmetrytorustorus, generalizedSi
hermanwallpapertatamiSATse
ondary 
olumnGardnerHawkinsLindonFuhlendorfsymmetries
158. Yes, in seven essentially di�erent ways. To remove symmetry, we 
an makethe I verti
al and put the X in the right half. (The pentominoes will have a totalof 6� 2 + 5� 3 + 4 = 31 bla
k squares; therefore the tetromino must be .)159. These shapes 
an't be pa
ked in a re
tangle. But we 
an use the \supertile"to make an in�nite strip � � � � � � . We 
an also tile the plane with asupertile like , or even use a generalized torus su
h as (see exer
ise 7{137).That supertile was used in 2009 by George Si
herman to make tetromino wallpaper.160. The 2339 solutions 
ontain 563 that satisfy the \tatami" 
ondition: No four pie
esmeet at any one point. Ea
h of those 563 leads to a simple 12-vertex graph 
oloringproblem; for example, the SAT methods of Se
tion 7.2.2.2 typi
ally need at most twoor three kilomems to de
ide ea
h 
ase.It turns out that exa
tly 94 are three-
olorable, in
luding the se
ond solution toexer
ise 155(b). Here are the three for whi
h W, X, Y, Z all have the same 
olor:
162. Both shapes have 8-fold symmetry, so we 
an save a fa
tor of nearly 8 by pla
ingthe X in (say) the north-northwest o
tant. If X thereby falls on the diagonal, or inthe middle 
olumn, we 
an insist that the Z is not 
ipped, by introdu
ing a se
ondary
olumn `s' as in answer 152. Furthermore, if X o

urs in dead 
enter| this is possibleonly for shape (i)|we use `
' as in that answer to prohibit also any rotation of the W.Thus �nd (a) 10 pa
kings, in 3.5 G�; (b) 7302 pa
kings, in 353 G�; for instan
e; ; :It turns out that the monomino must appear in or next to a 
orner, as shown. [The�rst solution to shape (i) with monomino in the 
orner was sent to Martin Gardnerby H. Hawkins in 1958. The �rst solution of the other type was published by J. A.Lindon in Re
reational Mathemati
s Magazine #6 (De
ember 1961), 22. Shape (ii)was introdu
ed and solved mu
h earlier, by G. Fuhlendorf in The Problemist: FairyChess Supplement 2, 17 and 18 (April and June, 1936), problem 2410.℄163. (Noti
e that width 3 would be impossible, be
ause every fault-free pla
ement ofthe V needs width 4 or more.) We 
an set up an exa
t 
over problem for a 4 � 19re
tangle in the usual way; but then we make 
ell (x; y + 15) identi
al to (3� x; y) for0 � x < 4 and 0 � y < 5, essentially making a half-twist when the pattern begins towrap around. There are 60 symmetries, and 
are is needed to remove them properly.The easiest way is to put X into a �xed position, and allow W to rotate at most 90Æ.
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26 ANSWERS TO EXERCISES 7.2.2.1 three-
olorable
olor 
ontrolsThis exa
t 
over problem has 850 solutions, 502 of whi
h are fault-free. Here'sone of the 29 strongly three-
olorable ones, shown before and after its ends are joined:top: bottom:164. It's also possible to wrap two 
ubes of size p5�p5�p5,as shown by F. Hansson; see Fairy Chess Review 6 (1947{1948), problems 7124 and 7591. A full dis
ussion appears inFGbook, pages 685{689.165. It's easy to set up an exa
t 
over problem in whi
h the 
ells tou
hing the poly-omino are primary 
olumns, while other 
ells are se
ondary, and with rows restri
ted topla
ements that 
ontain at least one primary 
olumn. Postpro
essing 
an then removespurious solutions that 
ontain holes. Typi
al answers for (a) are
representing respe
tively (9, 2153, 37, 2, 17, 28, 18, 10, 9, 2, 4, 1) 
ases. For (b) they're
representing (16, 642, 1, 469, 551, 18, 24, 6, 4, 2, 162, 1). The total number of fen
esis respe
tively (3120, 1015033, 8660380, 284697, 1623023, 486, 150, 2914, 15707, 2,456676, 2074), after weeding out respe
tively (0, 0, 16387236, 398495, 2503512, 665,600, 11456, 0, 0, 449139, 5379) 
ases with holes. (See MAA Fo
us 36, 3 (June/July2016), 26; 36, 4 (August/September 2016), 33.) Of 
ourse we 
an also make fen
es forone shape by using other shapes; for example, there's a beautiful way to fen
e a Z with12 Ws, and a unique way to fen
e one pentomino with only three 
opies of another.166. The small fen
es of answer 165(a) already meet this 
ondition|ex
ept for theX, whi
h has no tatami fen
e. The large fen
es for T and U in 165(b) are also good.But the other nine fen
es 
an no longer be as large:

[The tatami 
ondition 
an be in
orporated into the exa
t 
over problem by using
olor 
ontrols: Introdu
e a se
ondary 
olumn for every potential edge between tiles,with values t and f. Also introdu
e a primary 
olumn p for every 
orner point; p willappear only in four rows `p e:f', one for ea
h edge e that tou
hes p. In every row for the
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7.2.2.1 ANSWERS TO EXERCISES 27 gadgetben
hmarksHaselgroveWassermann�Osterg�ardMeeus180Æ rotation
entral symmetryPatentPestiauGuy
he
keringparityparityexa
t 
over
pla
ement of a pie
e, in
lude the 
olumns `e:f' for every edge internal to that pie
e,and `e:t' for every edge at the boundary of that pie
e. Then every point will be nextto a nonedge. However, for this exer
ise it's best simply to apply the tatami 
onditiondire
tly to ea
h ordinary solution, before postpro
essing for hole-removal.℄168. This exer
ise, with 3 � 30, 5 � 18, 6 � 15, and 9 � 10 re
tangles, yields fourin
reasingly diÆ
ult ben
hmarks for the exa
t 
over problem, having respe
tively (46,686628, 2562928, 10440433) solutions. Symmetry 
an be broken as in exer
ise 152.The 3 � 30 
ase was �rst resolved by J. Haselgrove; the 9 � 10 pa
kings were �rstenumerated by A. Wassermann and P. �Osterg�ard, independently. [See New S
ientist12 (1962), 260{261; J. Meeus, J. Re
reational Math. 6 (1973), 215{220; and FGbookpages 455, 468{469.℄ Algorithm D needs (.006, 5.234, 15.576, 63.386) teramems to �ndthem. (I plan to give statisti
s for improved versions too; please stay tuned.)169. Two solutions are now equivalent only when related by 180Æ rotation. Thus thereare 2 � 2339=64 = 73:09375 solutions per problem, on average. The minimum (42) andmaximum (136) solution 
ounts o

ur for the 
ases(a) ; (b) :[In U.S. Patent 2900190 (1959, �led 1956), J. Pestiau remarked that these 64 problemswould give his pentomino puzzle \unlimited life and utility."℄170. There are no ways to �ll 2� 20; 4� 66 ways to �ll 4� 10;4�84 ways to �ll 5�8. None of the solutions are symmetri
al.[See R. K. Guy, Nabla 7 (1960), 99{101.℄175. Most of the hexominoes will have three bla
k 
ells and three white 
ells, in any\
he
kering" of the board. However, eleven of them (shown as darker gray in theillustration) will have a two-to-four split. Thus the total number of bla
k 
ells willalways be an even number between 94 and 116, in
lusive. But a 210-
ell re
tanglealways 
ontains exa
tly 105 bla
k 
ells. [See The Problemist: Fairy Chess Supplement2, 9{10 (1934{1935), 92, 104{105; Fairy Chess Review 3, 4{5 (1937), problem 2622.℄Benjamin's triangular shape, on the other hand, has 1+3+5+� � �+19 = 102 = 100
ells of one parity and �202 � � 102 = 110 of the other. It 
an be pa
ked with the 35hexominoes in a huge number of ways, probably not feasible to 
ount exa
tly.176. The parity 
onsiderations in answer 175 tell us that this is possible only for the\unbalan
ed" hexominoes, su
h as the one shown. And in fa
t, Algorithm D readily�nds solutions for all eleven of those, too numerous to 
ount. Here's an example:
[See Fairy Chess Review 6 (April 1947) through 7 (June 1949), problems 7252, 7326,7388, 7460, 7592, 7728, 7794, 7865, 7940, 7995, 8080. See also the similar problem 7092.℄177. Ea
h 
astle must 
ontain an odd number of the eleven unbalan
ed hexominoes(see answer 175). Thus we 
an begin by �nding all sets of seven hexominoes that 
anbe pa
ked into a 
astle: This amounts to solving �111 �+ �113 � + �115 �+ �117 � = 968 exa
t
over problems, one for ea
h potential 
hoi
e of unbalan
ed elements. Ea
h of those
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28 ANSWERS TO EXERCISES 7.2.2.1 fa
toringHanssonPovahHanssonSi
hermanproblems is fairly easy; the 24 balan
ed hexominoes provide se
ondary 
olumns, whilethe 
astle 
ells and the 
hosen unbalan
ed elements are primary. In this way we obtain39411 suitable sets of seven hexominoes, with only a moderate amount of 
omputation.That gives us another exa
t 
over problem, having 35 
olumns and 39411 rows.This se
ondary problem turns out to have exa
tly 1201 solutions (found in just 115 G�),ea
h of whi
h leads to at least one of the desired overall pa
kings. Here's one:In this example, two of the hexominoes in the rightmost 
astle 
an be 
ipped verti
ally;and of 
ourse the entire 
ontents of ea
h 
astle 
an independently be 
ipped horizon-tally. Thus we get 64 pa
kings from this parti
ular partition of the hexominoes (ormaybe 64 � 5!, by permuting the 
astles), but only two of them are \really" distin
t.Taking multipli
ities into a

ount, there are 1803 \really" distin
t pa
kings altogether.[Frans Hansson found the �rst way to pa
k the hexominoes into �ve equal shapes,using as the 
ontainer; see Fairy Chess Review 8 (1952{1953), problem 9442. His
ontainer admits 123189 suitable sets of seven, and 9298602 partitions into �ve suitablesets instead of only 1201. Even more pa
kings are possible with the 
ontainer ,whi
h has 202289 suitable sets and 3767481163 partitions!℄In 1965, M. J. Povah pa
ked all of the hexominoes into 
ontainers of shape ,using seven sets of �ve; see The Games and Puzzles Journal 2 (1996), 206.178. By exer
ise 175, mmust be odd, and less than 35. F. Hansson posed this questionin Fairy Chess Review 7 (1950), problem 8556. He gave a solution for m = 19,;and 
laimed without proof that 19 is optimum. The 13 dark gray hexominoes in thisdiagram 
annot be pla
ed in either \arm"; so they must go in the 
enter. (Medium grayindi
ates pie
es that have parity restri
tions in the arms.) Thus we 
annot havem � 25.When m = 23, there are 39 ways to pla
e all of the hard hexominoes, su
h as:However, none of these is 
ompletable with the other 22; hen
e m � 21.When m = 21, the hard hexominoes 
an be pla
ed in 791792 ways, without
reating a region whose size isn't a multiple of 6 and without 
reating more than oneregion that mat
hes a parti
ular hexomino. Those 791792 ways have 69507 essentiallydistin
t \footprints" of o

upied 
ells, and the vast majority of those footprints appearto be impossible to �ll. But in 2016, George Si
herman found the remarkable pa
king;whi
h not only solvesm = 21, it yields solutions for m = 19, 17, 15, 11, 9, 7, 5, and 3 bysimple modi�
ations. Si
herman also found separate solutions for m = 13 and m = 1.
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7.2.2.1 ANSWERS TO EXERCISES 29 strongly three-
olorabledynami
 programmingBenjaminKellerTorbijnMeeusnested parenthesesforest
ontinued fra
tionBessel fun
tions, gen'lized
179. Stead's original solution makes a very pleasant three-
olored design:[See Fairy Chess Review 9 (1954), 2{4; also FGbook, pages 659{662.℄This problem is best solved via the te
hniques of dynami
 programming (Se
-tion 7.7), not with Algorithm D, be
ause numerous subproblems are equivalent.181. Make rows for the pentominoes in 
ells xy for 0 � x < 8, 0 � y < 10 as in exer
ise140, and also for the tetrominoes in 
ells xy for 1 � x < 7, 1 � y < 9. In the latterrows in
lude also 
olumns xy0:0 for all 
ells xy in the tetromino, as well as xy0:1 forall other 
ells xy tou
hing the tetromino, where the 
olumns xy0 for 0 � x < 8 and0 � y < 10 are se
ondary. We 
an also assume that the 
enter of the X pentomino liesin the upper left 
orner. There are 168 solutions, found after 1.5 T� of 
omputation.(Another way to keep the tetrominoes from tou
hing would be to introdu
e se
ondary
olumns for the verti
es of the grid. Su
h 
olumns are more diÆ
ult to implement,however, be
ause they behave di�erently under the rotations of answer 140.)[Many problems that involve pla
ing the tetrominoes and pentominoes togetherin a re
tangle were explored by H. D. Benjamin and others in the Fairy Chess Review,beginning already with its prede
essor The Problemist: Fairy Chess Supplement (1936),problem 2171. But this parti
ular question seems to have been raised �rst by Mi
haelKeller in World Game Review 9, (1989), xx.℄182. At present, not a single solution to this puzzle is known, although intuitionsuggests that enormously many of them ought to be possible. P. J. Torbijn and J. Meeus[J. Re
reational Mathemati
s 32 (2003), 78{79℄ have exhibited solutions for re
tanglesof sizes 6� 45, 9� 30, 10 � 27, and 15 � 18.198. (a) Represent the tree as a sequen
e a0a1 : : : a2n+1 of nested parentheses; thena1 : : : a2n will represent the 
orresponding root-deleted forest, as in Algorithm 7.2.1.6P.The left boundary of the 
orresponding parallomino is obtained by mapping ea
h `('into N or E, a

ording as it is immediately followed by `(' or `)'. The right boundary,similarly, maps ea
h `)' into N or E a

ording as it is immediately pre
eded by `)' or`('. For example, the parallomino for forest 7.2.1.6{(2) is shown below with part (d).(b) This series wxy + w2(xy2 + x2y) + w3(xy3 + 2x2y2 + x3y) + � � � 
an bewritten wxyH(w;wx;wy), where H(w; x; y) = 1=(1 � x � y � G(w; x; y)) generatesa sequen
e of \atoms" 
orresponding to pla
es x, y, G where the juxtaposed boundarypaths have the respe
tive forms EE, NN, or NEhinneriEN. The area is thereby 
omputed bydiagonals between 
orresponding boundary points. (In the example from (a), the area is1+1+1+1+2+2+2+2+2+2+2+2+2+1+1; there's an \outer" G, whoseH is xyxyGy,and an \inner"G, whoseH is xyyxyxxyy.) Thus we 
an write G as a 
ontinued fra
tion,G(w; x; y) = wxy/(1�x�y�wxy=(1�wx�wy�w3xy=(1�w2x�w2y�w5xy=( � � � )))):[A 
ompletely di�erent form is also possible, namely G(w; x; y) = xJ1(w;x;y)J0(w;x;y) , whereJ0(w; x; y) = 1Xn=0 (�1)nynwn(n+1)=2(1�w)(1�w2) : : : (1� wn)(1� xw)(1� xw2) : : : (1� xwn) ;J1(w; x; y) = 1Xn=1 (�1)n�1ynwn(n+1)=2(1�w)(1�w2) : : : (1� wn�1)(1� xw)(1� xw2) : : : (1� xwn) :This form, derived via horizontal sli
es, disguises the symmetry between x and y.℄
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30 ANSWERS TO EXERCISES 7.2.2.1 Catalan numberstatamistrongly three-
olorablese
ondary 
olumnsgeek artKlarnerRivestBenderGouldenJa
ksonDelestViennotWoanShapiroRogersFlajoletSedgewi
kpendant vertex: of degree 1diameter
(
) Let G(w; z) = G(w; z; z). We want [zn℄G0(1; z), where di�erentiation is withrespe
t to the �rst parameter. From the formulas in (b) we know that G(1; z) =z(C(z)� 1), where C(z) = (1�p1�4z)=(2z) generates the Catalan numbers. Partialderivatives �=�w and �=�z then give G0(1; z) = z2=(1�4z) andG0(1; z) = 1=p1�4z�1.(d) This problem has four symmetries, be
ause we 
an re
e
t about either diag-onal. When n = 5, Algorithm D �nds 4 � 801 solutions, of whi
h 4 � 129 satisfy thetatami 
ondition, and 4�16 are strongly three-
olorable. (The tatami 
ondition is easilyenfor
ed via se
ondary 
olumns in this 
ase, be
ause we need only stipulate that theupper right 
orner of one parallomino doesn't mat
h the lower left 
orner of another.)When n = 6 there are oodles and oodles of solutions. All of the trees/parallominoesthereby appear together in an attra
tive 
ompa
t pattern.

2112 5344 85 a63f 78 976a 78 b93f 6a 6a db f
3f 3f 
e ed3f 
e3f
[Referen
es: D. A. Klarner and R. L. Rivest, Dis
rete Math. 8 (1974), 31{40;E. A. Bender, Dis
rete Math. 8 (1974), 219{226; I. P. Goulden and D. M. Ja
kson,Combinatorial Enumeration (New York: Wiley, 1983), exer
ise 5.5.2; M.-P. Delest andG. Viennot Theoreti
al Comp. S
i. 34 (1984), 169{206; W.-J. Woan, L. Shapiro, andD. G. Rogers, AMM 104 (1997), 926{931; P. Flajolet and R. Sedgewi
k, Analyti
Combinatori
s (Cambridge Univ. Press, 2009), 660{662.℄200. The same ideas apply, but with three 
oordinates instead of two, and with theelementary transformations (x; y; z) 7! (y; xmax � x; z), (x; y; z) 7! (y; z; x).Pie
es (1, 2, : : : , 7) have respe
tively (12, 24, 12, 12, 12, 12, 8) base pla
ements,leading to 144 + 144 + 72 + 72 + 96 + 96 + 64 rows for the 3� 3� 3 problem.202. It's tempting, but wrong, to try to 
ompute the Somap by 
onsidering only the240 solutions that have the tee in a �xed position and the 
law restri
ted; the pairwisesemidistan
es between these spe
ial solutions will miss many of the a
tual adja
en
ies.To de
ide if u���v, one must 
ompare u to the 48 solutions equivalent to v.(a) The strong Somap has vertex degrees 7167519431359263145015; so an \average"solution has (1 � 7+7 � 6+ � � �+15 � 0)=240 � 2:57 strong neighbors. (The unique vertexof degree 7 has the level-by-level stru
ture 355335342 166175442 176776422 from bottom to top.)The full Somap has vertex degrees 21218116915131410131612171112101692882672562651641733211101, giving an average degree � 9:14. (Its unique isolated vertexis 344336322 447566562 177117552, and its only pendant vertex is 342332352 744566552 774716116. Two other noteworthy solutions,344336366 447156222 177157552 and 344336366 447156255 177157222, are the only ones that 
ontain the two-pie
e substru
ture .)(b) The Somap has just two 
omponents, namely the isolated vertex and the239 others. The latter has just three bi
omponents, namely the pendant vertex, itsneighbor, and the 237 others. Its diameter is 8 (or 21, if we use the edge lengths 2 and 3).The strong Somap has a mu
h sparser and more intri
ate stru
ture. Besidesthe 15 isolated verti
es, there are 25 
omponents of sizes f8 � 2; 6 � 3; 4; 3 � 5; 2 � 6;7; 8; 11; 16; 118g. Using the algorithm of Se
tion 7.4.1, the large 
omponent breaks downinto nine bi
omponents (one of size 2, seven of size 1, the other of size 109); the 16-vertex 
omponent breaks into seven; and so on, totalling 58 bi
omponents altogether.
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7.2.2.1 ANSWERS TO EXERCISES 31 GuyConwayGuyBerlekampConwayGuyGardnersymmetriesHeinParker BrothersCarlsonHallHillKenworthyMorganMurraySmileyFarhisymmetries
[The Somap was �rst 
onstru
ted by R. K. Guy, J. H. Conway, and M. J. T.Guy, without 
omputer help. It appears on pages 910{913 of Berlekamp, Conway, andGuy's Winning Ways, where all of the strong links are shown, and where enough otherlinks are given to establish near-
onne
tedness. Ea
h vertex in that illustration hasbeen given a 
ode name; for example, the �ve spe
ial solutions mentioned in part (a)have 
ode names B5f, R7d, LR7g, YR3a, and R3
, respe
tively.℄204. Let the 
ubie 
oordinates be 51z, 41z, 31z, 32z, 33z, 23z, 13z, 14z, 15z, for z 2f1; 2; 3g. Repla
e matrix A of the exa
t 
over problem by a simpli�ed matrix A0 havingonly 
olumns (1; 2; 3; 4; 5; 6; 7; S), where S is the sum of all 
olumns xyz of A where xyz isodd. Any solution to A yields a solution to A0 with 
olumn sums (1; 1; 1; 1; 1; 1; 1; 10).But that's impossible, be
ause the rows of A0 all have the forms `1 [S℄', `2 [S℄ [S℄',`3 [S℄ [S℄', `4 [S℄', `5 [S℄', `6 [S℄', `7 [S℄'. [See the Martin Gardner referen
e in answer 213.℄205. (a) The solution 
ounts, ignoring symmetry redu
tion, are: 4 � 5 
orral (2),gorilla (2), smile (2), 3 � 6 
orral (4), fa
e (4), lobster (4), 
astle (6), ben
h (16),bed (24), doorway (28), piggybank (80), �ve-seat ben
h (104), piano (128), shift 2(132), 4� 4 
oop (266), shift 1 (284), bathtub (316), shift 0 (408), grand piano (526),tower 4 (552), tower 3 (924), 
anal (1176), tower 2 (1266), 
ou
h (1438), tower 1 (1520),stepping stones (2718). So the 4�5 
orral, gorilla, and smile are tied for hardest, whilestepping stones are the easiest. (The bathtub, 
anal, bed, and doorway ea
h have foursymmetries; the 
ou
h, stepping stones, tower 4, shift 0, ben
h, 4 � 4 
oop, 
astle,�ve-seat ben
h, piggybank, lobster, piano, gorilla, fa
e, and smile ea
h have two. Toget the number of essentially distin
t solutions, divide by the number of symmetries.)(b) Noti
e that the 
anal, bed, and doorway appear also in (a), as does the dryer(whi
h is the same as \stepping stones"). The solution 
ounts are: W-wall (0), almostW-wall (12), bed (24), apartments 2 (28), doorway (28), 
lip (40), tunnel (52), zigzagwall 2 (52), zigzag wall 1 (92), underpass (132), 
hair (260), stile (328), �sh (332),apartments 1 (488), gold�sh (608), 
anal (1176), steps (2346), dryer (2718); hen
e\almost W-wall" is the hardest of the possible shapes. Noti
e that the dryer, 
hair,steps, and zigzag wall 2 ea
h have two symmetries, while the others in Fig. 80(b) allhave four. The 3� 3� 3 
ube, with its 48 symmetries, probably is the easiest possibleshape to make from the Soma pie
es.[Piet Hein himself published the tower 1, shift 2, stile, and zigzag wall 1 in hisoriginal patent; he also in
luded the bathtub, bed, 
anal, 
astle, 
hair, steps, stile,stepping stones, shift 1, �ve-seat ben
h, tunnel, W-wall, and both apartments in hisbooklet for Parker Brothers. Parker Brothers distributed four issues of The SOMA R
Addi
t in 1970 and 1971, giving 
redit for new 
onstru
tions to Noble Carlson (�sh,lobster), Mrs. C. L. Hall (
lip, underpass), Gerald Hill (towers 2{4), Craig Kenworthy(gold�sh), John W. M. Morgan (
ot, fa
e, gorilla, smile), Ri
k Murray (grand piano),and Dan Smiley (doorway, zigzag wall 2). Sivy Farhi published a booklet 
alledSoma
ubes in 1977, 
ontaining the solutions to more than one hundred Soma 
ubeproblems in
luding the ben
h, the 
ou
h, and the piggybank.℄206. By eliminating symmetries, there are (a) 421 distin
t 
ases with 
ubies omitted onboth layers, and (b) 129 with 
ubies omitted on only one layer. All are possible, ex
eptin the one 
ase where the omitted 
ubies dis
onne
t a 
orner 
ell. The easiest of type (a)omits (111; 112; 311) and has 3599 solutions; the hardest omits (211; 222; 231) and has45�2 solutions. The easiest of type (b) omits (111; 151; 311) and has 3050 solutions; thehardest omits (211; 221; 251) and has 45 � 2 solutions. (The two examples illustratedhave 821� 2 and 68� 4 solutions. Early Soma solvers seem to have overlooked them!)
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32 ANSWERS TO EXERCISES 7.2.2.1 se
ondary 
olumnauthorSkj�de SkjernKnutsen, see Skj�de SkjernKustesMorganS
hwartzConwayGardner
207. (a) The 60 distin
t 
ases are all quite easy. The easiest has 3497 solutions and uses(113; 123; 213) on the top level; the hardest has 268 solutions and uses (113; 223; 313).(b) Sixteen of the 60 possibilities are dis
onne
ted. Three of the others are alsoimpossible|namely those that omit (12z; 24z; 32z) or (21z; 22z; 23z) or (21z; 22z; 24z).The easiest has 3554 solutions and omits (11z; 12z; 34z); the hardest of the possibleshas only 8 solutions and omits (11z; 23z; 24z).(The two examples illustrated have 132� 2 and 270� 2 solutions.)208. All but 216 are realizable. Five 
ases have unique (1� 2) solutions:
210. Every poly
ube has a minimum en
losing box for whi
h it tou
hes all six fa
es. Ifthose box dimensions a�b�
 aren't too large, we 
an generate su
h poly
ubes uniformlyat random in a simple way: First 
hoose 27 of the ab
 possible 
ubies; try again if that
hoi
e doesn't tou
h all fa
es; otherwise try again if that 
hoi
e isn't 
onne
ted.For example, when a = b = 
 = 4, about 99.98% of all 
hoi
es will tou
h all fa
es,and about 0.1% of those will be 
onne
ted. This means that about :001�6427� � 8� 1014of the 27-
ubie poly
ubes have a 4� 4� 4 bounding box. Of these, about 5.8% 
an bebuilt with the seven Soma pie
es.But most of the relevant poly
ubes have a larger bounding box; and in su
h
ases the 
han
e of solvability goes down. For example, � 6:2�1018 
ases have boundingbox 4� 5� 5; � 3:3� 1018 
ases have bounding box 3� 5� 7; � 1:5� 1017 
ases havebounding box 2� 7� 7; and only 1% or so of those 
ases are solvable.Se
tion 7.2.3 will dis
uss the enumeration of poly
ubes by their size.212. Ea
h interior position of the penthouse and pyramid that might or might notbe o

upied 
an be treated as a se
ondary 
olumn in the 
orresponding exa
t 
overproblem. We obtain 10 � 2 solutions for the stair
ase; (223; 286) � 8 solutions for thepenthouse with hole at the (bottom;middle); and 32 � 2 solutions for the pyramid, ofwhi
h 2� 2 have all three holes on the diagonal and 3� 2 have no adja
ent holes.213. A full simulation of gravity would be quite 
omplex, be
ause pie
es 
an beprevented from tipping with the help of their neighbors above and/or at their side.If we assume a reasonable 
oeÆ
ient of fri
tion and an auxiliary weight at the top, itsuÆ
es to de�ne stability by saying that a pie
e is stable if and only if at least one ofits 
ubies is immediately above either the 
oor or a stable pie
e.The given shapes 
an be pa
ked in respe
tively 202� 2, 21� 2, 270� 2, 223� 8,and 122 � 2 ways, of whi
h 202 � 2, 8 � 2, 53 � 2, 1 � 8, and 6 � 2 are stable. Goingfrom the bottom level to the top, the layers 4.3... ...7.6 453453766776 5534.1... ... 222211... ... give a de
ently stable 
ot; afragile vulture 
omes from 2.3... ... .7. 233415476776 213215455466; a deli
ate mushroom 
omes from ... .7. ... 554776276 5345.4266 333214211; anda deli
ate 
antilever from .2. .2. .2. .2. .5. .5. ...557... 661377447 361361344. The author's 
herished set of Skj�de SkjernSoma pie
es, made of rosewood and pur
hased in 1967, in
ludes a small square basethat ni
ely stabilizes both mushroom and 
antilever. The vulture needs a book on top.[The 
asserole and 
ot are due respe
tively to W. A. Kustes and J. W. M. Morgan.The mushroom, whi
h is hollow, is the same as B. L. S
hwartz's \penthouse," butturned upside down; John Conway noti
ed that it then has a unique stable solution.See Martin Gardner, Knotted Doughnuts (1986), Chapter 3.℄
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7.2.2.1 ANSWERS TO EXERCISES 33 gravitationally stableFran
illonHo�mannMikusinski's CubeSteinhauspenta
ubesReidSi
hermanHoly GrailShindoNeo Diaboli
al Cube
214. In�nitely many 
ubies lie behind a wall; but it suÆ
es to 
onsider only the hiddenones whose distan
e is at most 27 � v from the v visible ones. For example, if the W-wall has 
oordinates as in answer 204, we have v = 25 and the two invisible 
ubies aref332; 331g. We're allowed to use any of f241; 242; 251; 252; 331; 332; 421; 422; 521; 522gat distan
e 1, and f341; 342; 351; 352; 431; 432; 531; 532; 621; 622g at distan
e 2. (Thestated proje
tion doesn't have left-right symmetry.) The X-wall is similar, but it hasv = 19 and potentially (9, 7, 6, 3, 3, 2, 1) hidden 
ubies at distan
es 1 to 7 (omitting
ases like 450, whi
h is invisible at distan
e 2 but \below ground").Using se
ondary 
olumns for the optional 
ubies, we must examine ea
h solutionto the exa
t 
over problem and reje
t those that are dis
onne
ted or violate the gravity
onstraint of exer
ise 213. Those ground rules yield 282 solutions for the W-wall, 612for the X-wall, and a whopping 1,130,634 for the 
ube itself. (These solutions �llrespe
tively 33, 275, and 13842 di�erent sets of 
ubies.) Here are examples of some ofthe more exoti
 shapes that are possible, as seen from behind and below:There also are ten surprising ways to make the 
ube fa�
ade if we allow hidden \un-derground" 
ubies: The remarkable 
onstru
tion ... ... ... ..5..5 4724..66. .55... 77247.46. .6. ... 322331311... ... raises the entire
ube one level above the 
oor, and is gravitationally stable, by exer
ise 213's 
riteria!Unfortunately, though, it falls apart|even with a heavy book on top.[The false-front idea was pioneered by Jean Paul Fran
illon, whose 
onstru
tionof a fake W-wall was announ
ed in The SOMA R
 Addi
t 2, 1 (spring 1971).℄215. (a) Ea
h of 13 solutions o

urs in 48 equivalent arrangements. To remove thesymmetry, pla
e pie
e 7 horizontally, either (i) at the bottom or (ii) in the middle.In 
ase (ii), add a se
ondary `s' 
olumn as in answer 150, and append `s' also to allpla
ements of pie
e 6 that tou
h the bottom more than the top. Run time: 400 K�.[This puzzle was number 39 in Ho�mann's Puzzles Old and New (1893). Another3 � 3 � 3 poly
ube disse
tion of histori
al importan
e, \Mikusinski's Cube," wasdes
ribed by Hugo Steinhaus in the 2nd edition of his Mathemati
al Snapshots (1950).That one 
onsists of the ell and the two twist pie
es of the Soma 
ube, plus thepenta
ubes B, C, and f of exer
ise 220; it has 24 symmetries and just two solutions.℄(b) Yes: Mi
hael Reid, 
ir
a 1995, found the remarkable setwhi
h also makes 9 � 3 � 1 uniquely(!). George Si
herman 
arried out an exhaustiveanalysis of all relevant 
at polyominoes in 2016, �nding exa
tly 320 sets that are uniquefor 3� 3� 3, of whi
h 19 are unique also for 9� 3� 1. In fa
t, one of those 19,� � � � � ;is the long-sought \Holy Grail" of 3 � 3 � 3 
ube de
ompositions: Its pie
es not onlyhave 
atness and double uniqueness, they are nested (!!). There's also Yoshiya Shindo's;known as the \Neo Diaboli
al Cube" (1995); noti
e that it has 24 symmetries, not 48.
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34 ANSWERS TO EXERCISES 7.2.2.1 MeeusYoshigaharaBesleyPatentFren
hHanssonhexa
ubeshepta
ubesNiemannBailliesymmetry-breakingNixonHanssonBouwkampGuyDorieDorian 
ubepentominoes
217. The straight tetra
ube and the square tetra
ube , together withthe size-4 Soma pie
es in (30), make a 
omplete set.We 
an �x the tee's position in the twin towers, saving a fa
tor of 32; and ea
hof the resulting 40 solutions has just one twist with the tee. Hen
e there are �veinequivalent solutions, and 5� 256 altogether.The double 
law has 63� 6 solutions. But the 
annon, with 1� 4 solutions, 
anbe formed in essentially only one way. (Hint: Both twists are in the barrel.)There are no solutions to `up 3'. But `up 4' and `up 5' ea
h have 218�8 solutions(related by turning them upside down). Gravitationally, four of those 218 are stablefor `up 5'; the stable solution for `up 4' is unique, and unrelated to those four.Referen
es: Jean Meeus, Journal of Re
reational Mathemati
s 6 (1973), 257{265;Nob Yoshigahara, Puzzle World No. 1 (San Jose: Ishi Press International, 1992), 36{38.218. All but 48 are realizable. The unique \hardest" realizable 
ase, , has 2 � 2solutions. The \easiest" 
ase is the 2� 4� 4 
uboid, with 11120 = 695� 16 solutions.220. (a) A, B, C, D, E, F, a, b, 
, d, e, f, j, k, l, : : : , z. (It's a little hard to see whyre
e
tion doesn't 
hange pie
e `l'. In fa
t, S. S. Besley on
e patented the penta
ubesunder the impression that there were 30 di�erent kinds! See U.S. Patent 3065970(1962), where Figs. 22 and 23 illustrate the same pie
e in slight disguise.)Histori
al notes: R. J. Fren
h, in Fairy Chess Review 4 (1940), problem 3930,was �rst to show that there are 23 di�erent penta
ube shapes, if mirror images are
onsidered to be identi
al. The full 
ount of 29 was established somewhat later byF. Hansson and others [Fairy Chess Review 6 (1948), 141{142℄; Hansson also 
ountedthe 35 + 77 = 112 mirror-inequivalent hexa
ubes. Complete 
ounts of hexa
ubes (166)and hepta
ubes (1023) were �rst established soon afterwards by J. Niemann, A. W.Baillie, and R. J. Fren
h [Fairy Chess Review 7 (1948), 8, 16, 48℄.(b) The 
uboids 1�3�20, 1�4�15, 1�5�12, and 1�6�10 have of 
ourse alreadybeen 
onsidered. The 2� 3� 10 and 2� 5� 6 
uboids 
an be handled by restri
ting Xto the bottom upper left, and sometimes also restri
ting Z, as in answers 150 and 152;we obtain 12 solutions (in 350 M�) and 264 solutions (in 2.5 G�), respe
tively.The 3 � 4 � 5 
uboid is more diÆ
ult. Without symmetry-breaking, we obtain3940 � 8 solutions in about 200 G�. To do better, noti
e that X 
an appear in 11essentially di�erent positions: (1+1�)(1+1�) in a 4�5 plane, 2�+2�� in a 3�5 plane,and 2� + 1�� in a 3 � 4 plane, where `�' denotes a 
ase where symmetry needs to bebroken down further be
ause X is �xed by some symmetry. With 11 separate runs we
an �nd (923+558=2+402=2+376=4)+(1268=2+656=2+420=4+752=4)+(1480=2+720=2 + 352=4) = 3940 solutions, in 4:9 + 3:3 + 3:1 + 2:4 + � � � + 2:1 � 50 G�.[The fa
t that solid pentominoes will �ll these 
uboids was �rst demonstrated byD. Nixon and F. Hansson, Fairy Chess Review 6 (1948), problem 7560 and page 142.Exa
t enumeration was �rst performed by C. J. Bouwkamp in 1967; see J. Combina-torial Theory 7 (1969), 278{280, and Indagationes Math. 81 (1978), 177{186.℄(
) Almost any subset of 25 penta
ubes 
an probably do the job. But a parti
u-larly ni
e one is obtained if we simply omit o, q, s, and y, namely those that don't �t in a3�3�3 box. R. K. Guy proposed this subset in Nabla 7 (1960), 150, although he wasn'table to pa
k a 5� 5� 5 at that time. The same idea o

urred independently to J. E.Dorie, who trademarked the name \Dorian 
ube" [U.S. Trademark 1,041,392 (1976)℄.An amusing way to form su
h a 
ube is to make 5-level prisms in the shapes of theP, Q, R, U, and X pentominoes, using pie
es fa; e; j;m;wg, ff; k; l; p; rg, fA; d;D;E; ng,
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7.2.2.1 ANSWERS TO EXERCISES 35 Sillkepartitionf
;C;F; u;vg, fb;B; t; x; zg; then use the pa
king in answer 151(!). This solution 
anbe found with six very short runs of Algorithm D, taking only 300 megamems overall.Another ni
e way, due to Torsten Sillke, is more symmetri
al: There are 70,486ways to partition the pie
es into �ve sets of �ve that allow us to build an X-prism inthe 
enter (with pie
e x on top), surrounded by four P-prisms.One 
an also assemble a Dorian 
ube from �ve 
uboids, using one 1� 3� 5, one2�2�5, and three 2�3�5s. Indeed, there are zillions more ways, too many to 
ount.
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36 ANSWERS TO EXERCISES 7.2.2.1 authorgeek artSillkeK�unzellFarhi221. (a) Make an exa
t 
over problem in whi
h a and A, b and B, : : : , f and F arerequired to be in symmetri
al position; there are respe
tively (86; 112; 172; 112; 52; 26)pla
ements for su
h 10-
ubie \super-pie
es." Furthermore, the author de
ided to for
epie
e m to be in the middle of the top wall. Solutions were found immediately! So pie
ex was pla
ed in the exa
t 
enter, as an additional desirable 
onstraint. Then there wereexa
tly 20 solutions; the one below has also n, o, and u in mirror-symmetri
al lo
ations.(b) The super-pie
es now have (59; 84; 120; 82; 42; 20) pla
ements; the author alsooptimisti
ally for
ed j, k, and m to be symmetri
al about the diagonal, with m in thenorthwest 
orner. A long and apparently fruitless 
omputation (34.3 teramems) ensued;but|hurrah|two 
losely related solutions were dis
overed at the last minute.(
) This 
omputation, due to Torsten Sillke [see Cubism For Fun 27(1991), 15℄, goes mu
h faster: The quarter-of-a-box shown here 
an be pa
kedwith seven non-x penta
ubes in 55356 ways, found in 1.3 G�. As in answer 177,this yields a new exa
t 
over problem, with 33412 di�erent rows. Then 11.8 G�more 
omputation dis
overs seven suitable partitions into four sets of seven, one ofwhi
h is illustrated here.l l l q q q ql o o o o o qf f u u u F FD f u m u F dl l f D D D m m m d d d F q ql f f C C D D m d d 
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)222. As in previous exer
ises, the key is to redu
e the sear
h spa
e drasti
ally,by asking for solutions of a spe
ial form. (Su
h solutions are likely to exist,be
ause penta
ubes are so versatile.) Here we 
an break the given shape intofour pie
es: Three modules of size 33 +23 to be pa
ked with seven penta
ubes,and one of size 43 � 3 � 23 to be pa
ked with eight penta
ubes. The smallerproblem has 13,587,963 solutions, found with 2.5 T� of 
omputation; theseredu
e to 737,695 distin
t sets of seven penta
ubes. The larger problem has 15,840solutions, found with 400 M� and redu
ed to 2075 sets of eight. Exa
tly 
overing thosesets yields 1,132,127,589 suitable partitions; the �rst one found, fa;A; b; 
; j; q; t; yg,fB;C; d;D; e; k; og, fE; f; l; n; r; v; xg, fF;m;p; s; u;w; zg, works �ne. (We need only onepartition, so we needn't have 
omputed more than a thousand or so solutions to thesmaller problem.)Penta
ubes galore: Sin
e the early 1970s, Ekkehard K�unzell and Sivy Farhi haveindependently published booklets that 
ontain hundreds of solved penta
ube problems.999. : : :
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PopeHomerWHEATLEYINDEX AND GLOSSARYThere is a 
urious poeti
al index to the Iliad in Pope's Homer,referring to all the pla
es in whi
h similes are used.| HENRY B. WHEATLEY, What is an Index? (1878)When an index entry refers to a page 
ontaining a relevant exer
ise, see also the answer tothat exer
ise for further information. An answer page is not indexed here unless it refers to atopi
 not in
luded in the statement of the exer
ise.Barris, Harry, 1.DIMACS: DIMACS Series in Dis
reteMathemati
s and Theoreti
al ComputerS
ien
e, inaugurated in 1990.Fields, Dorothy, 1.MPR: Mathemati
al Preliminaries Redux, v.Short, Robert Allen, iii. Nothing else is indexed yet (sorry).Preliminary notes for indexing appear in theupper right 
orner of most pages.If I've mentioned somebody's name andforgotten to make su
h an index note,it's an error (worth $2.56).
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