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Abstract
Building a summary for library code is a common approach to
speeding up the analysis of client code. In presence of callbacks,
some reachability relationships between library nodes cannot be
obtained during library-code summarization. Thus, the library
code may have to be analyzed again during the analysis of the
client code with the library summary. In this paper, we propose
to summarize library code with tree-adjoining-language (TAL)
reachability. Compared with the summary built with context-free-
language (CFL) reachability, the summary built with TAL reach-
ability further contains conditional reachability relationships.
The conditional reachability relationships can lead to much
lighter analysis of the library code during the client code anal-
ysis with the TAL-reachability-based library summary. We also
performed an experimental comparison of context-sensitive data-
dependence analysis with the TAL-reachability-based library sum-
mary and context-sensitive data-dependence analysis with the CFL-
reachability-based library summary using 15 benchmark subjects.
Our experimental results demonstrate that the former has an 8X
speed-up over the latter on average.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages - Program
analysis; F.4.3 [Mathematical Logic and Formal Languages]: For-
mal Languages - Classes defined by grammars or automata

General Terms Algorithms, Languages

Keywords TAL reachability, CFL reachability, context-sensitive
analysis, summary-based analysis, tree adjoining languages

1. Introduction
Leveraging libraries is ubiquitous in modern software development.
The existence of various software libraries makes it possible for
developers to reuse products of numerous previous software de-
velopers. As a result, a modern software application is typically
composed of a large volume of library code and a small volume
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of client code. For example, compress, a typical Java based appli-
cation from SPECjvm2008 benchmark suite [2], involves 17640
Control-Flow Graph nodes while 91.6% of them are from libraries.
The huge size of used library code in an application becomes a bur-
den for various program analysis tasks. One common approach to
this problem is to build a summary for each used library. Based on
the library summary, the analysis time of the client code becomes
much shorter. The summary for the library can also be built once
and reused many times for analyzing all its client applications.

Data-dependence analysis [15] aims to identify the def-use
chains in a program, and has many applications, such as slicing [31]
and impact analysis [3]. For context-sensitive data-dependence
analysis, a typical way to build the summary of a library is to
use context-free-language (CFL) reachability [29], where a CFL
(typically the parenthesis-matching language) is used to filter out
invalid paths in the dependence graph. However, the possible exis-
tence of callbacks1 poses an obstacle for summarizing the library
code with CFL reachability. When there are no callbacks, the anal-
ysis of a client application can be confined to the client code with
only queries of the summary of the library code. That is to say,
it suffices that we know all the reachability relationships between
library nodes after summarizing the library code. In presence of
callbacks, even with the library summary, the library code should
still be analyzed as well as the client code, because callbacks may
incur new reachability (i.e., dependence) between library nodes.

To further motivate our research, let us consider the following
example for context-sensitive data-dependence analysis.

1 package library;
2 public abstract class AbstractClass {
3 public final int method1(int x1) {
4 int y1 = x1 + 1;
5 int z1 = method2(y1) + 1;
6 return z1;
7 }
8 private final int method2(int x2) {
9 int y2 = x2 + 2;

10 int z2 = method3(y2) + 2;
11 return z2;
12 }
13 abstract public int method3(int x3);
14 }

1 Callbacks are invocations of the methods/functions in the client code
from the library code. Due to the convenience of customizing/extending
libraries, many major programming languages provide some mechanism
(e.g., dynamic binding) to support callbacks.
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Figure 1: Data-Dependence Graph for the Example

As shown in the above code, there is an abstract class defined
in the library. The abstract class provides a public method named
method1 for its clients, and requires its clients to implement a public
method named method3, which may lead to a callback. The client
code is listed below, where ConcreteClass extends the abstract
class in the library with an implementation of method3, resulting
in a callback.

1 package client;
2 class ConcreteClass extends library.AbstractClass {
3 public int method3(int x3) {
4 int y3 = x3 * 3;
5 return y3;
6 }
7 }
8 public class Main {
9 public static void main(String[] args) {

10 ConcreteClass p = new ConcreteClass();
11 int x = 4;
12 int y = p.method1(x);
13 System.out.println(y);
14 }
15 }

Supposing that it is required to determine whether the value of
y in the main method after calling method1 depends on the value
of x. This problem can be turned into the problem of determining
whether it is reachable from node c11 to node c12 in Figure 1, where
the gray/white nodes are from the library/client code, and the ith
line in client/library code is labeled as ci/li. In this figure, the edges
labeled with {i/}i (i ∈ [1, 4]) correspond to direct data dependence
incurred by the four method invocations/returns2; and nodes l6, l11,
and c5 represent the result values immediately before the method
returns (denoted as r1, r2, and r3). Obviously, it is reachable from
node c11 to node c12, if we use CFL reachability to analyze both
the library code and the client code, i.e., the value of y depends on
the value of x.

However, when summarizing only the library code with CFL
reachability, as nodes c3, c4, and c5 are not available yet, it is
unknown whether it is reachable from node l3 to node l6. Only
when the client code is available can it be determined that node c3
is reachable to node c5. Then the library graph should be analyzed
again to determine that it is actually reachable from node l3 to
node l6. With this information, node c11 can be determined to
be reachable to node c12. Note that nodes l4, l5, l8, and l11 are
essential here to determine this reachability relationship even if we
already have the CFL-reachability-based summary of the library
code. Without these four nodes, we cannot know that it is reachable
from node l3 to node l6.

2 Note that {4/}4 is marked as dashed line because it is the invocation/return
to an abstract method.
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Figure 2: Graphical Representation of C-Reachablei,j(x,y)

1.1 Our Solution
The basic idea of our approach is to further calculate conditional
reachability relationships as well as unconditional reachability re-
lationships3 when summarizing the library code. Below, we define
conditional reachability in Definition 1.1.

DEFINITION 1.1. (Conditional Reachability) Let G be a directed
graph and x, y, i, and j be four nodes inG. It is said that there is a
conditional reachability relationship among x, y, i, and j (denoted
as C-Reachablei,j(x,y)), if it is reachable from x to y when a new
unconditional reachability relationship from i to j is added.

For intuitiveness of presentation, if C-Reachablei,j(x, y), we
also state that there is a conditional reachability relationship
from x to y depending on the reachability from i to j. Figure 2 de-
picts the graphical representation of C-Reachablei,j(x,y). Similar
to the reachability relationships in CFL reachability, conditional
reachability relationships can also be labeled with different sym-
bols to distinguish conditional reachability relationships of dif-
ferent types.

For the motivating example, there is actually a conditional
reachability relationship from node l3 to node l6 depending on the
reachability from node l9 to node l10 (i.e., C-Reachablel9,l10 (l3,l6)).
If we obtain this conditional reachability relationship when
summarizing the library code, we can immediately determine that
it is reachable from node l3 to node l6 after we analyze the client
code to obtain the reachability from node c3 to node c5. That is,
we turn the conditional reachability relationship into an uncon-
ditional one. In fact, calculating conditional reachability during
library-code summarization has the following two benefits. First,
we can save some computation when analyzing the client code,
as such computation has already been performed when analyzing
the library code. In our example, the computation for determining
C-Reachablel9,l10 (l3,l6) actually involves some computation for
determining the reachability from node l3 to node l6 under CFL
reachability. Second, since we have the conditional reachability
relationship during library-code summarization, some nodes (i.e.,
nodes l4, l5, l8, and l11 in our example) in the library graph be-
come unnecessary for analyzing client code. Thus, we can fur-
ther avoid some unnecessary computation involving these nodes
when analyzing the client code. Of course, calculating conditional
reachability would incur extra computation during library-code
summarization.

As a conditional reachability relationship involves four
nodes in the graph, it is beyond the power of CFL reachability
to calculate conditional reachability. Therefore, we turn the
problem of summarizing conditional reachability relationships
for the library code as a problem of calculating tree-adjoining-
language (TAL) reachability. Tree-adjoining languages, each of
which can be defined with a tree-adjoining grammar (TAG) [11],
are a family of mildly context-sensitive languages that can repre-
sent much context sensitivity in natural languages4. As there are
constructs (denoted as second-order non-terminals in this paper) in
a TAG to represent two strings with some yet-unknown symbols
between the two strings, such a construct can be used to represent

3 To avoid ambiguity, we also refer to the reachability relationships calcu-
lated via CFL reachability as unconditional reachability relationships.
4 Note that the meaning of context sensitivity in the formal language
theory is completely different from that in program analysis.



conditional reachability, where the reachability between two
library nodes depends on the reachability in client code.

Based on the definition of conditional reachability, we can
summarize a library that contains at most one callback on any path.
If multiple callbacks exist, our approach retains a small number
of selected library nodes in the summary, and uses these nodes
to chain multiple conditional reachability relationships. In such a
case, the library is not fully-summarized because some analysis is
still required on the selected library nodes during the client analysis
phase. However, the client analysis phase can still be significantly
accelerated (as validated in our evaluation) because only a small set
of library nodes need to be analyzed.

To evaluate the performance enhancement that our approach
achieves for analyzing client code, we empirically compared our
approach with the approach that adopts CFL reachability to sum-
marize the library code using 15 Java applications as subjects. Our
evaluation results demonstrate that the analysis of client code us-
ing the TAL-reachability-based summary achieves an average 8X
speed-up over the analysis using the CFL-reachability-based sum-
mary.

1.2 Contributions and Paper Organization
In summary, this paper makes the following main contributions:

• A concise formalism for defining tree-adjoining-language (TAL),
serving as the Chomsky Normal Form for TAGs.
• The proposal of TAL reachability, and the first (polynomial)

algorithm for calculating TAL reachability.
• A formalization of the problem of summarizing library code

with callbacks for context-sensitive data-dependence analysis
as a TAL-reachability problem.
• A sound technique for context-sensitive data-dependence anal-

ysis of client code based on the summary calculated with TAL
reachability.
• An experimental evaluation of our approach on a number of

benchmark subjects, comparing with the approach using CFL
reachability to summarize the library code.

2. Tree-Adjoining Languages and Grammars
For natural language processing, researchers have investigated
some formalisms to define mildly context-sensitive grammars to
parse sentences in a natural language, which is typically a context-
sensitive language. In particular, there are four intensively investi-
gated formalisms for defining mildly context-sensitive grammars:
tree-adjoining grammars [11], head grammars [23], linear indexed
grammars [8], and combinatory categorial grammars [39]. Accord-
ing to [41], these four formalisms actually define the same family
of languages, which are parsable in O(n6) time (where n is the
length of the sentence for parsing). Thus, in this paper, we refer
to the language family described by all the four grammars as tree-
adjoining languages (TALs). As all the four existing grammars are
not suitable for defining TAL reachability in Section 3, we present
a new and concise formalism that defines the same language family
as TALs (proof given in the Appendix). Our formalism is actually
the Chomsky Normal Form for TAGs, which is suitable for defining
TAL reachability and analyzing its complexity.

We define our tree-adjoining grammars (TAGs) by extending
the formalism for defining CFGs. A context-free grammar G is
typically defined as a four-tuple, denoted asG=(N,T, P, S), where
N is a set of non-terminals, T is a set of terminals, P is a set of
productions, and S is a non-terminal in N . Each terminal in T is
a character and each non-terminal in N represents a set of strings,
each being the concatenation of some terminals.

In our formalism for TAGs, there is a new type of non-terminals,
each of which represents a set of ordered pairs of strings. To dis-
tinguish the two types of non-terminals, we refer to non-terminals
representing strings as first-order non-terminals and non-terminals
representing ordered pairs of strings as second-order non-terminals
in this paper. For the ease of presentation, we use upper-case let-
ters (e.g., A) to denote first-order non-terminals, upper-case letters
in the blackboard typeface (e.g., A) to denote second-order non-
terminals, and lower-case letters to denote terminals. Furthermore,
for two strings (denoted as α and β), if the pair of α and β is in
the set of pairs of strings that A represents, we denote that A can
represent α ◦β. Note that, as each pair is ordered, α ◦β (indicating
that α appears before β) and β ◦α (indicating that β appears before
α) denote two different pairs. Similarly, if γ is in the set of strings
that A represents, we denote that A can represent γ.

In the formalism for defining CFGs, there is only one opera-
tor (i.e., the concatenation operator) to connect non-terminals (i.e.,
first-order non-terminals) and/or terminals. In the formalism of
TAGs, there are a number of extra operators to connect second-
order non-terminals and first-order non-terminals. Specifically,
there is one operator to connect two second-order non-terminals,
and the result is a set of pairs of strings. This operator is called the
adjoining operator, whose semantics is defined in Definition 2.1.

DEFINITION 2.1. (Adjoining Operator) Let A and B be two
second-order non-terminals. The semantics of the adjoining op-
erator is as follows:

• e(A,B) .= {αγ ◦ δβ | α ◦ β ∈ A, γ ◦ δ ∈ B}.

In Definition 2.1 and throughout the rest of this paper, we adopt
the convention in the formalism of CFGs to denote the concatena-
tion operator. That is to say, when we put two symbols (each being
a first-order non-terminal, a terminal, or a string) immediately side
by side, we mean the concatenation between them. For example,
we use αβ to denote the concatenation of α and β.

The formalism of TAGs also includes four operators to connect
a second-order non-terminal and a first-order non-terminal. The re-
sult of each such operator is also a set of pairs of strings. In fact,
the four operators are extended from the concatenation operator
between first-order non-terminals, and the differences lie in the po-
sition for concatenation. Thus, they are referred to as the extended
concatenation operators. Definition 2.2 provides the semantics of
the four operators.

DEFINITION 2.2. (Extended Concatenation Operators) Let A be
a second-order non-terminal and B be a first-order non-terminal.
The semantics of the four extended concatenation operators are as
follows:

• /∩(A, B)
.
= {γα ◦ β | α ◦ β ∈ A, γ ∈B}.

• .∩(A, B)
.
= {αγ ◦ β | α ◦ β ∈ A, γ ∈B}.

• ∩/(A, B)
.
= {α ◦ γβ | α ◦ β ∈ A, γ ∈B}.

• ∩.(A, B)
.
= {α ◦ βγ | α ◦ β ∈ A, γ ∈B}.

These four extended concatenation operators can also be used
for connecting a second-order non-terminal and a terminal. For
example, /∩(A, a) represents all pairs of strings in the form of
aα ◦ β.

The formalism of TAGs has an operator to construct a set of
pairs of strings from two first-order non-terminals, referred to as
the pairing operator, whose semantics is provided in Definition 2.3.

DEFINITION 2.3. (Pairing Operator) Let A and B be two first-
order non-terminals. The semantics of pairing operator is:

• ⊕(A,B)
.
= {α ◦ β | α ∈A, β ∈B}.



The pairing operator can also be used to the situation where
eitherA orB is a terminal or ε (i.e., the empty string). For example,
⊕(a, ε) represents the pair a ◦ ε.

In contrast to the pairing operator, the formalism of TAGs has
a de-pairing operator to obtain a set of strings from one second-
order non-terminal. Definition 2.4 provides the semantics of the
de-pairing operator.

DEFINITION 2.4. (De-Pairing Operator) Let A be a second-order
non-terminal. The semantics of de-pairing operator is:

• 	(A) .= {αβ | α ◦ β ∈ A}.

Based on the preceding operators and the concatenation oper-
ator used for defining CFGs, the tree-adjoining grammars (TAGs)
are defined in Definition 2.5.

DEFINITION 2.5. (Tree-Adjoining Grammar) A tree-adjoining
grammar G is a five-tuple, denoted as G = (N1, N2, T, P, S),
whereN1 is a set of first-order non-terminals,N2 is a set of second-
order non-terminals, T is a set of terminals, P is a set of produc-
tions, and S is a first-order non-terminal in N1. Productions in P
conform to the following rules.

• The left-hand side of a production must be a first-order non-
terminal or a second-order non-terminal.
• If the left-hand side of a production is a first-order non-

terminal, the right-hand side of the production must be in one of
the following forms: 1) the de-pairing operator on one second-
order non-terminal, 2) the concatenation of two symbols (each
of which is either a first-order non-terminal or a terminal), 3)
one first-order non-terminal, 4) one terminal, or 5) ε.
• If the left-hand side of a production is a second-order non-

terminal, the right-hand side of the production must be in one of
the following forms: 1) one adjoining operator on two second-
order non-terminals, 2) one extended concatenation operator
on one second-order non-terminal and one first-order non-
terminal (or terminal), 3) the pairing operator on two symbols
(each of which is a first-order non-terminal, a terminal, or ε),
or 4) one second-order non-terminal.

EXAMPLE 2.1. The following TAG defines {anbncndn | n ≥ 0}:
S → 	(S0)
S0 → ∩.(S3, d) | ⊕ (ε, ε)
S1 → /∩(S0, a)
S2 → .∩(S1, b)
S3 → ∩/(S2, c)

THEOREM 2.1. The language family defined by CFGs is a true
subset of the language family defined by TAGs.

Proof. The second rule in Definition 2.5 defines a normal form for
each production whose left-hand side is a first-order non-terminal.
Except for the de-pairing operator, this normal form is actually
a variant of Chomsky Normal Form. Therefore, any CFG, when
transformed to the normal form required by this rule, is actually
a TAG with no second-order non-terminals. As we know that the
language defined in Example 2.1 is not a CFL, the CFL family is a
true subset of the TAL family. �

3. TAL Reachability
As demonstrated by Reps [30], the notion of CFL reachability
can be generalized to L-reachability, where L can be any family
of languages. By confining L to the family of TALs, we have
the problem of TAL reachability. In the following, we present, to
our knowledge, the first algorithm for TAL reachability, which is
actually a polynomial algorithm .

ALGORITHM 1: Calculate TAL Reachability
Input: Directed graph G and productions of TAL language L.
Output: TAL-reachability relationships for G.

1 /*Initialize the work list*/
2 for each edge e(i, j) (labeled with a and 1 ≤ i, j ≤ n) in G do
3 Add (a, i, j) to R1; Add (a, i, j) to W ;
4 end
5 for each i (1 ≤ i ≤ n) do
6 Add (ε, i, i) to R1; Add (ε, i, i) to W ;
7 end
8 /*Add reachability for productions*/
9 while W is not empty do

10 Select and remove the first item (denoted as $) from W ;
11 if $ is in the form of (X, i, j) then
12 Try Z → X for (X, i, j)
13 Try Z → XY for (X, i, j)
14 Try Z → Y X for (X, i, j)
15 Try Z→ /∩(Y, X) for (X, i, j)
16 Try Z→ .∩(Y, X) for (X, i, j)
17 Try Z→ ∩/(Y, X) for (X, i, j)
18 Try Z→ ∩.(Y, X) for (X, i, j)
19 Try Z→ ⊕(X,Y ) for (X, i, j)
20 Try Z→ ⊕(Y,X) for (X, i, j)
21 end
22 else if $ is in the form of (X, i, j, k, l) then
23 Try Z → 	(X) for (X, i, j, k, l)
24 Try Z→ X for (X, i, j, k, l)
25 Try Z→ /∩(X, Y ) for (X, i, j, k, l)
26 Try Z→ .∩(X, Y ) for (X, i, j, k, l)
27 Try Z→ ∩/(X, Y ) for (X, i, j, k, l)
28 Try Z→ ∩.(X, Y ) for (X, i, j, k, l)
29 Try Z→ e(X,Y) for (X, i, j, k, l)
30 Try Z→ e(Y,X) for (X, i, j, k, l)
31 end
32 end

3.1 Algorithm
Our algorithm for TAL reachability (depicted in Algorithm 1) is
a dynamic programming algorithm, which can be viewed as an
extension of the work-list algorithm for CFL reachability proposed
by Melski and Reps [20].

Our algorithm maintains a work list (i.e., W ) containing two
categories of items. Each item in the first category represents the
adding of a terminal or a first-order non-terminal. Such an item is
in the form of (X, i, j), which represents the adding of X between
the i-th node and the j-th node in G. Each item in the second cate-
gory represents the adding of a second-order non-terminal. Such an
item is in the form of (X, i, j, k, l), which indicates the addition of
a second-order non-terminal between i, j, k, and l. Furthermore,
we use R1 to store the calculated reachability information of ter-
minals and first-order non-terminals, andR2 to store the calculated
reachability information of second-order non-terminals.

In Algorithm 1, the two initialization steps (Lines 2 to 7) add
reachability information into R1 and items into W for 1) terminals
labeled on edges of G, and 2) ε between a node and itself. The
main body of the algorithm is a large loop (Lines 9 to 32), in which
we iteratively deal with the items in W . We further divide each
iteration of the loop into two parts. The first part (Lines 11 to 21)
deals with items in the first category, and each line between Line 12
and Line 20 deals with one type of productions involving X at the
right-hand side. The second part (Lines 22 to 31) deals with items
in the second category, and each line between Line 22 and Line 29
deals with one type of productions involving X at the right-hand
side. Note that, Lines 12 to 14 deal with basic CFL productions,



which has also been described in Melski and Reps’s algorithm for
CFL reachability [20].

ALGORITHM 2: Try Z→/∩(Y, X) for (X, i, j)

1 for each production in the form of Z→ /∩(Y, X) do
2 for each (Y, j, k, l, p) in R2 (1 ≤ k, l, p ≤ n) do
3 if (Z, i, k, l, p) /∈ R2 then
4 Add (Z, i, k, l, p) to R2;
5 Add (Z, i, k, l, p) to W ;
6 end
7 end
8 end

Algorithm 2 depicts the details of Line 15 in Algorithm 1. As
the right-hand side of such a production indicates that X appears
immediately before the first string of Y, Algorithm 2 looks for
reachability information of Y in R2 satisfying this requirement. If
such information exists, we add reachability information of Z with
the corresponding nodes. The algorithms for Lines 16, 17, and 18
are similar to Algorithm 2. The differences lie in the different ways
that X concatenates with Y.

The details of Line 19 in Algorithm 1 are depicted in Algo-
rithm 3. As such a production does not require Y to be concate-
nated with X , Algorithm 3 looks for reachability information of Y
in R1 with no further requirement. If such information exists, we
add reachability information of Z with corresponding nodes. The
details of Line 20 in Algorithm 1 are similar to Algorithm 3.

ALGORITHM 3: Try Z→ ⊕(X,Y ) for (X, i, j)

1 for each production in the form of Z→ ⊕(X,Y ) do
2 for each (Y, k, l) in R1 (1 ≤ k, l ≤ n) do
3 if (Z, i, j, k, l) /∈ R2 then
4 Add (Z, i, j, k, l) to R2;
5 Add (Z, i, j, k, l) to W ;
6 end
7 end
8 end

The details of Line 23 in Algorithm 1 are depicted in Algo-
rithm 4. To concatenate the two strings represented by X, we re-
quire that the first string should appear immediately before the sec-
ond string. If this requirement is satisfied, we add reachability in-
formation of Z between nodes i and l.

Line 24 in Algorithm 1 is similar to Line 12 in Algorithm 1. The
difference is that Line 24 deals with productions each having two
second-order non-terminals, while Line 12 deals with productions
each having two first-order non-terminals.

Line 25 to Line 28 in Algorithm 1 are similar to Line 15 to Line
18 in Algorithm 1. The difference is that, for Line 25 to Line 28,
we look in R1 for first-order non-terminal Y that can concatenate
with second-order non-terminal X.
ALGORITHM 4: Try Z → 	(X) for (X, i, j, k, l)

1 for each production in the form of Z → 	(X) do
2 if j=k ∧ (Z, i, l) /∈ R1 then
3 Add (Z, i, l) to R1;
4 Add (Z, i, l) to W ;
5 end
6 end

The details of Line 29 in Algorithm 1 are depicted in Algo-
rithm 5. In particular, we look for reachability information of Y in
R2 such that the first string of Y appears immediately after the first
string of X and the second string of Y appears immediately before
the second string of X. The details of Line 30 in Algorithm 1 are
similar to Algorithm 5.

ALGORITHM 5: Try Z→ e(X,Y) for (X, i, j, k, l)
1 for each production in the form of Z→ e(X,Y) do
2 for each (Y, j, p, q, k) in R2 (1 ≤ p, q ≤ n) do
3 if (Z, i, p, q, l) /∈ R2 then
4 Add (Z, i, p, q, l) to R2;
5 Add (Z, i, p, q, l) to W ;
6 end
7 end
8 end

3.2 Time Cost
As our TAL-reachability algorithm does not allow one piece of
reachability information to be added more than once, we have at
most O((|N1|+|T |)*n2) items in the form of (X, i, j) and at most
O(|N2|*n4) items in the form of (X, i, j, k, l). Then, we focus on
analyzing the asymptotic time cost of dealing with one item in the
form of (X, i, j) and one item in the form of (X, i, j, k, l), respec-
tively. We summarize the result of our analysis as Theorem 3.1.

Lines 12 to 20 deal with each item in the form of (X, i, j).
Among them, Line 13 requires the same asymptotic time as Line
14; Line 15 requires the same asymptotic time as Line 16, 17,
or 18; and Line 19 requires the same asymptotic time as Line
20. Executing Line 12 once requires O(|N1|) time asymptotically,
because given X , there are at most O(|N1|) productions in the
form of Z → X . Given X , there are at most O(|N1|*(|N1|+|T |))
productions in the form of Z → XY , and for each such production
there are at most O(n) distinct pieces of reachability information
of Y such that X appears immediately before Y . Thus, executing
Line 13 once requiresO(|N1|*(|N1|+|T |)*n) time asymptotically.
Given X , there are at most O(|N2|2) productions in the form
of Z → /∩(Y, X), and for each such production there are at
most O(n3) distinct pieces of reachability information of Y such
that X appears immediately before the first string of Y. Thus,
executing Line 15 once requiresO(|N2|2*n3) time asymptotically.
GivenX , there are at mostO(|N2|*(|N1|+|T |)) productions in the
form of Z → ⊕(X,Y ), and for each such production there are
at most O(n2) distinct pieces of reachability information of Y .
Thus, executing Line 19 once requires O(|N2|*(|N1|+|T |)*n2)
time asymptotically. In summary, Lines 12 to 20 deal with one
item in the form of (X, i, j) in O((|N1|+|N2|+|T |)2*n3) time
asymptotically.

Lines 23 to 30 deal with each item in the form of (X, i, j, k, l).
Among them, Line 23 requires the same asymptotic time as Line
24; Line 25 requires the same asymptotic time as Line 26, 27, or
28; and Line 29 requires the same asymptotic time as Line 30. Ex-
ecuting Line 23 once requires O(|N2|) time asymptotically. Given
X, there are at most O(|N2|*(|N1|+|T |)) productions in the form
of Z → /∩(X, Y ), and for each such production there are at most
O(n) distinct pieces of reachability information of Y such that Y
appears immediately before the first string of X. Thus, executing
Line 25 once requiresO(|N2|*(|N1|+|T |)*n) time asymptotically.
Given X, there are at most O(|N2|2) productions in the form of
Z → e(X,Y), and for each such production there are at most
O(n2) distinct pieces of reachability information of Y such that
the first string of Y appears immediately after the first string of X
and the second string of Y appears immediately before the second
string of X. Thus, executing Line 29 once requires O(|N2|2*n2)
time asymptotically. In summary, Lines 22 to 30 deal with one
item in the form of (X, i, j, k, l) in O((|N1|+|N2|+|T |)2*n2) time
asymptotically.

THEOREM 3.1. The asymptotic time cost of our TAL-reachability
algorithm is O(l3*n6), where l is |N1|+|N2|+|T | and n is the
number of nodes in G.
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Figure 3: Four Types of Boundary Nodes in Summary

4. Context-Sensitive Data-Dependence Analysis
with TAL Reachability

On top of TAL reachability, we propose a novel algorithm for
context-sensitive data-dependence analysis to calculate the reach-
ability relationships between each pair of client nodes. Our algo-
rithm consists of three steps. First, we build a summary containing
conditional reachability information via analyzing the library
code (Section 4.1). Second, we further process the summary to
make it suitable for the analysis of client code (Section 4.2). Third,
we use CFL reachability to analyze the client code based on the
post-processed summary (Section 4.3). In Section 4.4, we demon-
strate the soundness of our algorithm.

4.1 Summarizing Library Code with TAL Reachability
Definition 4.1 defines the TAL that we use to summarize the library
code. In this grammar, S represents unconditional reachability
with exactly matched parentheses, and S represents conditional
reachability with exactly matched parentheses. Similarly, S1 and
S1 are for unconditional and conditional reachability with un-
matched opening parentheses, and S2 and S2 are for unconditional
and conditional reachability with unmatched closing parentheses.

DEFINITION 4.1. (TAG for Library-Code Summarization)
S → 	(S) | SS | e
S→ e(S, S) | /∩ (S, S) | .∩ (S, S) | ∩/ (S, S) | ∩. (S, S) | ⊕

({i, }i)
S1 → 	(S1) | S1S1 | S1S | SS1 | {i
S1 → /∩(S, S1) | ∩. (S, S1) | /∩ (S1, S1) | ∩. (S1, S1)
S2 → 	(S2) | S2S2 | S2S | SS2 | }i
S2 → /∩(S, S2) | ∩. (S, S2) | /∩ (S2, S2) | ∩. (S2, S2)

If we use the TAL defined in Definition 4.1 to calculate TAL
reachability on a dependence graph G, we actually obtain exactly
the same unconditional reachability relationships as we use the
CFL5 defined in Definition 4.2 to calculate CFL reachability on
G. However, when calculating TAL reachability, we also obtain
conditional reachability relationships as well as unconditional
reachability relationships. In fact, our TAL-reachability algorithm
always first determines a conditional reachability relationship,
and if the conditional reachability relationship is in the form of
C-Reachablei,i(x, y) for some i, our TAL-reachability algorithm
(specifically Algorithm 4) then determines an unconditional reach-
ability relationship from x to y. Therefore, if we are summarizing
a library, using the TAL in Definition 4.1 allows us to summarize
more information than using the CFL in Definition 4.2.

DEFINITION 4.2. (CFG for Context-Sensitive Data-Dependence
Analysis)
S → SS | Ti}i | e
Ti → {iS
S1 → S1S1 | S1S | SS1 | {i
S2 → S2S2 | S2S | SS2 | }i

5 If we use this CFL to analyze both the library code and the client code, we
can calculate all the context-sensitive data-dependence relationships.
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Figure 4: Chaining Nodes

4.2 Post-Processing
To make the summary obtained in Section 4.1 suitable for client-
code analysis, we need to remove some unnecessary reachability
relationships from the summary. Let us consider our example dis-
cussed in Section 1. Besides C-Reachablel9,l10 (l3,l6), our TAL-
reachability algorithm also calculates some other conditional
reachability relationships using the TAL in Definition 4.1, e.g.,
C-Reachablel9,l10 (l4,l5). In fact, C-Reachablel9,l10 (l4,l5) does not
provide further help for client-code analysis, but may incur unnec-
essary computation. To identify which information in the summary
is unnecessary, we first identify in the summary a set of nodes such
that only the reachability information among them is sufficient for
client-code analysis. In this paper, we denoted these nodes as the
fundamental summary nodes. It should be noted that, the post-
processing is an important way to reduce the cost of client analysis
when multiple callbacks exist. As the size of graph representing
library summary shrinks, the graph will require much less unnec-
essary operations (adding non-terminals to edges) during client
analysis.

4.2.1 Fundamental Summary Nodes
First, all the boundary nodes are fundamental summary
nodes, since the reachability transfers between the summary and
the client through them. Actually, there are four types of such
boundary nodes in the summary. Figure 3, in which we use gray
nodes to represent boundary nodes in the summary and white
nodes to represent client nodes, depicts four boundary nodes each
of a different type. The boundary node (referred to as the type-1
boundary node) in Figure 3(a) receives a value from the client via
a call of a library method. The boundary node (referred to as the
type-2 boundary node) in Figure 3(b) returns a value to the client
via a method return. The boundary node (referred to as the type-3
boundary node) in Figure 3(c) passes a value to the client via a
callback. The boundary node (referred to as the type-4 boundary
node) in Figure 3(d) receives a value from the client via a return of
a callback.

Second, it is still insufficient only keeping all the boundary
nodes. Given one type-1 boundary node (denoted as x) and one
type-2 boundary node (denoted as y) in the summary, there may
be a chain of two or more conditional reachability relationships
between them. If all the conditional reachability relationships
in the chain are turned into unconditional, we have an uncondi-
tional reachability relationship between x and y. Note that, as such
a chain may depend on more than one unconditional reachabil-
ity relationship provided by the client, it cannot be represented
by just one conditional reachability relationship. Therefore,
we need to keep all the nodes that may connect two or more
conditional reachability relationships. We refer to these nodes
as the chaining nodes. Figure 4 depicts a sub-chain. In this figure,
both nodes x2 and x3 are chaining nodes.

Third, there are two ways for one conditional reachability
relationship (denoted as C-Reachablei,j(x,y)) to become uncondi-
tional. The first way is that the client provides an unconditional
reachability relationship to make the conditional reachability
relationship become unconditional. In such a case, imust be a type-
3 boundary node and j a type-4 boundary node. The other way
is that a chain of conditional reachability relationships eventu-
ally provides an unconditional reachability relationship to make the



x1 i1 j1 x2 i2 j2 x3 i3 j3 x4x y

Figure 5: Hidden Chaining Nodes

conditional reachability relationship become unconditional. In
such a case, either i or j may not be in the set of boundary nodes
or the set of chaining nodes. We refer to such nodes as the hidden
chaining nodes, which should also be kept in the summary. Fig-
ure 5, in which node x1 and node x4 are hidden chaining nodes,
depicts such a situation. We further distinguish hidden chaining
nodes into two types: type-1 and type-2. In Figure 5, x1 is a type-1
and x4 is a type-2 hidden chaining node.

Note that a fundamental summary node can be of multiple
types, e.g., a type-3 boundary node may also be chaining node.

4.2.2 Identifying Fundamental Summary Nodes
Chaining nodes can be identified before calculating TAL reacha-
bility. The algorithm for identifying chaining nodes is depicted in
Algorithm 6. Obviously, the asymptotical time cost of Algorithm 6
is O(n+E), where n is the number of nodes and E is the number
of edges. Essentially, a node with at least an incoming edge labeled
with a closing parenthesis and at least an outgoing edge labeled
with an opening parenthesis is a chaining node. However, due to
the existence of edges labeled with e, we need to perform a propa-
gation of edge labels (which is also based on a work-list algorithm)
before checking the preceding condition. Algorithm 6 can ensure
that, for any node (denoted as x) with at least an incoming edge la-
beled with a closing parenthesis and any node (denoted as y) with
at least an outgoing edge labeled with an opening parenthesis, if
there is a path from x to y with all edges labeled with e, there must
be a chaining node along the path (including x and y). Note that
the change of edge labels in Algorithm 6 should be confined to the
algorithm itself so as not to impact other parts of our analysis.

After identifying the chaining nodes and calculating TAL
reachability, we identify hidden chaining nodes in the following
way. Supposing there is a conditional reachability relationship
among x, y, i, and j (i.e., C-Reachablei,j(x,y)) and the label is
S, if we know that y is a chaining node, we mark x as a type-
1 hidden chaining node; and if we know that x is a chaining
node, we mark y as a type-2 hidden chaining node.

It is straightforward to identify boundary nodes. The only
issue for identifying boundary nodes is that we can only identify
a set of potential boundary nodes when the client code is still
unavailable. When the client code becomes available, we can refine
the set to obtain real boundary nodes.

4.2.3 Discarding Unnecessary Reachability Information
As we keep only fundamental nodes in the summary, reachabil-
ity information related to at least one node not being a fundamental
summary node is naturally discarded. We further remove some
reachability information as follows.

We keep all unconditional reachability relationships between
two fundamental summary nodes. However, for a conditional
reachability relationship in the form of C-Reachablei,j(x,y), we
keep it in the summary only if both x and y are fundamental
summary nodes; i is a type-3 boundary node or a type-1 hidden
chaining node; and j is a type-4 boundary node or a type-2 hid-
den chaining node. All the other reachability information should
be discarded.

ALGORITHM 6: Identify Chaining Nodes

1 for each node x with at least an incoming edge labeled with a closing
parenthesis in G do

2 Add x to C; Add x to W ;
3 end
4 while W is not empty do
5 Select and remove the first item (denoted as $) from W ;
6 for each outgoing edge (denoted as oe) labeled with e of $ do
7 Change the label of oe to an closing parenthesis;
8 Suppose that oe connects $ to y;
9 if y /∈ C then

10 Add y to C; Add y to W ;
11 end
12 end
13 end
14 for each node x in G do
15 if there is at least one incoming edge of x labeled with a closing

parenthesis and there is at least one outgoing edge of x labeled with
an opening parenthesis then

16 Mark x as a chaining node
17 end
18 end

Furthermore, if there is already an unconditional reachability
relationship of a certain type (i.e., S, S1, or S2) between two nodes
(denoted as x and y), it is thus not useful to keep any conditional
reachability relationships of the corresponding type (i.e., S for S,
S1 for S1, and S2 for S2) in the form of C-Reachablei,j(x,y) for
any i and j. The reason is that the only aim to keep a conditional
reachability relationship is that the conditional reachability
relationship may become an unconditional one during client-code
analysis. In fact, we use CFL reachability to calculate all the uncon-
ditional reachability relationships before calculating TAL reach-
ability; and when there is already an unconditional reachability
relationship from x to y, we prevent our TAL-reachability algo-
rithm from adding any conditional reachability relationship in
the form of C-Reachablei,j(x,y) to R2 in the first place.

4.3 Analyzing Client Code
With the post-processed summary, we use CFL reachability to an-
alyze the client code. Specifically, we use the CFL defined in Def-
inition 4.2 to analyze the graph composed of the client graph, the
fundamental summary nodes with the reachability relation-
ships among them, and edges each between a client node and a
boundary node in the summary. Our CFL-reachability algorithm
extends Melski and Reps’s work-list algorithm [20] as follows.

First, for each unconditional reachability relationship in the
summary, we put it into the work list during initialization, because
it may trigger some productions in Definition 4.2 (e.g., Tk → {kS,
S → Tk}k, and S → SS).

Second, for each conditional reachability relationship in the
summary, we do not put it into the work list, because we do
not want to have new conditional reachability relationships.
However, when we have a new unconditional reachability rela-
tionship between two summary nodes (denoted as i and j), we
check whether this unconditional reachability relationship can turn
a conditional reachability relationship into unconditional. That
is to say, we check whether there exist two summary nodes (de-
noted as x and y) such that C-Reachablei,j(x, y).

4.4 Soundness
We demonstrate that our algorithm for context-sensitive data-
dependency analysis using TAL-reachability-based summary is
sound in Theorem 4.1.



THEOREM 4.1. (Soundness) Our algorithm using TAL-reachability-
based summary produces sound results for context-sensitive data-
dependency analysis.

In stead of directly proving Theorem 4.1, we prove that our al-
gorithm produces exactly the same results as the CFL-reachability-
based algorithm using the CFL defined in Definition 4.2 (i.e., Theo-
rem 4.2). Since the CFL-reachability-based algorithm is sound, our
algorithm is also sound.

THEOREM 4.2. (Equivalence) Our algorithm using TAL-reachability-
based summary produces exactly the same results for context-
sensitive data-dependency analysis as the CFL-reachability-based
algorithm using the CFL in Definition 4.2.

Proof. To prove Theorem 4.2, we need to demonstrate that the
following two properties hold for any two nodes (denoted as x
and y) in the client graph. First, if our algorithm determines a
reachability relationship from x to y, the CFL-reachability-based
algorithm also determines such a reachability relationship. Second,
if the CFL-reachability-based algorithm determines a reachability
relationship from x to y, our algorithm also determines such a
reachability relationship. For conciseness, we consider only the
reachability of exactly matched parentheses, as the proof for the
other two types of reachability can be naturally extended from the
current proof.

The first property obviously holds. In fact, when our algorithm
determines a reachability from x to y, our algorithm can ensure that
there is at least a path from x to y labeled with exactly matched
parentheses.

Let G be the union of the client graph and the library graph, N
be the union of the set of client nodes and the set of fundamental
summary nodes, x∈N and y∈N . We actually prove that if there
is a parenthesis-matched path from x to y (denoted as pathx,y) in
G, our algorithm determines a reachability relationship from x to y.
Note that this target property is stronger than the second property.

We prove the target property via mathematical induction on the
basis of the number (denoted as p) of pairs of matched parentheses
in pathx,y . When p=0, our target property obviously holds. Since
there is no parenthesis in pathx,y , pathx,y can be divided into a
series of pieces, each of which is composed of nodes all in the
library graph or nodes all in the client graph. As our algorithm
keeps all the unconditional reachability between boundary nodes
in the library graph during library-code summarization and post-
processing, our CFL-reachability algorithm for client-code analysis
definitely determines pathx,y .

Let us assume that, for any 0≤r≤q, our target property holds
when p=r. In the following, we prove that our target property holds
when p=q+1. Let us denote the first opening parenthesis in pathx,y

as OP and the closing parenthesis matched with OP in pathx,y as
CP . There are four situations for pathx,y .

1. OP does not connect two library nodes and CP is not the last
closing parenthesis in pathx,y .

2. OP does not connect two library nodes and CP is the last
closing parenthesis in pathx,y .

3. OP connects two library nodes and CP is not the last closing
parenthesis in pathx,y .

4. OP connects two library nodes and CP is the last closing
parenthesis in pathx,y .

For Situation 1, let CP connect node i to node j. As CP is
not the last closing parenthesis, there is a parenthesis-matched sub-
path from x to j in pathx,y , where the number of pairs of matched
parentheses is at most q; and there is a parenthesis-matched sub-
path from j to y in pathx,y , where the number of pairs of matched

parentheses is at most q. Since OP does not connect two library
nodes, CP must not connect two library nodes. Therefore, j is
a client node or a boundary node in the library. According to
the inductive assumption, our algorithm determines a reachability
relationship from x to j and a reachability relationship from j to
y. As a result, our algorithm determines a reachability relationship
from x to y.

For Situation 2, let OP connect node i to node j and CP
connect node k to node l. Thus, there is a parenthesis-matched sub-
path from j to k in pathx,y , where the number of pairs of matched
parentheses is q. Since OP does not connect two library nodes,
CP must not connect two library nodes. Therefore, j is a client
node or a boundary node in the library, and so is k. According to
the inductive assumption, our algorithm determines a reachability
relationship from j to k. As a result, our algorithm determines a
reachability relationship from x to y.

Situation 3 is similar to Situation 1. However, supposing that
CP connects node i to node j, j may not be a fundamental
summary node. Let us consider the first opening parenthesis
(denoted asOP ′) between j and y along pathx,y . LetOP ′ connect
node k to node l. As j is a library node and a library node can
connect to a client node only through an edge labeled with a
parenthesis, k must be a library node and all the nodes between
j and k along pathx,y are library nodes. Thus, our Algorithm 6
can identify at least one chaining node in the sub-path from
j to k. Note that, if l is a client node, there must be another
library node (denoted as l′) and an edge labeled with an opening
parenthesis from k to l′. Let node u be such a chaining node.
Our algorithm determines a reachability relationship from x to u
and a reachability relationship from u to y based on the inductive
assumption.

Situation 4 is similar to Situation 2 but more complicated. Sup-
posing that OP connects node i to node j and CP connects node
k to node l, any of the four nodes may not be a fundamental
summary node. As there is no parenthesis between x and i along
pathx,y , the entire sub-path from x to i is in the library graph. Sim-
ilarly, the entire sub-path from l to y is in the library graph. Now,
we consider all pairs of matched library parentheses nested with
the pair of OP and CP along pathx,y . Let OP ′ (connecting node
i′ to node j′) and CP ′ (connecting node k′ and node l′) denote
the opening parenthesis and the closing parenthesis in the inner-
most pair. It can be proven that there exists a node (denoted as u)
in the sub-path from j′ to k′ along pathx,y such that u is a type-3
boundary node or a type-1 hidden chaining node and there is no
parenthesis between j′ and u along pathx,y . Similarly, there exists
a node (denoted as v) in the sub-path from j′ to k′ along pathx,y

such that v is a type-4 boundary node or a type-2 hidden chaining
node and there is no parenthesis between v and k′ along pathx,y .
According to the inductive assumption, our algorithm determines a
reachability relationship from u to v. Furthermore, our algorithm
keeps a conditional reachability relationship in the form of C-
Reachableu,v(x,y).

To show the existence of u, let us consider the first opening
parenthesis (denoted as OP ′′) in the sub-path from j′ to k′ along
pathx,y . Supposing that OP ′′ connects node i′′ to node j′′ and the
matched closing parenthesis of OP ′′ (denoted as CP ′′) connects
node k′′ to l′′. If j′′ is a client code, i′′ is thus a type-3 boundary
node and can serve as node u. Suppose that j′′ is a library node.
Then, CP ′′ must not be the last parenthesis in the sub-path from j′

to k′ along pathx,y; otherwise, the pair of OP ′′ and CP ′′ would
nest inwardly with the pair of OP ′ and CP ′. Thus, we can find a
chaining node (denoted as u′) between l′′ and k′ along pathx,y

such that there is no parenthesis between l′′ and u′. Due to the
existence of u′, i′′ is thus a type-1 hidden chaining node and can
serve as node u. �



5. Experimental Evaluations
In this section, we consider the cost our TAL-based approach
in comparison with the CFL-based approach. As our main con-
sideration is whether the TAL-reachability-based summary can
boost client code analysis, our first experiment (E1) focuses on
the cost comparison between our TAL-based approach and the
CFL-based approach for analyzing client code. Furthermore, to
understand how much more computation the calculation of TAL
reachability would incur, our second experiment (E2) focuses on
the cost comparison between our TAL-based approach and the
CFL-based approach for summarizing library code. More details
can be found in our project website at http://www.utdallas.
edu/~lxz144130/tal.html.

5.1 Implementation
We implemented our TAL-Reachability algorithm in Java. More
specifically, we use hash tables to store R1 and R2 in Algorithm 1
to 5 because reachability information in R1 and R2 is typically
sparse. We use several indexing facilities to access reachability in
R1 and R2 when trying different productions in Algorithm 1. For
R1, we use two hash tables to index all the reachability informa-
tion in the form of (X, i, j) by <X, i> and <X, j>, respectively.
For R2, we use six hash tables to index (X, i, j, k, l) by <X, i>,
<X, j>, <X, k>, <X, l>, <X, i, l> and <X, j, k>, respectively.
Here, we use HashSet and HashMap from the Java Standard Li-
brary to maintain the reachability information (i.e., R1 and R2)
and the indexing information for R1 and R2, respectively.

Furthermore, we also implemented a TAL-based context-sensitive
data-dependence analysis tool on top of Wala (version 1.3.5) 6 for
Java applications. We used Wala to build the data dependence graph
of the program. When building the data dependency graph, we do
not directly perform alias analysis but retain all the information
necessary for alias analysis (assignment information between ob-
ject variables). Therefore, when TAL-reachability algorithm is ap-
plied, the alias information will be computed (in a flow-insensitive
and field-insensitive but context-sensitive way) together with data
dependence among various code elements. We chose to target Java
applications, because Java is one of the most popular program-
ming languages and callbacks are ubiquitous (even inevitable) in
Java libraries due to the support of method overriding in Java. Our
tool consists of (1) a summarization component that analyzes and
generates TAL-based summaries for library code, and (2) an anal-
ysis component that performs context-sensitive data-dependence
analysis for the client code using the generated summaries.

5.2 Experimental Setup
All our experiments were performed on a PC with 4-core 8-thread
Intel Core i7-3770 CPU (3.4GHz) and 4 Gigabyte RAM running
JVM 1.7.0-55 on Ubuntu Linux 13.10.
Benchmarks. We used 11 Java programs from SPECjvm2008 [2]7

as our benchmark. The SPECjvm benchmark suite has been widely
used in the program analysis research [37, 38, 44, 45]. In addition,
we also randomly selected 4 programs from GitHub [1] to evaluate
our approach. The first 5 columns in Table 1 depict the statistics
of the subjects used in our evaluation. Column 1 and 2 lists the
subjects’ name and size in lines of code; Columns 3 to 5 present the
total number of nodes, the number of fundamental summary
nodes, and the number of nodes in client code for each subject’s
data-dependence graph. Note that, each of our subjects contains
a Java library and a client program that invokes the library in
different ways. We analyze all the methods (in either client or

6 http://wala.sourceforge.net
7 Note that the serial program is not included because our approach runs
out of memory during library-code summarization.

library code) that are reachable from the main method of the client
program, and we compute summaries for only the main Java library
in the benchmark (while ignoring other invoked libraries such as
java.lang). Our statistics are based on the part of client and library
code that are involved in our analysis.
Compared Techniques. Since the summary information for library
code is reusable, we may simply compare our approach in analyz-
ing the client code with TAL-reachability-based summaries with
the traditional CFL-based approach in analyzing the whole code
base. However, that is not fair because the CFL-based approach
can also pre-compute summary information for the part of library
code that does not involve any callbacks. Note that, when using
CFL reachability to summarize library code, if one node is labeled
as not reachable to another node, the reachability is still possible
during client-code analysis due to callbacks.

To enable a fair comparison between our TAL-based approach
and the traditional CFL-based approach, we implemented a two-
step CFL-based approach containing two components: (1) a sum-
marization component that uses CFL reachability to pre-compute
summary information for the library code, and (2) an analysis
component that performs data-dependence analysis for the client
code on the basis of the CFL-reachability-based library summaries.
Similar to the implementation of our approach, we implemented
the CFL-based approach using Melski and Reps’s generic CFL-
reachability algorithm [20]. Thus, we ensure that the CFL-based
approach is the same with our approach except that it computes
and uses CFL-reachability-based summaries instead of TAL-based
summaries for library code.

To investigate the efficiency of our approach for analyzing client
code (i.e., E1), we compared the second component of our ap-
proach with that of the CFL-based approach. Furthermore, to mea-
sure the overhead incurred by our TAL-based summary computa-
tion (i.e., E2), we compared our first component with that of the
CFL-based approach.
Measurements. Similar to existing studies of CFL-reachability-
based analysis [37, 44, 45], we measured both the time cost and
the peak memory usage of our TAL-based analysis .

5.3 Results
The main experimental results are shown in Table 1. Columns 6 to
9 show the results for client code analysis (E1), and Columns 10 to
13 show the results for library summarization (E2).
E1: Client-Code Analysis. From Columns 6 to 9 of Table 1, we
make the following observations. First, the time cost of our TAL-
based approach is much lower than that of the CFL-based ap-
proach. For example, to analyze the client code for all the subjects,
the CFL-based approach needs 7877 milliseconds, while our TAL-
based approach needs only 956 milliseconds, indicating a speed-up
of 8.24X. In an extreme case, our TAL-based approach achieves
a speed-up of 25.83X for the xml subject. In addition, our TAL-
based approach outperforms the CFL-based approach for all the
studied subjects in terms of time cost (with at least a speed-up of
2X). The reason is that, although our TAL-based approach lever-
ages the same CFL-reachability algorithm when analyzing client
code, it is able to utilize more intensive summaries for the library
code, so that more parts of the library code need not to be ana-
lyzed again. Second, the peak memory consumption of the CFL-
based approach is also larger than that of our TAL-based approach.
This is also expected because our approach maintains reachability
information between the fundamental summary nodes, whose
number is much smaller than the number of all library nodes. As de-
picted in Table 1, in total, the number of fundamental summary
nodes is only 6.35% of the number of library nodes. Furthermore,
for each subject, the number of fundamental summary nodes
is always less than 10% of the number of library nodes. In sum-



Subjects Size #Nodes Client-Code Analysis Library Summarization
(LOC) Total Fund. Client CFL TAL CFL TAL

T(ms) M(MB) T(ms) M(MB) T(ms) M(MB) T(ms) M(MB)
check 10,672 19951 1539 3347 348 152 67 58 267 107 645 132

compiler 9,607 16726 1220 536 330 153 53 73 309 130 661 141
compress 10,058 17640 1309 1483 330 159 64 75 321 130 670 142

crypto 21,503 23310 1825 3216 459 174 73 66 339 126 773 207
derby 21,568 24513 1687 1106 684 250 78 93 435 194 998 610

helloworld 9,458 16299 1207 296 309 130 36 48 283 105 640 138
mpegaudio 40,246 56493 2175 27576 1047 378 215 196 575 239 4421 387

scimark 10,326 18297 1287 2027 331 161 67 78 322 131 665 149
startup 11,104 19933 1549 621 450 168 74 65 351 132 941 268
sunflow 9,102 15700 1121 85 290 123 33 44 293 100 663 127

xml 47,556 73786 4501 2312 2945 756 114 184 1433 587 5811 741
btree 5,168 7813 406 1103 105 80 48 56 179 68 264 155

mushroom 2,866 3865 272 7 80 64 8 48 169 76 183 93
parser 5,545 7968 385 112 108 86 13 53 199 74 269 158
sample 2,894 3969 247 28 61 64 13 48 162 73 184 99
Total 217,673 326263 20730 43855 7877 956 5637 17788

Table 1: Experimental results

mary, without sacrificing any precision, our approach is able to
accelerate the context-sensitive data-dependence analysis on client
code by almost a magnitude.
E2: Library Summarization. From Columns 10 to 13 of Table 1,
we are able to make the following observations. First, the time
cost of our approach is higher than that of the CFL-based approach
when summarizing library code. Note that our TAL-based approach
uses CFL reachability as a preprocessing step for summarizing the
library code. To summarize the library code for all subjects, our
TAL-based approach needs 17788 milliseconds, while the CFL-
based approach needs only 5637 milliseconds, indicating an av-
erage slow-down of 3.16X. Second, the average peak memory con-
sumption of our approach is 236.5MB, which is also higher than
that of the CFL-based approach (i.e., 151.5MB). The reason for the
slow-down and extra memory consumption is that our approach
further computes the TAL-reachability information for library code
as well as the CFL-reachability information. As this phase is typi-
cally performed much less frequently than the client-code analysis,
the average slow-down of 3.16X can be affordable.

6. Discussion
6.1 Factors Affecting Client-Analysis Speed-up
Our experimental results in Section 5 demonstrate that the speed-up
of our approach for client-code analysis varies much for different
subjects (i.e., from 2X to 25X). Here, we further qualitatively
investigate the factors that may affect the speed-up.

The first factor is the number of callbacks the client code pro-
vides. If the client does not provide any callbacks, our TAL-based
summaries are essentially the same as the CFL-based summaries.
Intuitively, the more callbacks the client provides, the more possi-
bly our approach achieves a large speed-up. Also, since the impacts
of different callbacks on the analysis are different, the overall im-
pact does not depend only on the number of callbacks.

The second factor is the depth of nested method calls in the
library code. Since our approach folds up nested method calls in
library-code summarization, our client-code analysis can avoid an-
alyzing those deeply nested method calls again. TAL reachability
works best when some deeply nested method calls are callbacks.

The third factor is the number of long chains of conditional
reachability relationships that are eventually turned into uncon-
ditional. Since our library-code summarization can speed up only
the determination of each conditional reachability relationship
to be unconditional in such a chain, the existence of many such long
chains may affect our approach negatively.

6.2 Other Applications of TAL Reachability
Although we only investigate one application of TAL reachability,
there may be many other applications in the following categories:

First, since many analyses can be modeled as CFL-reachability
problems [3, 31, 40], TAL reachability should be useful for improv-
ing summary-based versions of these analyses. That is to say, we
can use TAL reachability to calculate a more intensive summary of
library code to boost client-code analysis.

Second, TAL reachability may provide further help for analyz-
ing applications in which some code in the code base is not suitable
for static analysis [43]. Two common cases are dynamically loaded
code and dynamically generated code. Since dynamically loaded or
generated code is typically impossible or very hard to analyze, to
ensure the quality (e.g., reliability and security) of the whole pro-
gram, dynamic analyzers and checkers are often enforced at run
time. Similar to summarizing library code, it may be beneficial to
acquire more intensive analysis results of the static code with TAL
reachability so as to reduce the overhead of runtime enforcement.

Third, TAL reachability may be a useful tool for analyzing par-
tial code. In other words, we can use TAL reachability to acquire
useful properties of part of a code base regardless of the missing
code (e.g., client code, dynamically loaded code, and dynamically
generated code). For example, the conditional reachability in-
formation calculated by our algorithm can be easily extended to
acquire the dependence between any two nodes in the library graph
regardless of the client code: definite dependence, possible depen-
dence, and impossible dependence. This dependence information
can then be used for compiling and verifying the library.

Fourth, TAL reachability may also be useful for analyzing
evolving software systems. Modern software systems usually un-
dergo various revisions [5]. When the developers are changing
some code files, they can run TAL-reachability-based analysis for
the unchanged files (including libraries) meanwhile at the backend.
Then, when the developers finish the revision, they can directly
use the pre-computed information for unchanged files to speed-up
program analysis for verifying the changed files.

6.3 Considering Field Sensitivity
In program analysis, field sensitivity is another important factor that
impacts the precision of analysis [18, 37, 45]. Our approach per-
forms flow-insensitive and field-insensitive data dependency anal-
ysis, and uses a simple heap abstraction that does not consider type
structures. The rich heap abstractions that enable field-sensitivity
can also be represented with CFL reachability. However, unfortu-
nately, data-dependence analysis considering both kinds of sensi-



tivity is undecidable [30]. One typical solution is to use a regular
language to approximate one CFL and keep the other CFL intact.
For example, we can regularize the CFL for field sensitivity (de-
noted as RLf ) and keep the CFL for context sensitivity (denoted
as CFLc) [12, 13]. Then, data-dependence analysis considering
both kinds of sensitivity can be approximated as a CFL-reachability
problem using RLf ∩ CFLc. This paradigm can be extended to
other constraints that can be represented as CFL reachability (e.g.,
synchronization sensitivity [26]). Of course, the generic algorithm
by Melski and Reps [20] would typically not scale to large pro-
grams when using RLf ∩ CFLc.

To extend our approach for field sensitivity, we can use a similar
strategy: regularizing the CFL for field sensitivity to intersect it
with our TAL in Definition 4.1 (denoted as TALc). Note that our
TAL-reachability algorithm essentially provides a way to calculate
the intersection of a regular language and a tree-adjoining language,
as a regular language can be represented as paths in a graph. Similar
to Melski and Reps’s generic algorithm for CFL reachability, our
generic algorithm for TAL reachability may also have scalability
issues for large programs when using RLf ∩ TALc. One possible
solution is to extend Kodumal and Aiken’s regularly annotated set
constraints [13] to TAL reachability.

7. Related Work
CFL Reachability. Based on the framework of CFL reachability
proposed by Yannakakis [46], researchers used CFL reachability
for various program-analysis problems, such as inter-procedural
slicing [31], inter-procedural dataflow analysis [32], shape anal-
ysis [10, 28, 33], constant propagation [35] and pointer analy-
sis [37, 45]. Researchers also investigated demand-driven algo-
rithms for solving CFL-reachability problems [9, 38]. Reps [29]
provided an early survey of program analysis based on CFL reach-
ability. Rehof and Fähndrich [27] used CFL reachability to achieve
anO(n3) algorithm for type-based flow analysis with polymorphic
subtyping, which improves a previous O(n8) algorithm. Pratikakis
et al. used CFL reachability for label-flow analysis [24] and race
detection [25]. Zheng and Rugina [48] used CFL reachability for
context-insensitive demand-driven alias analysis, which directly
computes aliasing information without pre-computing points-to in-
formation. Chaudhuri [4] provided the first sub-cubic algorithm for
CFL reachability. Some analyses require the consideration of satis-
fying multiple CFL reachability properties. However, it is undecid-
able considering two or more CFL reachability properties simulta-
neously [26, 30]. Therefore, it is needed to keep one CFL reachabil-
ity property intact and approximate all the other CFL reachability
properties as regular reachability properties [13, 37, 45]. In this pa-
per, we propose TAL reachability via extending CFL reachability.
TAL reachability allows us to calculate more intensive and compact
summaries than CFL reachability for library code.

Mildly Context-Sensitive Grammars. As mentioned previ-
ously, researchers intensively investigated four formalisms for
defining mildly context-sensitive grammars: tree-adjoining gram-
mars [11], head grammars [23], linear indexed grammars [8], and
combinatory categorial grammars [39]. According to [41], these
four formalisms are actually four sets of different notations for
defining the same family of mildly context-sensitive languages
(i.e., the TAL family), which are parsable in O(n6) time (where
n is the length of the sentence for parsing) [36]. In this paper,
we provide a concise formalism, which is the Chomsky Normal
Form for defining the TAL family. Compared with the four existing
formalisms, our formalism is more suitable for defining TAL reach-
ability, which has not been investigated previously. There are also
another two less intensively investigated formalisms (i.e., linear
context-free rewriting systems [42] and minimalist grammars [17])
for defining a larger language family than the TAL family.

Staged Program Analysis. Summary-based analysis belongs to
a wider notion of staged program analysis, where multiple passes of
program analysis cooperate with each other to achieve the purpose.

We are aware of two research efforts on summary-based pro-
gram analysis that try to build summaries for library code with
callbacks. Specifically, Lattner et al. [16] leverages heap cloning to
achieve context-sensitive stages analysis. However, their approach
sacrifices context-sensitivity when recursion exists, while our ap-
proach achieves full context-sensitivity with recursions. Madhavan
et al. [19] provide a general framework to deal with callbacks. Due
to its generality, it identifies abstract domain parts affected by call-
backs, and left these parts for analyses when client code is avail-
able, while our approach is able to generate partial summaries for
these parts with conditional reachability, and the partial summaries
are validated to be effective in our experiments. Our conditional
reachability is relevant to conditional dependencies, which were
defined and studied by Komondoor and Ramalingam [14] in an-
other scenario. But the conditions in conditional dependencies re-
fer to existing branch predicates, while the conditions in conditional
reachability in our paper refer to the unknown client code.

Furthermore, CFL reachability [32] naturally provides a basis
of summarizing library code. Dillig et al. [7] proposed a summary-
based flow-sensitive analysis (for verifying program memory safety
properties), in which strong updates are considered in summary
building. However, their analysis does not consider callbacks. Re-
searchers have also considered summarizing library code to speed
up dataflow analysis [34]. However, their approach is based on the
“functional approach” proposed by Sharir and Pnueli [22], and is
not solvable in polynomial-time of the program size [32]. In ad-
dition, their approach simply folds intra-procedural nodes or invo-
cation nodes which transitively invoke only library functions (no
callbacks). Our TAL-based analysis can also be applied the folded
graph produced by their approach to make data-flow analysis even
faster, since our approach can reduce the analysis cost globally, e.g.,
our algorithm can also fold invocation nodes that can transitively
invoke client code (dealing with callbacks).

For demand-driven interprocedural analysis, the main disadvan-
tage of top-down approaches lies in repeated analysis and the main
disadvantage of bottom-up approaches lies in analyzing informa-
tion unnecessary for the demand [47]. Our approach is essentially
a bottom-up approach. However, since we target analyzing reacha-
bility relationships between all pairs of nodes (not specific pairs of
nodes), we do not need to avoid analysis unnecessary for any spe-
cific demand. Thus, it is natural to use bottom-up approach here.

Unlike summary-based program analysis, where library code is
distinguished from client code, other staged analyses use different
passes on the same code base. Naik and Aiken [21] proposed a
two-stage analysis, where conditional must-not-aliasing informa-
tion is calculated to ensure sound race detection. Xu et al. [45]
proposed a two-stage points-to analysis, which uses conditional
must-not-aliasing information to accelerate CFL-reachability cal-
culation. Chugh et al. [6] proposed to use static information (i.e.,
residual policies) calculated in the first pass to reduce the runtime
overhead for analyzing dynamically generated code in JavaScript.

8. Conclusion and Future Work
In this paper, we propose a novel framework for program analy-
sis called TAL reachability. Based on this framework, we further
propose a novel technique to summarize library code with call-
backs for context-sensitive data-dependency analysis. Since our
technique calculates conditional reachability, we have more in-
tensive summary information without further approximation.

We further experimentally evaluated our approach on a set of
Java benchmark programs, and our experimental results demon-
strate that, compared with a similar CFL-based approach, our



TAL-based approach is able to achieve a speed-up of over 8X for
client-code analysis on average. The largest speed-up even reaches
over 25X. Our TAL-based approach naturally concedes some slow-
down for library-code summarization; however our experimental
results demonstrate that the slow-down is typically acceptable.

Since TAL reachability provides a new framework for static pro-
gram analysis, we believe that there will be a lot of future work on
top of TAL reachability. In the near future, we plan to investigate
the following issues. First, although our current research focuses
on data-dependence analysis, TAL reachability is applicable to var-
ious other program-analysis problems. We plan to investigate these
problems (e.g., points-to analysis [37, 44, 45]) using TAL reach-
ability. Second, our current algorithm for TAL reachability is a
generic algorithm; it does not consider the special characteristics
of the graph. We plan to investigate faster TAL-reachability algo-
rithms, especially for specific program-analysis problems. Third,
our current research considers only context sensitivity in our anal-
ysis. We plan to further consider field sensitivity in our analysis,
where a major issue is to scale the field-sensitive, context-sensitive
library-code summarization using TAL reachability. Fourth, when
analyzing libraries, it is possible that library l1 invokes another li-
brary l2 whose summaries has been computed. We plan to handle
this such cases by feeding the summaries of l2 for TAL-reachability
analysis of the client library l1.
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Appendix
THEOREM 1. Our formalism presented in Section 2 defines the
same language family that TAGs define.

In the following, we first present the formalism of Head Gram-
mars [41], which is equivalent to the formalism of TAGs. Then, we
prove that our formalism is equivalent to the formalism of Head
Grammars, thus proving Theorem 1.

DEFINITION 1. (Head Grammars [41]) A head grammar HG
is a four tuple G = (N,T, S, P ), where N is a finite set
of non-terminals, T is a finite set of terminals, S ∈ N is
the start symbol, and P is a finite set of productions of the
form A → f(σ1, σ2, ..., σn), where A ∈ N,n ≥ 1, f ∈
{W, C1,n, C2,n, ..., Cn,n}, σ1, σ2, ..., σn ∈ N ∪ (T ∗ × T ∗),
and n = 2 when f =W . Ci,n and W are defined as follows:

• Ci,n : (T ∗×T ∗)n → (T ∗×T ∗) is a concatenation operation
where Ci,n(u1 ↑ v1, ..., ui ↑ vi, ..., un ↑ vn) = u1v1...ui ↑
vi...unvn
• W : (T ∗ × T ∗)2 → (T ∗ × T ∗) is the wrapping operation

where W (u1 ↑ v1, u2 ↑ v2) = u1u2 ↑ v2v1
The language defined by HG is {µν ∈ T ∗|S ⇒ µ ↑ ν}. Non-
terminals in a Head Grammar are actually equivalent to second-
order non-terminals in our formalism; and there is an implicit
de-pairing operation on the start symbol to form a string in the
language defined by the Head Grammar.

We transform Theorem 1 into the following two lemmas:

LEMMA 1. (Backward Subsumption) The language family de-
fined by our formalism can be defined by the Head Grammars.

LEMMA 2. (Forward Subsumption) The language family defined
by the Head Grammars can be defined by our formalism.

Proof (Lemma 1). We show that all the production rules in our
formalism can be expressed by the rules in Head Grammars:

Adjoining operator. For any two string pairs A and B in the form
α ◦β and γ ◦ δ, e(A,B) = αγ ◦ δβ. This can be exactly expressed
by the W operator in Head Grammars, since W (α ↑ β, γ ↑ δ) =
αγ ↑ δβ8.

Extended concatenation operators. For a string pair in the form
of α ◦ β and a string in the form of γ, all the four extended
concatenation operators can be expressed using the W or Ci,n

operator in Head Grammars:

8 Note that the ↑ operator in Head Grammars is equivalent to our ◦ operator.

• /∩(α ◦ β, γ) = γα ◦ β. This can be expressed by C2,2(ε ↑
γ, α ↑ β), which will produce εγα ↑ β, and finally γα ↑ β.
• .∩(α ◦ β, γ) = αγ ◦ β. This can be expressed by W (α ↑ β, γ ↑
ε), which will produce αγ ↑ εβ, and finally αγ ↑ β.
• ∩/(α ◦ β, γ) = α ◦ γβ. This can be expressed by W (α ↑ β, ε ↑
γ), which will produce αε ↑ γβ, and finally α ↑ γβ.
• ∩.(α ◦ β, γ) = α ◦ βγ. This can be expressed by C1,2(α ↑
β, ε ↑ γ), which will produce α ↑ βεγ, and finally α ↑ βγ.

Concatenation operator. Although the formalism of Head
Grammars contains only our second-order non-terminals, it can
simulate the traditional concatenation operator as follows. We can
use a non-terminal in Head Grammars representing α ↑ ε to simu-
late a non-terminal in CFGs (i.e., a first-order non-terminal in our
formalism). Then the W operator serves as the traditional concate-
nation operator for two such non-terminals.

Pairing operator. LetA andB be simulated by α ↑ ε and β ↑ ε,
respectively. We can simulate ⊕(A,B) as C1,2(α ↑ ε, β ↑ ε).

De-pairing operator. In Head Grammars, there is actually an
implicit de-pairing operator on the start symbol. Our formalism al-
lows a first-order non-terminal de-paired from a second-order non-
terminal to concatenate with other second-order non-terminals. The
Ci,n operator can simulate this situation. For example, de-pairing
α ◦ β can be expressed by C2,2(α ↑ β, ε ↑ ε) since it will produce
αβ ↑ ε. Note that we can use the Ci,n operator together with ε↑ε
and the W operator to manipulate the concatenation position. For
example, W (α↑β, C2,2(γ ↑ δ, ε ↑ ε)) results in αγδ ↑ β.

Therefore, all the production rules in our formalism can be ex-
pressed by the formalism of Head Grammars. �

Proof (Lemma 2). We further show that all the production rules in
Head Grammars can be expressed by our formalism.
W operator. As shown above, the W operator in Head Gram-

mars is equivalent to our adjoining operator e, thus can be ex-
pressed by our formalism.
Ci,n operator. We apply mathematical induction on n (n ≥ 1),

and i can be arbitrary integer within the range [1, n].

• Case-1: n = 1, i can only be 1:

i = 1: C1,1(u1 ↑ v1) = u1 ↑ v1. This is the identity
production rule and is trivially supported by our formalism.

• Case-2: n = 2, i can be 1 or 2:

i = 1: C1,2(u1 ↑ v1, u2 ↑ v2) = u1 ↑ v1u2v2. This can be
expressed by our formalism as: ∩.(u1 ◦ v1,	(u2 ◦ v2)).
i = 2: C2,2(u1 ↑ v1, u2 ↑ v2) = u1v1u2 ↑ v2. This can be
expressed by our formalism as: /∩(u2 ◦ v2,	(u1 ◦ v1)).

• Now we assume Ci,n can be expressed by our formalism when
n = k (k ≥ 1) for any i ∈ [1, k], then for n = k + 1 and
i = i′, i′ ∈ [1, k + 1]:

Ci′,k+1(u1 ↑ v1, ..., ui′ ↑ vi′ , ..., uk+1 ↑ vk+1)

= u1v1...ui′ ↑ vi′ ...uk+1vk+1

= C2,2(u1 ↑ v1, Ci′−1,k(u2 ↑ v2, ..., ui′ ↑ vi′ , ..., uk+1

↑ vk+1))

According to Case-2, C2,2 can be expressed by our formalism.
In addition,i′ − 1 is less than or equal to k. Then, according to
our inductive assumption, Ci′−1,k can also be expressed by our
formalism. Thus, Ci,k+1 can be expressed by our formalism.

Based on mathematical induction,Ci,n(n ≥ 1, 1 ≤ i ≤ n) can
be expressed by our formalism. �


