Propositional Logic: Syntax

Propositional logic consists of propositional symbols and the connectives \(\land, \lor, \neg, \rightarrow \) (I like \(\rightarrow \) better than \(\Rightarrow \)), and \(\leftrightarrow \).

A *proposition* or propositional *sentence* can be formed as follows:

Every propositional symbol is a sentence.

If \(A \) is a sentence, then \(\neg A \) is a sentence.

If \(A_1 \) and \(A_2 \) are sentences, then so are:

\[
A_1 \land A_2, \quad (\text{and, conjunction})
\]
\[
A_1 \lor A_2, \quad (\text{or, disjunction})
\]
\[
A_1 \rightarrow A_2, \quad \text{and} \quad (\text{implication})
\]
\[
A_1 \leftrightarrow A_2. \quad (\text{equivalence})
\]

A *literal* is a propositional symbol or its negation.
Propositional Logic: Semantics

A *world* is the set of facts we want to represent.

An *interpretation* maps each propositional symbol to the world.

A sentence is *true* if its interpretation in the world is true.

A *knowledge base* is a set of sentences.

A world is a *model* of a KB if the KB is true for that world.

For convenience, a world/model can be thought of as a truth assignment to the symbols.

A sentence is *satisfiable* within a KB if the sentence is true in some model of the KB.

A sentence S is *entailed* by a KB if S is true in all models of the KB (denoted as $KB \models S$), or equivalently, if $KB \rightarrow S$ is *valid*.

Logical inference or *deduction* is concerned with producing entailed sentences from KBs.
The Wumpus World

```
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>START</td>
<td>Breeze</td>
<td>PIT</td>
<td>PIT</td>
</tr>
<tr>
<td>Breeze</td>
<td>Stench</td>
<td>PIT</td>
<td>Breeze</td>
</tr>
<tr>
<td>Stench</td>
<td>Gold</td>
<td>PIT</td>
<td>Breeze</td>
</tr>
<tr>
<td>Stench</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Sentences (KB) → Interpretation → Possible Truth Assignments → Entails → True in all Possible Truth Assignments → Sentence → Entails → True in all Possible Worlds

The Wumpus World
Propositional Logic: Inference Rules

Let A, B, and C be arbitrary sentences.

Modus Ponens From $A \rightarrow B$

and A

Infer B

Unit Resolution From $A \lor B$

and $\neg B$

Infer A

Resolution From $A \lor B$

and $\neg B \lor C$

Infer $A \lor C$

An inference procedure uses inference rules to produce proofs. Denoted as $KB \vdash S$.

An inference procedure is sound if it cannot prove any unentailed sentence.

An inference procedure is complete if it can prove any entailed sentence.
Propositional Logic: More on Resolution

Resolution applies to \textit{conjunctive normal form}. A KB is a conjunction of sentences. Each sentence is a disjunction of literals.

\begin{align*}
(p \rightarrow q) & \equiv (\neg p \lor q) \\
((p \land r) \rightarrow (q \lor s)) & \equiv (\neg p \lor \neg r \lor q \lor s) \\
(p \rightarrow (q \land r)) & \\
& \equiv ((p \rightarrow q) \land (p \rightarrow r)) \\
& \equiv ((\neg p \lor q) \land (\neg p \lor r))
\end{align*}

Resolution is \textit{refutation complete}. If a KB is in CNF, and if the KB is inconsistent, then resolution will infer inconsistent literals.

To deduce a sentence \(S\), first temporarily add \(\neg S\) to the KB. Then, if resolution infers inconsistent literals, then \(\neg S\) is not satisfiable within the KB, which means that \(S\) is entailed.
First-Order Logic: Syntax

First-order logic consists of predicates, functions, constant terms, and variable terms. First-order logic also uses the connectives \land, \lor, \neg, \rightarrow, and \leftrightarrow, and the quantifiers \forall and \exists.

A *term* is:
- a constant or variable, or
- a function applied to a sequence of terms.

An *atomic sentence* or *atom* is:
- a predicate applied to a sequence of terms.

A first-order logic *sentence* can be formed as follows:

An atomic sentence is a sentence.
Connectives can be used in the usual way.
If A is a sentence and x is a variable, then:
- $\forall x \ A$ is a sentence (universal quantifier),
 and
- $\exists x \ A$ is a sentence (existential quantifier).

A *well-formed formula* is a sentence in which all the variables are quantified.
First-order logic: Semantics

The connectives \land, \lor, \neg, \rightarrow, and \leftrightarrow are evaluated in the usual way.

$\forall x \ A$ is true if every substitution for x makes A true.

$\exists x \ A$ is true if at least one substitution for x makes A true.

An *interpretation* consists of objects in the world and mappings for terms and predicates.

A *ground term* is a term with no variables. Each ground term is mapped to an object.

Each predicate is mapped to a relation (think relational database).

A *ground atom* is an atomic sentence with no variables. A ground atom is *true* if the predicate’s relation holds between the terms’ objects.
First-Order Logic: Inference Rules

Let $A(x)$, $B(y)$, and $C(z)$ be arbitrary unquantified propositions with logical variables.

Universal
From $\forall x \ A(x)$

Infer $A(t)$ where t is any term

Existential
From $\exists x \ A(x)$

Infer $A(c)$ where c is a new constant

Resolution (disjunctive)
From $\forall x, y \ B(y) \lor A(x)$
and $\forall x, z \ \neg A(x) \lor C(z)$

Infer $\forall y, z \ B(y) \lor C(z)$

Resolution (implicative)
From $\forall x, y \ B(y) \rightarrow A(x)$
and $\forall x, z \ A(x) \rightarrow C(z)$

Infer $\forall y, z \ B(y) \rightarrow C(z)$
First-Order Logic: Example

Knowledge Base

-\text{parent}(x,y) \mid -\text{ancestor}(y,z) \mid \text{ancestor}(x,z)
-\text{parent}(x,y) \mid \text{ancestor}(x,y)
-\text{mother}(x,y) \mid \text{parent}(x,y)
-\text{father}(x,y) \mid \text{parent}(x,y)
\text{mother}(\text{Liz},\text{Charley})
\text{father}(\text{Charley},\text{Billy})

To prove \text{ancestor}(\text{Liz},\text{Billy})

Refute \text{ancestor}(\text{Liz},\text{Billy})

\begin{align*}
-\text{parent}(x,y) & \mid -\text{ancestor}(y,z) \mid \text{ancestor}(x,z) \\
-\text{ancestor}(\text{Liz},\text{Billy})
\end{align*}

\begin{align*}
-\text{parent}(\text{Liz},y) & \mid -\text{ancestor}(y,\text{Billy})
\end{align*}

\begin{align*}
-\text{mother}(x,y) & \mid \text{parent}(x,y) \\
-\text{parent}(\text{Liz},y) & \mid -\text{ancestor}(y,\text{Billy})
\end{align*}

\begin{align*}
-\text{mother}(\text{Liz},y) & \mid -\text{ancestor}(y,\text{Billy})
\end{align*}

\text{mother}(\text{Liz},\text{Charley})
-\text{mother}(\text{Liz},y) \mid -\text{ancestor}(y,\text{Billy})

-\text{ancestor}(\text{Charley},\text{Billy})
-parent(x,y) | ancestor(x,y)
-ancestor(Charley,Billy)
-ancestor(Charley,Billy)
-parent(Charley,Billy)

-father(x,y) | parent(x,y)
-parent(Charley,Billy)
-father(Charley,Billy)

father(Charley,Billy)
-father(Charley,Billy)

contradiction

Unification

To use the resolution inference rule, we need to be able to match atoms in sentences. This is called \textit{unification}.

If successful, unification returns a \textit{substitution}.

A substitution specifies values for variables that would make the two atoms identical.
function Unify-Lists(A, B, θ)
 if A and B have different predicates/functions
 or have different numbers of arguments
 then return failure
 for i ← 1 to number of arguments do
 termA ← ith argument of A
 termB ← ith argument of B
 θ ← Unify-Terms(termA, termB, θ)
 if θ = failure then return failure
 end for
 return θ

function Unify-Terms(A, B, θ)
 while A is a variable and θ[A] exists
 do A ← θ[A]
 while B is a variable and θ[B] exists
 do B ← θ[B]
 if A = B then do nothing
 else if A is a variable then θ[A] ← B
 else if B is a variable then θ[B] ← A
 else if A or B is a constant then θ ← failure
 else θ ← Unify-Lists(A, B, θ)
 return θ
Resolution

RESOLVE assumes that sentences A and B are disjunctions represented as sets of literals. A literal is an atom or its negation.

RESOLVE assumes that sentences A and B have no variables with the same names.

RESOLVE returns all the sentences it infers.

```plaintext
function Resolve(A, B)
    for each litA in A do
        for each litB in B do
            if one of litA and litB is negated, not both then
                $\theta \leftarrow$ Unify-Lists(litA, litB, empty substitution)
                if $\theta \neq$ failure and has no recursive substs. then
                    $A' \leftarrow$ apply substitution $\theta$ to $A$
                    litA' $\leftarrow$ apply substitution $\theta$ to litA
                    $B' \leftarrow$ apply substitution $\theta$ to $B$
                    litB' $\leftarrow$ apply substitution $\theta$ to litB
                    $C \leftarrow (A' - \{litA\}) \cup (B' - \{litB\})$
                    add $C$ to formulas inferred
            end if
        end for
    end for
return formulas inferred
```