Mapping Reducability

I’m sorry Dave, I’m afraid I can’t do that.
(Hal in 2001: A Space Odyssey)

We formalize the idea of reducibility by giving a definition of mapping reducibility, often called many-one reducibility.

A function \(f : \Sigma^* \rightarrow \Sigma^* \) is a computable function if some Turing machine \(M \) with any input \(w \) halts with \(f(w) \) on its tape.

Examples of computable functions: arithmetic operations, constructing a DFA from an NFA, constructing a CFG for the union of two CFGs.

A language \(A \) is mapping reducible to language \(B \), written \(A \leq_m B \), if there is a computable function \(f \) such that

\[
 w \in A \leftrightarrow f(w) \in B
\]

\(f \) is called the reduction from \(A \) to \(B \).

\[\begin{array}{c}
 w \\
 \rightarrow \\
 f \\
 f(w) \\
 \rightarrow \\
 A \quad f \quad f(w) \quad B \\
\end{array}\]

\(w \) \rightarrow accept
\(a \)
\(r \) \rightarrow reject

Definition

A language \(A \) is mapping reducible to language \(B \), written \(A \leq_m B \), if there is a computable function \(f \) such that

\[
 w \in A \leftrightarrow f(w) \in B
\]

\(f \) is called the reduction from \(A \) to \(B \).
Examples

\(A = \) set of even numbers
\(B = \) set of odd numbers
\(f(x) = x + 1 \)
\(x \) is an even number iff \(f(x) \) is an odd number.

\(A = \) TMs that always halt
\(B = \) TMs that accept all inputs
\(f(M) = \) replace each \(q_{\text{reject}} \) with \(q_{\text{accept}} \)
\(M \) always halts iff \(f(M) \) accepts all inputs.

Characteristics of Mapping Reducibility

If \(A \leq_m B \) and \(B \) is decidable, then \(A \) is decidable.
Proof Sketch: Let \(M \) be a decider for \(B \).
Let \(f \) be a reduction from \(A \) to \(B \).
\(M(f(w)) \) is a decider for \(A \).

It follows that:
If \(A \leq_m B \) and \(A \) is undecidable, then \(B \) is undecidable.

Characteristic, Part 2

If \(A \leq_m B \) and \(B \) is Turing-recognizable, then \(A \) is Turing-recognizable.
Proof Sketch: Let \(M \) be a recognizer for \(B \).
Let \(f \) be a reduction from \(A \) to \(B \).
\(M(f(w)) \) is a recognizer for \(A \).

It follows that:
If \(A \leq_m B \) and \(A \) is not Turing-recognizable, then \(B \) is not Turing-recognizable.

Example I: \(A_{\text{TM}} \leq_m \text{HALT}_{\text{TM}} \)

Need a computable function \(f \) such that:
\(\langle M, w \rangle \in A_{\text{TM}} \iff f(\langle M, w \rangle) \in \text{HALT}_{\text{TM}} \)

This algorithm computes the reduction:
1. Construct a TM \(M' \) such that
\(M'(x) = \begin{cases} \text{accept} & \text{if } M(x) = \text{accept} \\ \text{loop forever} & \text{otherwise} \end{cases} \)
2. Output \(\langle M', w \rangle \)

This is a reduction because
\(M \) accepts \(w \) iff \(M' \) halts on \(w \).
Example II: $EQ_{DFA} \leq_m E_{DFA}$

Need a computable function f such that:

$\langle B, C \rangle \in EQ_{DFA} \iff f(\langle B, C \rangle) \in E_{DFA}$

Define f to output a DFA D such that:

$L(D) = (L(B) \cap L(C)) \cup (L(B) \cap L(C))$

The closure properties of DFAs ensures that we can do this.

This is a reduction because $L(B) = L(C)$ iff $L(D) = \emptyset$.