
1

Automated and Agile Server Parameter Tuning
by Coordinated Learning and Control

Yanfei Guo, Student Member, IEEE , Palden Lama, Student Member, IEEE , Changjun Jiang, Senior
Member, IEEE , Xiaobo Zhou, Senior Member, IEEE

Abstract—Automated server parameter tuning is crucial to performance and availability of Internet applications hosted in cloud
environments. It is challenging due to high dynamics and burstiness of workloads, multi-tier service architecture, and virtualized server
infrastructure. In this paper, we investigate automated and agile server parameter tuning for maximizing effective throughput of multi-tier
Internet applications. A recent study proposed a reinforcement learning based server parameter tuning approach for minimizing average
response time of multi-tier applications. Reinforcement learning is a decision making process determining the parameter tuning direction
based on trial-and-error, instead of quantitative values for agile parameter tuning. It relies on a predefined adjustment value for each
tuning action. However it is nontrivial or even infeasible to find an optimal value under highly dynamic and bursty workloads. We design
a neural fuzzy control based approach that combines the strengths of fast online learning and self-adaptiveness of neural networks
and fuzzy control. Due to the model independence, it is robust to highly dynamic and bursty workloads. It is agile in server parameter
tuning due to its quantitative control outputs. We implemented the new approach on a testbed of virtualized data center hosting
RUBiS and WikiBench benchmark applications. Experimental results demonstrate that the new approach significantly outperforms the
reinforcement learning based approach for both improving effective system throughput and minimizing average response time.

Index Terms—Automated Server Parameter Tuning, Internet Applications, Autonomic Computing, Neural Fuzzy Control

�

1 INTRODUCTION

Internet applications have many configurable server
parameters. For example, Apache web server has im-
portant parameters MaxClients, KeepAliveTimeout,
MaxSpareServers and MinSpareServers that con-
trol server concurrency level, network link alive time,
and worker process generating. These parameters are
crucial to the performance of server applications and
to the resource utilization of the underlying computer
system. An improper configuration often leads serious
consequences. According to the study [20], in average
more than 50% of service failures is due to the misconfig-
uration. In some particular scenarios, misconfigurations
caused almost 100% of service failures. However, server
parameter tuning is a very complex and difficult task
that highly relies on an administrator’s experiences and
understanding of the server system.

In Internet applications, user-perceived performance is
the result of complex interaction of complex workloads
in a complex underlying server system. The complexities
are due to high workload dynamics and burstiness,
multi-tier service architecture, and virtualized server
infrastructure. Recent studies [18], [24] have observed
significantly dynamic workloads of Internet applications
that fluctuate over multiple time scales, which can have a

• Y. Guo, P. Lama, X. Zhou are with the Department of Computer
Science, University of Colorado, Colorado Springs, CO 80918. Email:
{yguo,plama,xzhou}@uccs.edu.

• C. Jiang is with the Department of Computer Science & Technology, Tongji
University, Shanghai, China. Email: cjjiang@tongji.edu.cn.

• X. Zhou is the corresponding author.

significant impact on the processing and power demands
imposed on data center servers. The burstiness in incom-
ing requests in a server system can lead to significant
server overload and dramatically degradation of server
performance or even service unavailability.

In today’s popular multi-tier Internet service architec-
ture, a set of servers are divided by their functionality
like a pipeline. Servers in each tier use the functionality
provided by their successors and provide functionality
to their predecessors. Incoming workloads are often
unequally distributed across different tiers. Some tiers
may run in the saturated or overloaded state while
others are under-loaded. Highly dynamic workloads will
also result in the bottleneck shifting across tiers [5]. The
inter-tier and intra-tier performance dependences further
complicate the configuration of a multi-tier server sys-
tem. The complexities and high dynamics demand for
automated and agile server parameter tuning.

Recently, Bu at al. proposed an automated server
parameter tuning approach with reinforcement learning
(RL) for multi-tier Internet applications [2], [3]. They
demonstrated that the RL-based approach can effectively
minimize the average response time of a multi-tier appli-
cations. However, there are two major limitations. First,
the RL-based approach only considers tuning a single
parameter. Our preliminary study found that multiple
parameters have significant impact on the application
performance. The RL-based approach can be extended
for multiple parameter co-tuning. But it suffers from
poor scalability in problems with a large state space
that grows exponentially with the state variables (i.e.
sever parameters). Second, RL is a decision making

Digital Object Indentifier 10.1109/TPDS.2013.115 1045-9219/13/$31.00 ©  2013 IEEE

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



2

process for the tuning direction. It does not generate
a quantitative result of the parameter value change. It
needs a predefined adjustment value for each tuning
action. However, it is nontrivial or even infeasible to find
an optimal value for each tuning decision, particularly
under highly dynamic and bursty workloads.

In the face of the challenges of highly dynamic and
bursty workloads, parameter dependences, and various
application characteristics, we design a neural fuzzy con-
trol that integrates the strengths of self-constructing on-
line learning of neural networks and fast tuning of fuzzy
control. The resulted approach is model-independent,
robust and agile for automated server parameter tuning
under highly dynamic and bursty workloads in vir-
tualized environments. We use the new approach for
improving both the effective system throughput and the
average response time of multi-tier Internet applications.
We implemented the new approach in a testbed of
virtualized HP ProLiant blade system. We adopt RU-
BiS [23], an e-transactional benchmark application for
performance evaluation. We use three different workload
characteristics: stationary, bursty, and step-change [11],
[27]. We also evaluate with WikiBench [1], [26], a real
workload trace based application.

We conduct extensive experiments to compare the
neural fuzzy control based and RL based approaches
in automated server parameter tuning for improving
performance of multi-tier Internet applications. Results
find that the neural fuzzy control based approach can
achieve more than 80% higher effective throughput than
that due to default vendor configurations. It outperforms
the RL based approach by average 10% to 20% in terms
of effective system throughput. The improvement is
mainly due to the agility of the new approach in find-
ing ideal server parameter configurations. Importantly,
under highly dynamic step-change workloads, the RL
based approach may not converge in time in finding
effective server parameter configurations. It results in
significant performance penalties. Its achieved effective
system throughput is just about 40% of that due to the
neural fuzzy control based approach. And, its resulted
average response time is about 35% higher that that due
to the neural fuzzy control based approach.

Our contributions lie in the design and development
of an automated and agile server parameter tuning
approach that can significantly improve the performance
of complex multi-tier Internet applications, the use of
effective system throughput as the primary performance
metric, the analysis of the weaknesses of reinforcement
learning for server parameter tuning, and the implemen-
tation and evaluation of the new approach.

A preliminary version of this paper appeared in
the Proc. of IEEE IPDPS’2012 [6]. In this extended
manuscript, we have extended the neural fuzzy control
design from single-parameter tuning to multi-parameter
co-tuning. We have also carried out new experiments
and analysis with the extended approach, a larger ca-
pacity testbed and heavier workloads.

In the following, Section 2 discusses related work.
Section 3 describes the server tuning problem. Section 4
gives the neural fuzzy control and reinforcement learn-
ing approaches. Section 5 introduces the testbed imple-
mentation. Section 6 presents the experimental results
and analysis. Section 7 concludes the paper.

2 RELATED WORK

Autonomic computing aims to reduce the degree of
human involvement in the management of complex
computing systems [8]. Recently, autonomic computing
in modern data centers has become a very active and
important research area. There are studies focused on
capacity planning for virtual machines (VMs) co-location
and distribution across a data center [10], [17], [28],
VM provisioning for applications [11], [12], [25], [27],
resource allocation in a VM [7], [9], [21], [22], and server
parameter tuning [2], [3], [30].

Automated server parameter tuning is one key but
challenging research issue. There were early studies that
explored automated server parameter tuning problem on
Web servers [4], [16], [29]. Those works studied how
server application parameters can affect the user per-
ceived performance and how to automatically tune those
parameters. However, they focused the automated server
parameter tuning problem in one server or one tier of
servers. For example, Liu et al. focused on improving
online response time of an Apache web server by tuning
value of parameter MaxClients [16]. They applied
rule-based fuzzy control for parameter tuning. As the
rule-based fuzzy control is not model-independent, its
pre-configured rules will determine the actions of the
fuzzy control. To create the rules, they modeled the
application server using queueing models. However,
queueing theoretic approaches are often not effective
in modeling workloads of complex multi-tier Internet
applications due to the inter-tier dependences and per-
tier concurrency limit [5], [11], [12].

A few recent studies focused on automated server
parameter tuning at multiple-tier servers [2], [3], [22],
[30]. A representative approach was proposed in [2], [3].
It used reinforcement learning for automated tuning of
web-tier server parameters and application-tier server
parameters in a coordinated manner. It aimed to min-
imize the average response time of a multi-tier online
web application. Furthermore, it employed an online
monitoring based Q-table switching mechanism, which
can improve the adaptiveness of the tuning approach
regarding various workload characteristics such as the
TPC-W benchmark’s ordering, shopping and browsing
workload mixes. The work provided insights for the au-
tomated parameter tuning in complex multi-tier systems.

However, there are scalability and agility issues. First,
the approach only considers tuning a single parameter
MaxClients. In reality, multiple parameters have signif-
icant impact on server performance. When the approach
is extended for multiple parameter co-tuning, it suffers

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



3

from poor scalability in problems with a large state
space that grows exponentially with the state variables
(i.e. sever parameters). Second, reinforcement learning
itself is a decision making process. It only decides what
tuning direction to be applied to a server parameter, i.e.,
increasing, decreasing or hold. It does not generate a
quantitative result of the server parameter value change.
In practice, a reinforcement learning based approach
relies on a predefined adjustment value for each tuning
decision. Finding a good predefined value is crucial
to the performance of a reinforcement learning based
approach. However, under highly dynamic and bursty
workloads, finding such a good predefined value is
nontrivial or even infeasible. To address the weaknesses
of the reinforcement learning based approach, we design
an enriched neural fuzzy control that integrates the
strengths of fast online learning and self-adaptiveness
of neural networks and fuzzy control.

3 AUTOMATED SERVER PARAMETER TUNING

3.1 Challenges and Issues
Highly dynamic and bursty workloads require an agile
and robust approach for automated server parameter
tuning. Application level performance heavily depends
on the characteristics of the workload. Server parameters
must be tuned to match current system workloads. How-
ever, Internet workloads are highly dynamic and the
workload characteristics keep changing. Online match-
ing the server parameter configuration to the changes is
a very challenging problem.

There are different parameter dependences of servers
in a multi-tier application, which require a coordinated
approach for automated server tuning across all tiers.

• Inter-tier parameter dependency: In a multi-tier
application, each tier utilizes the functionality
provided by its successor tier. Performance
variation in one tier will affect user-perceived
end-to-end performance. As Figure 1 shows,
the concurrency capacity of Apache web server,
Tomcat application server, and MYSQL database
server are controlled by parameters MaxClients,
MaxThreads, max_user_connection, and
thread_concurrency, respectively. These
parameters need to be configured carefully to
match the workload distribution on all tiers. If we
increase the concurrency capacity of web tier and
leave no changes to other tiers, the web tier will try
to process more user requests concurrently, which
will result in more requests to the successor tiers.
This will increase the response time at the successor
tiers or even overload them, resulting in end-to-end
performance degradation or even service outage.

• Intra-tier parameter dependency: There are intra-
tier dependences of server parameters at each
tier. For example, at the web tier, parameter
MaxSpareServers must have a greater value
than parameter MinSpareServers. It is also the

Fig. 1. Parameter dependences for automated tuning in
a multi-tier Internet server architecture.

case at the application tier between parameters
maxSpareThreads and minSpareThreads. At
the database tier, the intra-tier dependence is more
complicated. Parameter max_user_connections
has inter-tier dependency with parameter
MaxThreads at its predecessor tier, but
also intra-tier dependency with parameters
max_connections and thread_concurrency
at the same tier.

Dynamically changing application characteristics re-
quire a model-independent approach. The capacity of a
web system is constrained by the underlying hardware
resources. But the amount of hardware resources does
not always provide the same capacity of a web system
because it also depends on what application it hosts.
For example, a web application based on dynamic pages
needs more resources than one based on static pages.
Performing server parameter tuning must consider the
different characteristics of various web applications.

3.2 Effective System Throughput
We propose to maximize the effective system throughput
via automated server parameter tuning. Effective system
throughput is defined as the number of requests that
meet the service level agreement (SLA) requirement on
the response time. While the average response time of
requests is important to individual users, the effective
system throughput is more important to the application
provider in clouds [19].

We use a SLA with two response time bounds, hard
response time and soft response time. The absolute ef-
fective throughput is the number of requests that are
processed within the SLA time bounds. If a request
is processed between the hard and soft response time
bounds, its effective throughput is measured according
to a utility decaying function, e.g., linear decaying, ex-
ponential decaying, and logarithmic decaying [6]. The
relative effective throughput is the ratio of the absolute
effective throughput to the total number of incoming
requests.

The work in [2] aimed to minimize the average re-
sponse time of all requests. However, minimizing the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



4

Fig. 2. The block diagram of the neural fuzzy control.

average response time of requests does not necessarily
maximizing the effective throughput of the system. To
minimize the average response time, server parameter
configurations will be tuned to devote more resources
processing each request, which in turn would make
resource scarce when needed.

4 APPROACHES BY LEARNING AND CONTROL

4.1 An Enriched Neural Fuzzy Control Approach
4.1.1 Architecture and Features
A general rule-base fuzzy control consists of a fuzzi-
fication stage, a rule-base stage, and a defuzzification
stage. The fuzzification stage maps numerical inputs
into linguistic fuzzy values by appropriate membership
functions. The rule-base stage invokes fuzzy logic rules
and combines the results of those invoked rules in a
linguistic output value. Finally, the defuzzification stage
converts the output value back into a numerical output
value for the controlled system.

To tackle the challenges of highly workload dynamics
and burstiness, inter-tier and intra-tier parameter de-
pendences, and various application characteristics, we
integrate a neural network with the general rule-base
fuzzy control. This enables the integrated control to
automatically construct its neuron structures and adapt
its parameters. Figure 2 shows the block diagram and
control flows of the control. The task of control is to
adjust server configurable parameters on a multi-tier
system in order to improve the performance metric eTd

such as the effective system throughput or the average
response time of requests.

The neural fuzzy control has two inputs: error notated
as e(k) and error changing rate notated as Δe(k). We de-
fine error as the difference between the achieved perfor-
mance and the tuning objective notated as eTref during
the kth tuning period. That is, e(k) = eTd − eTref . The
output is the parameter value ei(k) for the next tuning
period. To support coordinated server parameter tuning
for multi-tier applications, we enrich the neural fuzzy
control with an online monitoring component that keeps
monitoring real-time workload distributions at each tier.
Based on the monitoring data, the control updates the
server parameter values at all tiers in proportion to their
workload distributions.

The neural fuzzy control has following features:

Fig. 3. Schematic diagram of the neural fuzzy control.

• Model-independence: Fuzzy control is suitable for
nonlinear, time-variant, and model-incomplete sys-
tems. The workload changes will not affect the
functionality of automated server parameter tuning.

• Self-construction: The structure of the neural fuzzy
control is automatically generated. The neurons and
weights are dynamically changed during the server
parameter tuning process.

• Robustness: Because the self-construction and
model-independence, the neural fuzzy control can
adjust itself to match dynamic workload variations.
This results in the robustness of the control.

• Cross-tier coordination: The neural fuzzy control
treats the multi-tier system as a whole. Accord-
ing to parameters inter-tier dependency and intra-
dependency, each tuning will be applied to related
parameters at each tier at once.

4.1.2 Design of the Neural Fuzzy Control
The design of the neural fuzzy control is shown in
Figure 3. We develop a six-layer neural network. The
interconnected neurons play the role of membership
functions and the rule base as in a traditional fuzzy
control. However, unlike a traditional fuzzy control, the
neural fuzzy control has multiple outputs, one output
for one tier in a multi-tier system. Figure 3 shows a
two-tier example. The control is initialized in a neural
network with eight neurons. This minimal structure only
contains two membership functions and one rule. More
membership functions and rules will be dynamically
constructed and adapted as the network grows and
learns. The design details of each layer are as follows:

Layer 1: This is the input layer. At this layer, each
neuron is associated with one input variable. There are
two neurons for inputs e(k) and Δe(k), respectively. The
activation functions of these two neurons pass the inputs
to the next layer for fuzzification.

Layer 2: This is the fuzzification layer. At this layer,
each neuron represents a linguistic term. The activation
functions of neurons determine how to transform in-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



5

put values into linguistic terms. We set the activation
functions using a Gaussian function Eq. (1). We cluster
the linguistics terms into two groups, i.e., error e(k) and
change in error Δe(k). The Gaussian function uses the
average of inputs mji and the standard deviation of
inputs σji to determine the jth linguistic term.

uAj
i
= exp (− (xi −mji)

2

σ2
ji

) (1)

Layer 3: This is the rule-base layer. At this layer, each
neuron represents one fuzzy logic rule. The activation
functions of neurons are given by Eq. (2). The output of
a layer 3 neuron is the result of rth fuzzy logic rule.

ur =
n∏

i=1

uAj
i

(2)

Layer 4: This layer is the defuzzification layer. It con-
verts results of fuzzy logic rules from layer 3 into a
numeric parameter value. There is only one neuron in
this layer. It sums all results of fuzzy logic rules from
Layer 3 and obtains the numeric parameter value. The
wr in function Eq. (3) is the link weight of rth rule. It is
adapted from the online learning process.

y =
M∑

r=1

wr · ur (3)

Layer 5: This is the tier distribution layer. It converts
the outcome of defuzzification layer into normalized
parameter mv(k) for each tier. In the implementation, we
consider the parameters for web and application tiers.
Thus, there are two neurons in layer 5 generating the
output values. The activation function of each node is
given by Eq. (4). The weight rv is determined by the
workload distribution that was obtained through the
online monitoring.

mv(k) = y · rv v = 1, 2. (4)

Layer 6: This is the parameter denormalization layer.
It converts the normalized parameter from layer 5 into
server parameters pv,q(k) of a tier. The activation func-
tion of each node is given by Eq. (5). The weight βq is the
denormalization factor. It is normalized and proportional
to the request arrival rate of different tiers. It can be
obtained by monitoring the workload intensity and the
interval of connection activities.

pv,q(k) = mv(k) · βq q = 1, 2. (5)

We use a threshold to determine when the neural
fuzzy control stops the server parameter tuning process.
A complete tuning iteration consists of two steps. First,
the neural fuzzy control generates server parameter
values by forwardly feeding inputs through the five
layers. Second, after new parameter values are applied
to the multi-tier system, the neural fuzzy control evalu-
ates performance changes. If the new server parameters
cause performance improvement, there is no change on

the parameters and weights as they are making the
positive effect. But if the new server parameters cause
performance degradation, the neural fuzzy control will
amend its parameters and weights using online learning.
After several tuning iterations, the neural fuzzy control
stops parameter tuning when either error e(k) or change
in error Δe(k) is less than the threshold. We set the
threshold value to be 10%, same as that in work [2].

Please refer to the supplement for the learning pro-
cess of the neural fuzzy control and the reinforcement
learning based approach.

5 SYSTEM IMPLEMENTATION

5.1 The Testbed
We implemented a multi-tier web system in a university
prototype data center, where each HP ProLiant BL460C
G6 blade server is equipped with 2-way Intel quad-core
Xeon E5530 CPUs and 32GB memory. The blade servers
are connected with 10 Gbps Ethernet. VMware vSphere
5.0 is used for server virtualization.

We construct the web system with three VMs, Apache
web server in the first, PHP application server in the
second, and MYSQL database server in the third. We
configure the web server and applications server with 2
VCPUs and 1 GB memory each. We set the CPU usage
cap to 1 GHz for stationary workloads and 2 GHz for
bursty and step-change workloads. We allocate another
three VMs to emulate clients. All VMs run Ubuntu server
10.04 with Linux kernel 2.6.35.

We use RUBiS [23] e-transactional benchmark appli-
cation for multi-tier Internet applications. RUBiS pro-
vides a web auction application modeled in a similar
way of ebay.com. It characterizes the workload into
three categories: seller, visitor, and buyer. They have
different combinations of selling, browsing, and bidding
requests. RUBiS client emulates user requests at different
concurrent levels. We use multiple clients to emulate
the dynamics in workloads. To provide the runtime
performance monitoring, we modify the original RUBiS
client to retrieve performance statistics of requests. We
also use WikiBench [1], [26], a real workload trace.

5.2 Workloads
We use three workloads with different densities: a sta-
tionary workload, a bursty workload, and a step-change
workload [27]. The stationary workload is generated to
emulate 2000 concurrent users. For the bursty workload,
we implement a workload generator for RUBiS bench-
mark using the approach proposed in [18]. Figure 4(a)
shows the generated bursty workload generated. It em-
ulates a bursty workload in a 900-second time span from
2000 concurrent users with the average think time of 7
seconds. We record the trace of the bursty workload and
reuse it for each experiment under the bursty workload.

To examine the adaptiveness of the neural fuzzy con-
trol under highly dynamic workloads, we design a step-
change workload that contains dynamics in both number

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



6

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0  100  200  300  400  500  600  700  800  900

N
um

be
r 

of
 R

eq
ue

st
s

Time (s)

(a) A Bursty Workload

 0

 500

 1000

 1500

 2000

 2500

 0  300  600  900  1200

N
um

be
r 

of
 U

se
rs

Time (s)

(b) A Step-Change Workload

Browsing
Selling

Bidding

Fig. 4. Highly dynamic and bursty RUBiS workloads used in the experiments.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600  700  800  900

R
e
la

ti
v
e
 E

ff
e
c
ti
v
e
 T

h
ro

u
g
h
p
u
t

Time (s)

(a) Under Stationary Workload

NFC
RL

Default

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600  700  800  900

R
e
la

ti
v
e
 E

ff
e
c
ti
v
e
 T

h
ro

u
g
h
p
u
t

Time (s)

(b) Under Bursty Workload

NFC
RL

Default

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600  700  800  900

R
e
la

ti
v
e
 E

ff
e
c
ti
v
e
 T

h
ro

u
g
h
p
u
t

Time (s)

(c) Under Step-change Workload

NFC
RL

Default

Fig. 5. Performance of two automated server tuning approaches compared with the default vendor configuration.

of users and workload characteristics. Figure 4(b) shows
the workload. Each time when the number of users
changes, the workload mix also changes. At the 300th
second, the workload mix changes from browsing to
selling. At the 600th second, the workload mix changes
from selling to bidding.

5.3 Performance Metrics
We conduct experiments using the effective throughput
of the system and the average response time of requests
as performance metrics. We use both the absolute effec-
tive throughput and the relative effective throughput. In
the experiments, a linear decaying function is used.

Each parameter tuning iteration is executed every 30
seconds for all parameter tuning approaches. To demon-
strate the agility of the two automated approaches, we
compare their converging times before the configurable
parameters reach their stable states, 1) in terms of the
number of iterations, and 2) in terms of the total execu-
tion times of the control algorithms.

6 PERFORMANCE EVALUATION

6.1 Automated Tuning on the Effective Throughput
We use the default vendor provided configuration of
Apache web server as the baseline of the performance
evaluation. Please refer to the supplement for the default
vendor configurations and the performance analysis.

We compare two automated tuning approaches, the
neural fuzzy control (NFC) based and the reinforcement
learning (RL) based, with the default configuration. For
the NFC based approach, we feed the measured effective
system throughput directly into the control. The control

starts with the default values of the server parameters. It
generates new parameter values to reconfigure the server
until the effective system throughput change meets the
threshold-based target. The RL based approach followed
the same process. As the work [2], our work sets the key
parameters of the RL algorithm as follows: the learning
rate value 0.1, the discount factor value 0.9, and no
exploration probability.

First, we choose parameter MaxClients for tuning
as it was found to have most significant impact on
server performance [2], [3]. Figure 5 shows the rela-
tive effective throughput achieved by three approaches
under the stationary workload, bursty workload and
step-change workload. Both the NFC based and the RL
based approaches can significantly improve the rela-
tive effective throughput. Under the stationary, bursty,
and step-change workloads, the NFC based approach
achieves 95.1%, 141.9%, and 89.7% higher relative ef-
fective throughput than the default configuration does,
respectively. The RL based approach achieves 70.7%,
106.5%, and 51.3% higher relative effective throughput
than the default configuration does, respectively.

Figure 6 shows the absolute effective throughput and
the relative effective throughput due to the three ap-
proaches. Both automated approaches significantly im-
prove the achieved performance due to the default con-
figuration. The results demonstrate the significance of
automated parameter tuning in performance improve-
ment of complex multi-tier applications. Under the sta-
tionary, the bursty, and the step-change workloads, we
observe that there are significant differences in achieved
performance between the two automated approaches.

The absolute effective throughput is the number of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



7

 0

 0.2

 0.4

 0.6

 0.8

 1

Stationary Bursty Step-change

R
e
la

ti
v
e
 E

ff
e
c
ti
v
e
 T

h
ro

u
g
h
p
u
t

(b) Relative Effective Throughput

NFC
RL

Default

 0

 500

 1000

 1500

 2000

Stationary Bursty Step-change

A
b
s
o
lu

te
 E

ff
e
c
ti
v
e
 T

h
ro

u
g
h
p
u
t

(a) Absolute Effective Throughput

NFC
RL

Default

Fig. 6. Performance of three server tuning approaches.

requests that were responded within the time bounds.
Essentially, RUBiS benchmark uses a closed-loop request
generator. The request generation rate is affected by
the responsiveness of requests. High response time will
slow down the workload generation rate, which would
result in fewer requests incoming to the system. When
using different approaches, the number of total incoming
requests indeed could be different. In this case, the
absolute effective throughput cannot truly reflect the
performance of different approaches. Therefore, in the
following, we use the relative effective throughput as
the major performance metric.

6.2 Comparison of Two Automated Approaches

In this section, we focus on the performance difference
between the NFC based and the RL based approaches
for improving the effective system throughput and min-
imizing the average response time. We also compare
their converging times during the parameter tuning
process. For the step-change workload, we compare their
converging times for each workload stage separately.

6.2.1 Improving the Effective Throughput
From Figure 5, we observe that the NFC based approach
achieves on average 14.3%, 17.2%, and 12.5% higher
relative effective throughput than the RL based approach
under stationary, bursty, and step-change workloads.

We note that performance variations during the pa-
rameter tuning process are very different due to the two
automated approaches. As Figures 5(a) and 5(b) show,
the performance due to the RL based approach varies
significantly during the initial parameter tuning process
(the first 300 seconds). That results in significantly lower
effective throughput compared with that due to the NFC
based approach. There are two major reasons that the
RL based approach suffers performance penalty from
high variations. First, a parameter value change is upper

TABLE 1
Converging time of two automated tuning approaches.

Workload type NFC RL
Number of
iterations

Total exec.
time (ms)

Number of
iterations

Total exec.
time (ms)

Stationary 5 855 12 3684
Bursty 8 1368 19 5833

Step-change
Browsing 1 171 3 921

Step-change
Selling 5 855 8 2456

Step-change
Bidding 7 1197 10 3070

 0

 0.2

 0.4

 0.6

 0.8

 1

Browsing Selling Bidding

R
e
la

ti
v
e
 E

ff
e
c
ti
v
e
 T

h
ro

u
g
h
p
u
t

NFC
RL

Fig. 7. Average relative effective throughput under the
step-change workload.

bounded by the predened adjustment value. This limits
the capability of the approach in agilely adjusting sever
parameter values. Second, in RL, the Q-table is initialized
by the offline training data. The training outcome may
not accurately describe the complex interaction between
parameter tuning and performance outcome.

Figure 7 shows the performance comparison of two
automated approaches under different stages of the step-
change workload. Under the bidding workload, the NFC
based approach doubles the achieved relative effective
throughput by the RL based approach. This can be
attributed to the fact that the NSC based approach is
more agile in server parameter tuning.

Table 1 shows the converging time of two automated
tuning approaches. Under the stationary and the bursty
workloads, the NFC based approach converges about 2.4
times faster than the RL based approach in terms of the
number of tuning iterations. The improvement is more
significant if it is measured in terms of the total execution
time of the control algorithms. This is due to that the
NFC based approach takes less time in one algorithm
execution than the RL based approach does. Under the
stationary and the bursty workloads, it converges about
4.3 times faster than the RL based approach.

Note that as shown in Figure 5(c), at the bidding stage
the RL based approach does not converge during the
last 300-second experimental period. This results in sig-
nificantly lower relative effective throughput compared
with that due to the NFC based approach. Figure 5(c)
also shows that the RL based approach suffers from high
variations in the system stability due to the slow conver-
gence under the highly dynamic step-change workload.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



8

 0

 400

 800

 1200

 1600

 2000

 2400

 0  100  200  300  400  500  600  700  800  900

A
v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Time (s)

(a) Under the Stationary Workload

NFC
RL

Time Bound

 0

 400

 800

 1200

 1600

 0  100  200  300  400  500  600  700  800  900

A
v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Time (s)

(b) Under the Bursty Workload

NFC
RL

Time Bound

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  100  200  300  400  500  600  700  800  900

A
v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Time (s)

(c) Under the Step-change Workload

NFC
RL

Time Bound

Fig. 8. The average response time due to the two automated server parameter tuning approaches.

 0

 5

 10

 15

 20

 25

NFC RL NFC RL
 0

 3

 6

 9

N
um

be
r 

of
 T

un
in

g 
Ite

ra
tio

ns

T
ot

al
 E

xe
cu

tio
n 

T
im

e 
(s

ec
)Number of iterations

Total execution time

Fig. 9. Converging time in minimizing the average re-
sponse time.

6.2.2 Minimizing Average Response Time
Figure 8 shows the average response time of the multi-
tier application due to the NFC based approach and
the RL based approach. For the stationary and bursty
workloads, the achieved average response time of the
two automated approaches are close. Under the station-
ary workload, both approaches are able to decrease the
average response time below the predefined time bound.
Note that the bound is needed for the RL approach to
generate the reward. Under the bursty workload, both
approaches cannot assure that the average response time
below the predefined time bound. But both maintain the
average response time close to the bound. The main dif-
ference between the two approaches is the convergence
time for minimizing the average response time. Figure 9
shows that the NFC based approach converges much
faster than the RL based approach does, in terms of both
the number of tuning iterations and the total execution
time of the control algorithms.

Figure 10 shows the average response time com-
parison between the two automated parameter tuning
approaches. Under the step-change workload, the NFC
based approach achieves more than 30% lower average
response time than the RL based approach does.

Figure 11 illustrates significant differences in the
achieved average response time by the NFC based ap-
proach and by the RL based approach during three
stages of the step-change dynamic workload.

6.2.3 Analysis
The experiments have shown that the NFC based ap-
proach outperforms the RL based approach for maxi-
mizing the relative effective throughput and minimizing
average response time. The differences in performance

 0

 500

 1000

 1500

 2000

Stationary Bursty Step-change

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

 (
m

s) NFC
RL

Fig. 10. Average response time comparison.

 0

 500

 1000

 1500

 2000

 2500

 3000

Browsing Selling Bidding

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(m
s) NFC

RL

Fig. 11. Average response time under the three-stage
step-change workload.

and agility are mainly due to the weaknesses of the RL
algorithm used for automated server parameter tuning.

Essentially, RL is a decision making process. It does
not directly generate the actual parameter value for
server parameter configuration. It needs a predefined
adjustment value for each parameter tuning iteration.
Experimental results show that during the server pa-
rameter tuning process, some configurations that the
RL based approach chooses is not as effective as those
chosen by the NFC based approach. This is due to
the fact that the predefined adjustment value by the
RL based approach will limit the number of states in
its state space. This will make it possible that some
effective parameter configurations are not reachable by
the RL based approach. On the other hand, the NFC
based approach does not have such a constraint on the
reachable configurations.

At each iteration, the RL based approach can only
move from one state to another one. Its converging speed
is dependent on the size of the state space. With the same
range of parameter tuning, the smaller the adjustment
value is, the larger the state space is, which often leads
to longer converging time. Finding a good adjustment
value for the RL based approach is a difficult problem. In

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600  700  800  900

R
e
la

ti
v
e
 E

ff
e
c
ti
v
e
 T

h
ro

u
g
h
p
u
t

Time (s)

(a) Under the Stationary Workload

NFC
RL

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600  700  800  900

R
e
la

ti
v
e
 E

ff
e
c
ti
v
e
 T

h
ro

u
g
h
p
u
t

Time (s)

(b) Under the Bursty Workload

NFC
RL

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600  700  800  900

R
e
la

ti
v
e
 E

ff
e
c
ti
v
e
 T

h
ro

u
g
h
p
u
t

Time (s)

(c) Under the Step-change Workload

Browsing Selling Bidding

NFC
RL

Fig. 12. Relative effective throughput due to two automated approaches in multiple parameter co-tuning.

contrast, the NFC based approach is designed to search
all possible states and generate the proper parameter
configuration value at runtime.

Moreover, the RL based approach is initialized by the
training data and updated during the learning process.
During the server parameter tuning process, the rela-
tion among workloads, parameters, and resulted per-
formance is very complex and non-linear. The training
result does not necessarily characterize the complex
interactions between the performance and parameters.
Therefore, the RL based approach can be misled by the
training data.

6.3 Multiple Parameter Co-Tuning
We further study the effectiveness of the NFC based
approach in tuning multiple server parameters simuta-
neously. For the experiment, we use the neural fuzzy
control to automatically tune both MaxClients and
KeepAliveTimeout parameters. We compare the rel-
ative effective throughput with the RL based approach
under stationary, bursty, and step-change workloads.

Figure 12 shows the relative effective throughput due
to the NFC based and the RL based approaches under
different workloads. The NFC based approach achieves
13.3% and 16.4% higher performance than the RL based
approach under the stationary and bursty workloads,
respectively. Under the step-change workload, the NFC
based approach achieves similar performance with the
RL based approach in the browsing workload mix. In
the selling and bidding workload mixes, the NFC based
approach outperforms the RL based approach by 8.3%
and 80%. In most scenarios, both approaches are able
to converge to stable parameter settings. However, the
RL based approach does not reach a stable setting for
parameters in the bidding workload mix of the step-
change workload. It significantly affects the application’s
achieved effective throughput.

Figure 13 shows the performance comparison of mul-
tiple parameter co-tuning and single parameter tuning.
The relative effective throughput due to the NFC based
approach with multiple parameter co-tuning is 8.6%,
9.0% and 6.7% higher than the single parameter tuning
under stationary, bursty and step-change workloads,
respectively. Improvement due to the multiple parameter
co-tuning is also observed with the RL based approach.

 0.6

 0.8

 1

Stationary Bursty Step-change

R
e
la

ti
v
e
 E

ff
e
c
ti
v
e
 T

h
ro

u
g
h
p
u
t NFC w/ Single Parameter

NFC w/ Multiple Parameters
RL w/ Single Parameter

RL w/ Multiple Parameters

Fig. 13. Performance comparison of multiple parameter
co-tuning and single parameter tuning.

This demonstrates the significance of multiple parameter
co-tuning. Note that the NFC based approach outper-
forms the RL based approach.

Figure 14(a) shows the converging time in terms of
the number of tuning iterations for multiple parameter
co-tuning and single parameter tuning due to the two
approaches. With the NFC based approach, there is
little difference of the converging time between multiple
parameter co-tuning and single parameter tuning. It
shows good agility and scalability. But with the RL
based approach, the converging time of multiple pa-
rameter co-tuning is 75%, 47%, and 41% higher than
that of single parameter tuning in stationary, bursty,
and step-change workloads, respectively. The increase in
the number of state variables (server parameters) results
in an exponential growth in the RL state space, which
significantly increases the converging time of parameter
tuning. Figure 14(b) shows the converging time in terms
of the total execution times of the control algorithms.
The observation is similar to that in Figure 14(a).

Please refer to the supplement for more experimental
results and analysis of the impact of RL predefined
adjustment value, selection of server parameters for
tuning, overhead and scalability, and server tuning on
WikiBench applications.

7 CONCLUSIONS

In this paper, we tackle the important but challenging
problem of automated server parameter tuning in virtu-
alized server environments. We proposed and developed
an automated and agile approach that integrates the
strengths of fast online learning and control to maximize

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



10

 0

 6

 12

 18

Stationary Bursty Step-change

T
o
ta

l 
E

x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

(b) Total Execution Time

NFC w/ Single Parameter
NFC w/ Multiple Parameters

RL w/ Single Parameter
RL w/ Multiple Parameters

 0

 10

 20

 30

Stationary Bursty Step-change

N
u
m

b
e
r 

o
f 
T

u
n
in

g
 I
te

ra
ti
o
n
s

(a) Number of Tuning Iterations

NFC w/ Single Parameter
NFC w/ Multiple Parameters

RL w/ Single Parameter
RL w/ Multiple Parameters

Fig. 14. Converging time comparison of multiple param-
eter co-tuning and single parameter tuning.

the effective system throughput of multi-tier Internet
applications. We implemented the approach on a testbed
of virtualized HP ProLiant blade servers. Experimen-
tal results based on multi-tier benchmark applications
demonstrated that the proposed approach significantly
outperforms a reinforcement learning based approach
for both improving the effective throughput and min-
imizing the average response time. We analyzed the
weaknesses of the reinforcement learning based ap-
proach due to the use of a predened adjustment value
and inaccurate training of Q-table. Our developed neural
fuzzy control based approach avoids the weaknesses,
providing the self-management capability for automated
and agile server parameter tuning under highly dynamic
and bursty workloads. It is scalable and agile for multi-
ple parameter co-tuning.

Our future will be coordinating server parameter tun-
ing with VM provisioning in Cloud environments.

Acknowledgement
This research was supported in part by U.S. National
Science Foundation research grant CNS-1217979 and
CAREER Award CNS-0844983. The authors thank the
anonymous reviewers for their valuable suggestions.

REFERENCES

[1] WikiBench. http://www.wikibench.eu/.
[2] X. Bu, J. Rao, and C.-Z. Xu. A reinforcement learning approach

to online web system auto-configuration. In Proc. IEEE ICDCS,
2009.

[3] X. Bu, J. Rao, and C.-Z. Xu. Coordinated self-configuration of
virtual machines and appliances using a model-free learning
approach. IEEE Trans. on Parallel and Distributed Systems, 24(4),
2013.

[4] I.-H. Chung and J. K. Hollingsworth. Automated cluster-based
web service performance tunning. In Proc. IEEE HPDC, 2004.

[5] Y. Diao, J. L. Hellerstein, S. Parekh, H. Shaihk, and M. Surendra.
Controlling quality of service in multi-tier Web applications. In
Proc. IEEE ICDCS, 2006.

[6] Y. Guo, P. Lama, and X. Zhou. Automated and agile server
parameter tuning with learning and control. In Proc. IEEE IPDPS,
2012.

[7] Y. Guo and X. Zhou. Coordinated VM Resizing and Server
Tuning: Throughput, Power Efficiency and Scalability. In Proc.
IEEE MASCOTS, 2012.

[8] M. C. Huebscher and J. A. McCann. A survey of autonomic
computing–degrees, models, and applications. ACM Computing
Surveys, 40(7):1–28, 2008.

[9] G. Jung, K. R. Joshi, M. A. Hiltunen, R. D. Schlichting, and
C. Pu. Generating adaptation policies for multi-tier applications
in consolidated server environments. In Proc. IEEE ICAC, 2008.

[10] M. Korupolu, A. Singh, and B. Bamba. Coupled placement in
modern data centers. In Proc. of IEEE IPDPS, 2009.

[11] P. Lama and X. Zhou. Autonomic provisioning with self-adaptive
neural fuzzy control for end-to-end delay guarantee. In Proc.
IEEE/ACM MASCOTS, 2010.

[12] P. Lama and X. Zhou. Efficient server provisioning with control
for end-to-end delay guarantee on multi-tier clusters. IEEE
Transactions on Parallel and Distributed Systems, 23(1):78–86, 2012.

[13] P. Lama and X. Zhou. Ninepin: Non-invasive and energy efficient
performance isolation in virtualized servers. In Proc. IEEE/IFIP
DSN, 2012.

[14] C. Lin and C. S. G. Lee. Real-time supervised structure/parameter
learning for fuzzy neural network. In Proc. IEEE FUZZ, 1992.

[15] F.-J. Lin, R.-J. Wai, and C.-C. Lee. Fuzzy neural network posi-
tion controller for ultrasonic motor drive using push-pull dc-dc
converter. Control Theory and Applications, 146(1), 1999.

[16] X. Liu, L. Sha, and Y. Diao. Online response time optimization of
apache web server. In Proc. IEEE IWQoS, 2003.

[17] X. Meng, C. Isci, J. Kephart, L. Zhang, and E. Bouillet. Efficient
resource provisioning in compute clouds via vm multiplexing. In
Proc. IEEE ICAC, 2010.

[18] N. Mi, G. Casale, L. Cherkasova, and E. Smirni. Injecting realistic
burstiness to a traditional client-server benchmark. In Proc. IEEE
ICAC, 2009.

[19] J. Moses, R. Iyer, R. Illikkal, S. Srinivasan, and K. Aisopos.
Shared resource monitoring and throughput optimization in
cloud-computing datacenters. In Proc. of IEEE IPDPS, 2011.

[20] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why do
internet services fail, and what can be done about it? In Proc.
USENIX ITS, 2003.

[21] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang,
S. Singhal, and A. Merchant. Automated control of multiple
virtualized resources. In Proc. of ACM EuroSys, 2009.

[22] J. Rao, X. Bu, C. Z. Xu, L. Wang, and G. Yin. Vconf: A reinforce-
ment learning approach to virtual machines auto-conguration. In
Proc. IEEE ICAC, 2009.

[23] RUBiS. Rice university bidding system.
http://www.cs.rice.edu/CS/Systems/DynaServer/rubis.

[24] R. Singh, U. Sharma, E. Cecchet, and P. Shenoy. Autonomic mix-
aware provisioning for non-stationary data center workloads. In
Proc. IEEE ICAC, 2010.

[25] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani. A hybrid re-
inforcement learning approach to autonomic resource allocation.
In Proc. IEEE ICAC, 2006.

[26] G. Urdaneta, G. Pierre, and M. van Steen. Wikipedia workload
analysis for decentralized hosting. Elsevier Computer Networks,
53(11):1830–1845, July 2009.

[27] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood. Agile
dynamic provisioning of multi-tier Internet applications. ACM
Trans. on Autonomous and Adaptive Systems, 3(1):1–39, 2008.

[28] M. Wang, X. Meng, and L. Zhang. Consolidating virtual machines
with dynamic bandwidth demand in data centers. In Proc. IEEE
INFOCOM, 2011.

[29] Y. Zhang, W. Qu, and A. Liu. Automatic performance tuning for
J2EE application server systems. Proc. WISE, 2005.

[30] W. Zheng, R. Bianchini, and T. Nguyen. Automatic configuration
of internet services. In Proc. ACM EuroSys, 2007.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



11

Yanfei Guo received the BS degree in Computer
Science and Technology from the Huazhong
University of Science and Technology, China, in
2010. Currently, he is working towards the PhD
degree in Computer Science at the University
of Colorado, Colorado Springs. His research
interests include autonomous performance and
resource management for Cloud computing. He
is a student member of the IEEE.

Palden Lama received the BTech degree
in electronics and communication engineering
from the Indian Institute of Technology Roorkee,
India, in 2003. He has worked as a software
engineer in Qwest Software Services, India.
Currently, he is a PhD candidate in Computer
Science at the University of Colorado, Colorado
Springs. His research interests include the areas
of Cloud computing, sustainable computing, au-
tonomic resource and power management, and
big data processing in the Cloud. He is a student

member of the IEEE.

Changjun Jiang received the Ph.D. de-
gree from the Institute of Automation, Chi-
nese Academy of Sciences, Beijing, China, in
1995 and conducted post-doctoral research at
the Institute of Computing Technology, Chinese
Academy of Sciences, in 1997. Currently he
is a Professor with the Department of Com-
puter Science and Engineering, Tongji Univer-
sity, Shanghai. He is also a council member
of China Automation Federation and Artificial
Intelligence Federation, the Director of Profes-

sional Committee of Petri Net of China Computer Federation, and the
Vice Director of Professional Committee of Management Systems of
China Automation Federation. He was a Visiting Professor of Institute
of Computing Technology, Chinese Academy of Science; a Research
Fellow of the City University of Hong Kong, Kowloon, Hong Kong;
and an Information Area Specialist of Shanghai Municipal Government.
His current areas of research are concurrent theory, Petri net, and
formal verification of software, concurrency processing and intelligent
transportation systems. He is a senior member of the IEEE.

Xiaobo Zhou received the BS, MS, and PhD
degrees in Computer Science from Nanjing Uni-
versity, in 1994, 1997, and 2000, respectively.
He was a Postdoc researcher at the University
of Paderborn in 2000. Currently he is an As-
sociate Professor and the Chairperson of the
Department of Computer Science, University of
Colorado, Colorado Springs. He was a General
Co-Chair of ICCCN 2012, TPC Co-Chair of IC-
CCN 2011, a TPC Vice Chair of the IEEE/ACM
CCGrid 2014, GLOBECOM 2010, ICCCN 2009,

HPCC 2008, and IEEE/IFIP EUC 2008. He serves on the editorial
boards of the Elseviers Computer Communications and Journal of Net-
work and Computer Applications. His research lies broadly in computer
network systems, more specifically, autonomic and sustainable com-
puting in datacenters, Cloud computing, server virtualization, scalable
Internet services and architectures, and computer network security. His
research was supported in part by the US NSF and Air Force Research
Lab. He was a recipient of the NSF CAREER AWARD in 2009, the
University Faculty Award for Excellence in Research in 2011. He is a
senior member of the IEEE

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.


