Programming Assignment 5:
Numerical Integration

CS 2073, Computer Programming with Engineering Applications
Spring Semester, 1992

For this assignment, we want a program that will do numerical integration. You don’t really need to know any calculus, since for us the integral of a function will just be the area under its graph, or its average value. This assignment will use three numerical integration methods:

- the trapezoid method,
- Simpson’s method, and
- a Monte-Carlo method.

We will be finding the value of the integral of a function $f(x)$, for x from a to b. You will also start with an integer n representing the number of intervals to divide the segment from a to b into. The size of each interval is $h = (b - a)/n$. Given these starting values, the trapezoid method uses the formula

$$\text{Integral} \approx (h/2)[f(a) + 2\cdot f(a+h) + 2\cdot f(a+2h) + 2\cdot f(a+3h) + 2\cdot f(a+4h) + \ldots + 2\cdot f(a+(n-2)h) + 2\cdot f(a+(n-1)h) + f(b)]$$

Similarly, Simpson’s method uses the formula

$$\text{Integral} \approx (h/3)[f(a) + 4\cdot f(a+h) + 2\cdot f(a+2h) + 4\cdot f(a+3h) + 2\cdot f(a+4h) + \ldots + 2\cdot f(a+(n-2)h) + 4\cdot f(a+(n-1)h) + f(b)]$$

Finally, a Monte-Carlo method might use

$$\text{Integral} \approx h\left[f(x_1) + f(x_2) + f(x_3) + \ldots + f(x_{n-1}) + f(x_n)\right]$$

Here the numbers x_1, x_2, \ldots, x_n are randomly chosen from the interval from a to b.

You should use the two specific functions

$$f(x) = 1/(1 + x^2), \text{ for } x \text{ from 0 to 1, and}$$
Finally for each of the two functions, and for each of the three integration methods (6 cases), you should try \(n = 10, \) and \(n = 1000. \) Thus you should have 12 answers altogether, and your answers should be clearly labeled with the function (\(f \) or \(g \) above), the values of \(a \) and \(b, \) the value of \(n, \) and the integration method.

You must use Pascal functions to calculate \(f \) and \(g \) as above.

You must use a procedure \(\text{generate}_f \) that will take as inputs the numbers \(a, \) \(b, \) and \(n, \) and will return (as a reference parameter) an array of function values \(\text{funcval}, \) with \(f(a), f(a+h), f(a+2h), \ldots, f(a+(n-1)h), f(b) \) stored in array locations 0 through \(n. \) Similarly for a procedure \(\text{generate}_g: \)

```pascal
const Maxval = 1000;
type funcvaltype = array[0..Maxval] of real;
procedure generate_f (var funcval: funcvaltype; a, b: real; n: integer);
procedure generate_g (var funcval: funcvaltype; a, b: real; n: integer);
```

Another Pascal procedure \(\text{generate}_fm \) should take \(a, b, \) and \(n \) as inputs and generate \(n \) function values \(f(x_1), f(x_2), f(x_3), \ldots, f(x_{n-1}), f(x_n) \) in the array \(\text{funcval}, \) and similarly for a procedure \(\text{generate}_gm: \)

```pascal
procedure generate_fm(var funcval: funcvaltype; a, b: real; n: integer);
procedure generate_gm(var funcval: funcvaltype; a, b: real; n: integer);
```

Then you must have three Pascal functions \(\text{trap}, \) \(\text{simp} \) and \(\text{monte} \) that use the array \(\text{funcval} \) and the values \(a, b, \) and \(n, \) to calculate the integral according to the above formulas:

```pascal
function trap  (funcval: funcvaltype; a, b: real; n: integer): real;
function simp  (funcval: funcvaltype; a, b: real; n: integer): real;
function monte (funcval: funcvaltype; a, b: real; n: integer): real;
```

The random numbers can be generated using a random number generator that will be separately distributed and discussed in class. Let’s use type \text{double} for all real numbers, rather than \text{real.} Print answers with 16 significant digits.

(Note: for efficiency sake above, one might want to make the \text{funcval} parameters to the three functions above reference parameters.)

Extra:

In addition to the above, find an approximate value for the integral of \(g(x) \) from \(-\infty \) to \(+\infty. \)