Introduction
to Computer
Programming
using Fortran 95

Workbook

Edition 2
Spetember 2008

Introduction
to Computer
Programming
using

Fortran 95

Edition 2, September 2008

Document Number: 3570-2008

Acknowledgement

DR. A C MARSHALL from the University of Liverpool (funded by JISC/NTI) first
presented this material. He acknowledged Steve Morgan and Lawrie Schonfelder.

Helen Talbot and Neil Hamilton-Smith took the overheads from that course and
worked on them to produce this text: later Neil Hamilton-Smith revised it.

Copyright © IS 2008

Permission is granted to any individual or institution to use, copy or redistribute this
document whole or in part, so long as it is not sold for profit and provided that the
above copyright notice and this permission notice appear in all copies.

Where any part of this document is included in another document, due
acknowledgement is required.

Introduction to computer programming using Fortran 95

Contents

1.

FUNDAMENTALS OF COMPUTER PROGRAMMINGcoutiiiiiiiiiiniienieeieeteereeireeieesieenneeneennesene e 3
Telling @ Computer WHat TO DO.......coiiiiiiieie et sttt s sbe e 3
Programming LANGUAGES.cceeerreeruerieriesteseeseseeiessesseestesaesbesaesseasssssassesaessesaessessessansessessessessens 3
FOrtran EVOIULIONc.coiiiiieirieecsieecs et ettt ebe st 3
(O g T o (= S OSSO 4
How Does Computer MemOry WOTK?ooioceicce sttt a s sne st sresne s 4
N 0T = IO (oo (=SSP 4
LU S o 1Y/ 1= TSRS 4
LItEral CONSLANES.eeeeiitireeierteieerie ettt bbbttt b et sttt sbe b 5
NN E= T 0SS PP URRURURRN 5
SGNIfiCaNCE Of BIANKS.......cciiiiiiirieee bbbt 5
TMIPIICIE TYPING ettt b bbbt b et b b et bbb e 6
Numeric and Logical Type DECIarationS..........coeieierererereee e e 6
CharacCter DECIAIatiONScoiiieriee ettt st b e s bt s b et ae e e b e besbesbeseesbesaas 7
TR F= TS LA o] o RSSO 7
(0001015 = 1 Y (=T 100 = (=) [7
L0001 1010 07 1P PSP 8
EXPIESSIONScuiiuecieie st sttt et e et e e e e te s ae et e e ae e e e seese e beseesbesaeeseese e e enteseeabesteereeseeneentesrentenrenreas 8
NS S o 027 | 8
INtriNSIC NUMENTC OPEratiONScoveieieieiieseeeieeeeesees e stesresee e sseeee e sseseestesaessesseeseeneessessessessessessens 8
REIALIONAI OPEIBLOTS ..ottt b ettt b ettt b et be bbb 9
INtriNSiC LOGICal OPEraliONS........ceiuirieirtirieirierie sttt bbbttt s s e e e 9
INtriNSIC CharaCter OPEraliONS.........coveeruerieerierieirtesteese ettt bbb e b e 9
OPErAtOr PrECEIENCE. ... eieeieite ettt ettt st e e bt bt st e ae e e e b e sbesbesbesaeeae e e e s e neesbenaas 10
Mixed Type NUMEITC EXPrESSIONS.c.ciueruerieieiereesie st sttt st see st st seesbe e sbe e e e e s e seebeseesbesae e 11
MiXEA TYPE ASSIGNIMIENT ...ttt ettt et sbe e ae st ae e e e b e s eesbesbesaeebe e e ense s e seesbesaesbenbens 11
LR 1= e = I LAY T o 11
Formatting iNPUt @Nd OUEPULc.ceiveiieie it eee e ee e te sttt se et a e s b e resneene e e e e e seesrenne e 12
WRITE STAEEIMENT ...ttt e s r e e bt e n e e sneemnesreenre e reenneeneannas 13
READ SEBEEIMENT.eetetiitesee ettt ettt e b bbbt e e e e se et e se e er e s bt e seese e e e nesrennenre e 14
Prompting fOr INPULooeie et e st n e ene e e ene e e e eenne e 15
Reading and Writing t0 @ fil€.......ccviiiiiice e 15
INEFINSIC PrOCEAUIES........cteieiiiiieeeeiee ettt ettt sre e ese e e st sbesaeeneene e e enteseesreneeens 16
Type CONVErSION FUNCLIONScviiiiiiiiieienieiet ettt sttt sttt st se b e e b e 16
Mathematical INtrinSic FUNCHION SUMIMIBIY.......cociiiriiirinierieneesi e 17
Numeric INtrinsic FUNCHION SUMIMAIYcc.coiiiiie e 17
Character INtrinsiC FUNCLION SUMMAIYc.oiuiiiiiiiieiesiese et see e se e e snens 18
How to Write @ COMPULES PrOgraM.........ooueeierieieriesiesie sttt e e e sbe s se e e e e e 18
S =10 00 = 010 0 (= T oo SO 20
Compiling and RUNNING the Program............ccceeireiiicce ettt st eneas 21
T 21
PractiCal EXEICISE L.....ciiiieeiriiieie ettt ettt ettt b et s e b e b e b e enes 23

CONTROL CONSTRUCTS AND INTRINSICScouteiuieriieniientienieenteeitesttesttesteenieetesieeseeesaeesaeenaeeneeens 26
(@011 0) I o SRR 26
(S =10 107 o | PSSR 26
IF ... THEN ... ELSE CONSITUCT ...ttt ettt sttt st s e sae s 27
IF ... THEN ELSEIF CONSITUCEccuiiiiiieieiisieisie ettt sse s sse s ssensesessnnes 28
Nested and Named IF CONSIIUCESoo.eiiiirireeee et se e e 29
EXample USING IF CONSITUCTS.cceiiiiiieiieeiese ettt see e et s sb e st ne et e e sae e 29
SELECT CASE CONSIIUCEcveeeeietisieiceiesiesesie st ie et sse st es e steessestensssessenessessensssessens 31
(@00 [FiT0) = I (] oo o SRS 33
(@000 [FiT0) g 7= @Y ox =Y oo o)1 33
Named and NESLEA LOOPS.......cveruerieririeieseeeeeseeeeseestesestesseseeseessessessessessessessssseessessessessessessessenes 34
100 L= C= o D L@ N oo oS 34
DO CONSITUCE INAEX ...ttt sttt sttt sttt sb et et b b b et ene b seenes 35
PractiCal EXEICISE 2.....ciuiiieieeeeeeieieseesiesie st st st et e e see e steste s tesresse e e enteseebeseesbesseeneeseeneenseseeseessens 36

ARRAYS ..ttt ettt ettt et ettt ht e s bt ettt et ea e e bt bt bt e e et eaa e bt she bt et e bt ea bt eabeshnenbeenbeen 39

(DS o: F= = 11 0) T 39

6.

AIray E1emMent OF0EIING ..co.eoeeieeeeeie ettt st e b sae e e e e e e b e e b naas 40

F = VS <o (0] USSP PR 41
F N = YO0 01 (0] 11" 1SS 42
F g -V Y 1= b G PRSPPI 42
WWNOIE AFTaY EXPrESSIONS......uecuecuieieitestistesieete st e eeae st e te s e stessesseesae e etesresbestesaeeseeseenseseenteseesrenes 42
WHERE statement and CONSIIUCE...........oiiiriiirieeesieesie sttt re st b e e sre e 43
(@@ 8]\ I 117 o 1 o o OSSPSR 44
SUM FUNCLION ...ttt bbbttt ettt 44
/@ 1 g Tox o] o IO RO 44
IMINVAL FUNCHIONeitieticece sttt ettt ste e re s e e sae e saeesbeebeeateeaeesbeesbe e beenrennnas 46
IMAXVAL TUNCHION ...ttt ettt sttt e e be s e e sae e sbeesbeebeeatesaeesbeesbeenbeensennnas 46
Y LN @ L@ {1 o T TSR 46
Y TN @@ {0 ' o SRR 46
F N = Y 1 OSSPSR 47
The TRANSPOSE INtHNSIC FUNCLIONcccviiiiiie ettt et s s e 48
ATTAY CONSITUCLONS ...ttt s r et e e e b e bbb e e e s e e sr e rennesrenns 438
The RESHAPE INHINSIC FUNCHION ...ttt s st st st 48
NAMEA Array CONSLANTS......ccueivereeeeeeereere e sese s s e e e see s e e sresse e e eteseesseseesresseeseeneeseetesressessees 49
F Lo o = o Lo A g - YU 49
(D=1 o Tor= 1] g0 A - Y S 50
Vector and MatrixX MUITIPIICALIONco.oieeiriiieerieeee e 50
PractiCal EXEICISE 3.....oc ittt ettt ettt s s ae e s be e be s e e saeesbe e beenteeatesaaesbeesreenrenanes 51

PROCEDURESotouiiiiiiiieiteieeit ettt ettt ettt ettt b bt eaae st sae e bt eat et e eaneeanesanenbeenneen 54
0T | =0 4 110 o] £ PRSP 54
M@IN PrOgram SYNMEBXceeeuerieeerieriesie st steseeesseesse e seesbe e sae s e e e eneeseesbesaesbesseeneenseasanteseesbesaesns 54
INtrOdUCEION t0 PrOCEAUNES ..ottt sttt sttt seenes 55
SUDTOULINESoveteeeeeetesteee sttt s et et b et et b et et e b e b et e s be e et et e e ebentens 55
L0 o1 0] TSP 56
W0 a0 AN oo - 1 o 56
ANGUIMENT TNEENT ...ttt e st e st e st sab e e s b e e sab e e sareesareesnreesareas 57
[0z 1@] o] o S 57
SCOPING RUIES......ceeee bbbt bbbt bbb e 58
Host Association -- GIODal Data...........ccccoieiiiieciieiecce ettt e 58
SCOPE OF INAITIES......e ettt bbbt b et b et b e b e st bbb e 59
SAVE ATTDULE.....te ettt sttt sttt st e et e st e et e s aeseebesaeneebesaesesbenensentens 59
DUMMTY AITAY AlGUIMIENIES.cueeiee it iteeste et eseesteaste e besbesaeesaeesaeesseeasesseeeaeesseesseeasesaeesseesbeessessesanas 60
ASSUMEA-SNAPE ATTAYS. ... cveieeueeeereeieseeste st ettt e eeeeseebeseesaesbesaeese e e ensessesbesbesaeebesaeeseaneaseeeseesaas 60
LS 7= o (o SRR 61
SUDIOULINE OF FUNCEION? ...ttt ettt ettt e 62
PractiCal EXEICISE 4cuoiuieeiiiieieie sttt ettt st et st e e b st e e e be st ene e b e s teneeneneenes 63

MODULES AND DERIVED TYPES.....ccuttitiriienitaiteteeiteettesttenteete ettt st seeestee et et entesaeesneesbeenneas 64
Plane GEOMELTY PrOgram......c..ccivieiieieieeeeeesees e stestesesseeseeeeeeseestessessessessesseesssnsessessessessessesnens 64
ReUSADITTLY — MOOUIES........c.ciuiiieiiireeee bbbt 65
RESLFICHNG VISIDIHTTY....ccvieeiiteiesese e 67
The USE RENAMES FACIHITY ...covereeieiiereecrteree et st 68
USE ONLY SEBEEMENL ...veiviieiisieieiisieseeiesiesee e stesas st et ssesaesessesaesessessesessensesessessssessensesessensesessenes 68
D gAY <o B Y, o= USSP PRPR 68
Functions can return results of an arbitrary defined type ... 70
QLI L= 0T =1 o1 1 SRS 70
PractiCal EXEICISE D ... ittt ettt sttt et b e st et e b b e s b e st e seneenes 72

BIBLIOGRAPHYeviiiiiiiieeeiiieeeiteeeesitteeestteeseeteaesssaeeessseeesassseasansseesanssseesassseessnsseesennsaeesnsseeennn 75

1. Fundamentals of Computer Programming

Telling a Computer What To Do

To get a computer to perform a specific task it must be given a sequence of
unambiguous instructions or a program.

An everyday example is instructions on how to assemble a bedside cabinet. The
instructions must be followed precisely and in the correct order:

o insert the spigot into hole "A';

a apply glue along the edge of side panel;
a press together side and top panels;

o attach toggle pin "B' to grommet "C';

Q ...and so on.

The cabinet would turn out wonky if the instructions were not followed to the letter!

Programming L anguages
Programming languages must be:

o totally unambiguous (unlike natural languages, for example, English);
o simple to use.

All programming languages have a very precise syntax (or grammar). This ensures
that all syntactically correct programs have a single meaning.

High-level programming languages include Fortran 90, Fortran 95, C and Java. On
the other hand assembler code is a Low-Level Language. Generally:

0 aprogram is a series of instructions to the CPU of the computer;

o all programs could be written in assembler code but this is a slow, complex and
eITor-prone process;

o high-level languages are more expressive, more secure and quicker to use;

a a high-level program is compiled (translated) into assembler code by a compiler.

Fortran Evolution

Fortran stands for FORmula TRANSslation. The first compiler appeared in 1957 and
the first official standard in 1972 which was given the name of "Fortran 66'. This was
updated in 1980 to Fortran 77, updated in 1991 to Fortran 90, updated in 1997 to
Fortran 95, and further updated in 2004 to Fortran 2003. At each update some
obsolescent features were removed, some mistakes corrected and a limited number of
new facilities were added. Fortran is now an ISO/IEC and ANSI standard.

Character Set

The following are valid in a Fortran 95 program:

a alphanumeric: a-z, A-Z, 0-9, and _ (the underscore);
o symbolic:

Symbol Description Symbol Description
blank = equals sign

+ plus sign - minus sign

* asterisk / slash

(left parenthesis) right parenthesis

, comma . decimal point

' apostophe " quotation mark

: colon ; semicolon

! exclamation mark & ampersand

< less than > greater than

% percent $ currency symbol

? question mark

How Does Computer Memory Work?

a Each memory location will contain some sort of value;
o The value stored in a location can be read, or the location can be written to;
a Fortran 95 allows (English) names to be given to memory locations.

Numeric Storage

In general, there are two types of numbers used in Fortran 95 programs, INTEGERs
(whole numbers) and REALSs (floating point numbers).

o INTEGERs are stored exactly, often in the range [-32768, 32767].

o REALs are stored approximately.
Their form is a mantissa and an exponent. For example 6.6356 x 10*
The exponent can take only a finite range of values, typically [-307, 308].

You can get numeric exceptions:

overflow -- exponent is too big,
underflow -- exponent is too small.

In Fortran 95 you can decide what numeric range is to be supported.

CHARACTERSs are stored differently.
Intrinsic Types
Fortran 95 has two broad classes of object type:

O numeric;
O non-numeric

which give rise to six simple intrinsic types, known as default types. These are
demonstrated by the following code:

INTEGER :: age ! whole number
REAL :: height ! decimal number
COMPLEX :: val ! x + iy
CHARACTER :: sex ! letter
CHARACTER (LEN=12) :: name ! string

LOGICAL :: wed ! truth value

Literal Constants

A literal constant is an entity with a fixed value. For example:

0 12345 I INTEGER
-1.0 6.6E-06 ! REAL
(1.0,3.14) (2.7,1.4) I COMPLEX
"Isn't" 'Isn''t! ! CHARACTER
. TRUE. .FALSE. I LOGICAL

Note:

o REALs contain a decimal point, INTEGERSs do not;

a REALs can have an exponential form;

a there is only a finite range of values that numeric literals can take;

a character literals are delimited by " or ';

o two occurrences of the delimiter inside a string produce one occurrence on output;

a there are only two LOGICAL values.

Names

In Fortran 95 names for variables and procedures etc.:

000D Do

must be unique within the program;

must start with a letter;

may use only letters, digits and the underscore;

may use the underscore to separate words in long names;
may not be longer than 31 characters.

REAL :: al ! valid name
REAL :: la ! not valid name
CHARACTER :: atoz ! valid name
CHARACTER i:oa z ! valid name
CHARACTER :: a-z ! not valid name
CHARACTER (LEN=8) :: user name ! valid name
CHARACTER (LEN=8) :: username ! different name

Significance of Blanks

In free form source code blanks must not appear:

a
a

within keywords;
within names.

INTEGER :: wizzy ! is a valid keyword
INT EGER :: wizzy ! is not

REAL :: running total ! is a valid name
REAL :: running total ! is not

Blanks must appear:

o between two separate keywords;
o between keywords and names not otherwise separated by punctuation or other
special characters.

INTEGER FUNCTION fit (i) ! is wvalid
INTEGERFUNCTION fit (i) ! is not
INTEGER FUNCTIONfit (i) ! is not

Blanks are optional between some keywords mainly "END < construct >' and a few
others; if in doubt add a blank (it looks better too).

Implicit Typing
Any undeclared variable has an implicit type:

a ifthe first letter of its name is I, J, K, L, M or N then the type is INTEGER;
a if it is any other letter then the type is REAL.

Implicit typing is potentially very dangerous and should always be turned off by
adding:

IMPLICIT NONE

at the start of the declaration of variables. Consider:
DOI = 1.1000

END DO
With implicit typing this declares a REAL variable DOT and setsitto 1.1000 (and

leaves an unattached END DO) instead of performing a loop 1000 times!

Numeric and Logical Type Declarations
With IMPLICIT NONE variables must be declared. A simplified syntax follows:

< type > [,< attribute-list >] :: < variable-list >&
[=< value >]

Optional components are shown in [square brackets]
The following are all valid declarations:

INTEGER ::0i, 3J
REAL HEEED ¢
REAL, DIMENSION(10,10) =:: vy, z
INTEGER :: k= 4
LOGICAL :: flag

The DIMENSION attribute declares an array of 10 rows by 10 columns.

Character Declarations

Character variables are declared in a similar way to numeric types. CHARACTER
variables can:

o refer to one character;
a refer to a string of characters which is achieved by adding a length specifier to the
object declaration.

The following are all valid declarations:

CHARACTER 11 sex
CHARACTER (LEN=10) : ¢ name
CHARACTER (LEN=32) :: str
CHARACTER (LEN=10), DIMENSION(10,10) :: Harray
Initialisation

Declaring a variable does not automatically assign a value, say zero, to this variable:
until a value has been assigned to it a variable is known as an unassigned variable.
Variables can be given initial values, which can use initialisation expressions and
literals. Consider these examples:

INTEGER :: 1 =5, j =100

REAL :: X, v = 1.0E5

CHARACTER (LEN=5) :: light = 'Amber'

CHARACTER (LEN=9) :: gumboot = 'Wellie'
LOGICAL :: on = .TRUE., off = .FALSE.

gumboot will be padded, to the right, with blanks. In general, intrinsic functions
cannot be used in initialisation expressions. The following can be: RESHAPE,
SELECTED INT KIND, SELECTED REAL KIND, KIND.

Constants (Parameter s)

Symbolic constants, known as parameters in Fortran, can easily be set up in a
declaration statement containing the PARAMETER attribute:

REAL, PARAMETER :: pl = 3.141592
REAL, PARAMETER :: radius = 3.5
REAL :: circum = 2.0 * pi * radius
CHARACTER (LEN=%*) , PARAMETER :: &
son = 'bart', dad = "Homer"

CHARACTER constants can assume their length from the associated literal (LEN=*)
only if the attribute PARAMETER is present.
Parameters should be used:

a ifiit is known that a variable will only take one value;
a for legibility where a value such as 7 occurs in a program;
o for maintainability when a constant value could feasibly be changed in the future.

Comments

It is good practice to include many comments, for example:

PROGRAM Saddo
!

! Program to evaluate marriage potential
|

LOGICAL :: TrainSpotter ! Do we gpot trains?

LOGICAL :: SmellySocks ! Have we smelly socks?
INTEGER 01, 3J ! Loop variables

o everything after each ! is a comment;
a the ! in a character context does not begin a comment, for example:

prospects = "No chance of ever marrying!!!"

Expressions

Each of the three broad type classes has its own set of intrinsic (in-built) operators, for
example, +, // and .AND. The following are all valid expressions:

NumBabiesBorn + 1 ! numeric valued: addition
"Ward "//Ward ! character valued: concatenation
NewRIE .AND. Bus38 ! logical: intersection

Expressions can be used in many contexts and can be of any intrinsic type.

Assignment

Assignment is defined between all expressions of the same type.

Examples:

c = SIN(.7)*12.7 ! SIN argument in radians
name = initials//surname

The LHS is an object and the RHS is an expression.

Intrinsic Numeric Operations

The following operators are valid for numeric expressions:

** exponentiation is a dyadic operator, for example, 10**2, (evaluated right to left);
* and / multiply (there is no implied multiplication) and divide are dyadic operators,
for example, 10*7/4;

+ and - plus and minus or add and subtract are monadic and dyadic operators, for
example, -3 and 10+7-4;

They can be applied to literals, constants, scalar and array objects. The only
restriction is that the RHS of ** must be scalar. As an example consider:

a=>b - c
f -3%6/2

Relational Operators

The following relational operators deliver a LOGICAL result when combined with
numeric operands:

.GT. > greater than

.GE. >= greater than or equal to
.LE. <= less than or equal to
.LT. < less than

.NE. /= not equal to

.EQ. == equal to

For example:
bool = i >]

If either or both expressions being compared are complex then only the operators ==
and /= are available.

Intrinsic L ogical Operations

A LOGICAL expression returns a . TRUE. or . FALSE. result. The following are
valid with LOGICAL operands:

.NOT. -- .TRUE. ifoperand is . FALSE.;

.AND. -- .TRUE. if both operands are . TRUE.;
.OR. -- .TRUE. if at least one operand is . TRUE .
.EQV. -- .TRUE. if both operands are the same;
.NEQV. -- .TRUE. if both operands are different.

For example, if T is . TRUE. and F is . FALSE.

.NOT. T is .FALSE. .NOT. F is .TRUE.
T .AND. F is .FALSE. T .AND. T is .TRUE.
T .OR. F is .TRUE. F .OR. F is .FALSE.
T .EQV. F is .FALSE. F .EQV. F is .TRUE.
T .NEQV. F is .TRUE. F .NEQV. F is .FALSE.
Intrinsic Character Operations
Consider:
CHARACTER (LEN=*) , PARAMETER :: strl = "abcdef"
CHARACTER (LEN=*) , PARAMETER :: str2 = "xyz"
CHARACTER (LEN=9) :: str3, str4

Substrings can be taken. As an example consider:

strl is “abcdef”
strl(1:1) is“a” (notstrl (1) which is illegal)
strl(2:4) is “bcd”

The concatenation operator, //, is used to join two strings or substrings:

str3
str4

strl//str2
strl(4:5)//str2(1:2)

would produce

abcdefxyz storedin str3
dexy stored in str4

Operator Precedence

Operator Precedence Example
user-defined monadic Highest .INVERSE. A
* % . 10 ** 4
* or / . 89 * 55
monadic + or - . - 4
dyadic + or - ; 5 + 4
// . strl // str2
>, <=, etc . A > B
.NOT. . .NOT. Bool
.AND. . A .AND. B
.OR. . A .OR. B
.EQV. or .NEQV. . A .EQV. B
user - defined dyadic Lowest X .DOT. Y

Note:

O in an expression with no parentheses, the highest precedence operator is
combined with its operands first;
o in contexts of equal precedence left to right evaluation is performed except for **.

Consider an example of precedence, using the following expression:

X = a+b/5.0-c**d+1*e

Because ** is highest precedence, / and * are next highest, this is equivalent to:

X = a+(b/5.0) - (c**d) + (1*e)

The remaining operators' precedences are equal, so we evaluate from left to right.

10

Mixed Type Numeric Expressions

In the CPU, calculations must be performed between objects of the same type. So if
an expression mixes type some objects must change type. The default types have an
implied ordering:

1. COMPLEX -- highest
2. REAL
3. INTEGER -- lowest

The result of an expression is always of the higher type, for example:

INTEGER * REAL gives REAL , (3*2.01s 6.0)
REAL * INTEGER gives REAL , (3.0*2 s 6.0)
COMPLEX * < anytype > gives COMPLEX

The actual operator is unimportant.

Mixed Type Assignment

Problems can occur with mixed-type arithmetic. The rules for type conversion are
given below:

o INTEGER = REAL
The RHS is evaluated, truncated (all the decimal places removed) then assigned to the
LHS.

0 REAL=INTEGER

o The RHS is evaluated, promoted to be REAL (approximately) and then assigned to
the LHS.

For example:

REAL :: a = 1.1, b = 0.1

INTEGER :: i, j, k

i=23.9 1 1 will be 3
j = -0.9 1 § will be 0
k =a->b I k will be 1

Note: although a and b are stored approximately, the value of k is always 1.

Integer Division

Division of two integers produces an integer result by truncation (towards zero).
Consider:

REAL :: a, b, ¢, d, e

a = 1999/1000 ! LHS ais (about) 1.000
b = -1999/1000 | LHS b is (about) -1.000
c = (1999+1) /1000 ! LHS cis (about) 2.000
d = 1999.0/1000 ! LHS dis (about) 1.999
e =1999/1000.0 ! LHS e is (about) 1.999

Great care must be taken when using mixed type arithmetic.

11

Formatting input and output

The coding used internally by the computer to store values is of no concern to us: a
means of converting these coded values into characters which can be read on a screen
or typed in from a keyboard is provided by formatting. A format specification is a list
of one or more edit descriptors enclosed in round brackets. Each edit descriptor gives
the type of data expected (integer, real, character or logical) and the field width
(counted in number of characters, non-blank or otherwise) of this data value and how
the data item is represented within its field. Edit descriptors can be:

Edit Valuetype For mat-spec. Value

Descriptor example example

wX Space 2X

Iw Integer I5 1 or -5600

Fw.d Floating point F7.2 1.00 or -273.18

Ew.d Exponential E9.2 0.10E+01 or
-0.27E+03

Lw Logical Ll T

An Alphanumeric All 'one billion'

Gw.d General G11.3 3.14

The field width is given by a number which immediately follows the letter, unless the
letter is X in which case the number precedes the letter.

A blank space is simplest of the edit descriptors to specify, consisting of the letter X.
For example, X means ignore the next character position in the current input line, or
leave a gap 1 character wide in the current output line. Multiple spaces are indicated
by preceding the X by an integer count value, so 2X means skip two positions in the
input line or leave two spaces in the output line.

The edit descriptor for characters is almost as simple, consisting of the letter A
followed by an unsigned integer, for example A9. In this case, if the character value
were ‘positions’ there would be no trouble as the length of the character string
equals the width specified. If the value were ‘characters’ then only the first 9
symbols would be read in or written out, ie *character’. If instead the value were
‘places’ then the behaviour at input and output is significantly different. On input
the 6 symbols would be read in and would be followed by 3 blanks: on output the 3
blanks would precede the 6 symbols.

The edit descriptors for numeric items have to allow for the number to be signed. If a
number is being output and the field width given is too small then this field is filled
with asterisks.

For integer values, the edit descriptor has the form I followed by an unsigned integer.
On output, the integer is adjusted to the right-hand side of its field.

For real values there are two possible forms of edit descriptors.

One form is Fw.d where w is the field width and 4 is the number of digits appearing
after the decimal point. The decimal point counts as one position in the field. If there

12

is a decimal point in a number being read in, then only the w and not both w and d
takes effect.

The other form is Ew.d where w and 4 are similar to those for the F edit descriptor.
For input the two forms are identical. For output, the value is scaled so that its
absolute value is less than 1 and this value will be followed by an exponent in a field
of width 4. After allowing for a sign, the decimal point and the exponent, there can be
atmost w - 6 digits in the number which is written out.

Complex numbers need edit descriptors for a pair of real numbers: these descriptors
need not be identical.

Logical values use an edit descriptor of the form Lw. Only if w is at least 7 can the
values appear as . true. or .false. — otherwise they would be output as T or F in
the right-most position of the field.

Any of the edit descriptors in a format specification may be preceded by an integer
which is the repeat count for that descriptor. For example:

‘(I5,15,F9.4,F9.4,F9.4)"' can be rewrittenas ‘(2I5,3F9.4) '

If there are repeated sequences of edit descriptors then a repeat count can be applied
to a single sequence. For example:

‘'(2X,A5,F4.1,2X,A5,F4.1)" can be rewritten as ‘' (2(2X,A5,F4.1))"

If a format specification (without components in parentheses) is used with an input or
output list that contains more elements than the total number of edit descriptors,
applying any repeat counts, then a new record will be taken and the format
specification will be repeated. On input new records will be read until the list is
satisfied: this means that for any record which contains more data than is specified by
the format specification the surplus data are ignored.

WRITE Statement

A simple form of the WRITE statement which allows you to output to the default
output device using a default format, is:

Write(*,*)<list>

This form is handy for diagnostic output when testing a program.
A general form of the WRITE statement which allows you to output to any device
using a specified format, is of the form:

Write (unit=u, fmt=<format specification>)<list>
The unit number allows you to write to any device such as a file or the screen (6
specifies the screen). The format specification is a character string, starting with (

and ending with), defining how your data is to be laid out. <list> is a comma
separated list of items. Consider this example code:

13

PROGRAM Owt
IMPLICIT NONE

CHARACTER (LEN=31) :: &
format spec="(a4,f4.1,2(2x,a5,£4.1))"
CHARACTER (LEN=26) :: &
long name = "Llanfair...gogogoch"
REAL :: x=1., y=2., z=3., tol=0.001
LOGICAL :: lacigol
lacigol = (abs(y - x) < tol)
WRITE (unit=6,fmt="(al9)”) long name
WRITE (unit=6, fmt=" (a30)”) "Spock says ""illogical &
&Captain"" "
WRITE (unit=6, fmt=format spec) "X =", x, &
"Y=",Y,"Z=",Z
WRITE (unit=6, fmt=" (al3,11)") "Logical val: ", &
lacigol

END PROGRAM Owt

It produces the following result on the screen:

Llanfair...gogogoch
Spock says "illogical Captain"

X = 1.0 Y = 2.0 Z = 3.0
Logical wval: F
Note:

o each WRITE statement begins output on a new line;

o the WRITE statement can transfer any object of intrinsic type to the standard
output;

a strings may be delimited by the double or single quote symbols, " or ';

a two occurrences of the delimiter inside a string produce one occurrence on output.

READ Statement

A simple form of the READ statement which allows you to input from the default
input device using a default format, is:

Read(*, *)1list

A general form of the READ statement which allows you to input from any device
using a specified format, is of the form:

Read (unit=u, fmt=<format specifications>)<list>

The unit number allows you to read from any device such as a file or the keyboard (5
specifies the keyboard), the format specification is a character string defining how
your data is expected to be laid out, and 1ist is a comma separated list of variables
into which values will be read. For example, if the type declarations are the same as
for the WRITE example, the statements:

READ (*, *) long name
READ(*,*) x, vy, 2z
READ (*,*) lacigol

14

would accept the following input:

Llanphairphwyll gogogoch
0.4 5. 1.0el2
T

Note that each READ statement reads from a new line and the READ statement can
transfer any object of intrinsic type from the standard input. Data values on a line are
separated by spaces.

Prompting for Input

Suppose a program asks the user for some value, say the temperature in degrees
Fahrenheit. If the relevant output and input statements are of the form:

Write (unit=6,fmt=" (a)’',advance='no’) &
‘Please type in the temp in F: '’
Read (unit=5, fmt=*) Deg F

then the screen dialogue could be the single line:
Please type in the temp in F: 32
instead of:

Please type in the temp in F:

32
Reading and writing to afile
In order to read from or write to a file the file concerned has to be specified. To do
this use an OPEN statement such as:

Open (unit=u, file=<file name>)

where u is the unit number in the READ or WRITE statement and <file names> is
the file name which is to be associated with the unit. Consider the following piece of
code:

Integer :: I=5

Real :: x=5.3, y=2.45

Open (unit=10,file="result")

Write (unit=10,fmt="(i4,£f4.1,£f5.2)") I,x,Vy

This will result in the following output being written to the file called result
5 5.3 2.45
Note in this case the format specification has not been assigned to a character variable

but has been given as a character literal constant. Either way of specifying the format
is acceptable.

15

Intrinsic Procedures

Fortran 95 has 121 in-built or intrinsic procedures to perform common tasks
efficiently. They belong to a number of classes:

0 elemental such as:
mathematical, for example, SIN or LOG;
numeric, for example, MAX or CEILING;
character, for example, INDEX or ADJUSTL;
bit, for example, IAND or IOR;
inquiry, for example, ALLOCATED or SIZE;
transformational, for example, RESHAPE or SUM,;
miscellaneous (non-elemental SUBROUTINES), for example, SYSTEM CLOCK
and DATE_AND TIME.

0O 00O

Note, all intrinsics which take REAL valued arguments also accept all KIND of
REAL arguments.

Type Conversion Functions

It is easy to transform the type of an entity:

O REAL (1) converts INTEGER 1 to a real approximation;

O INT (x) truncates REAL x to the integer equivalent;

0 IACHAR (c) returns the position of CHARACTER c in the ASCII collating
sequence;

O ACHAR (i) returns the i™ character in the ASCII collating sequence.

All the above are intrinsic functions and this piece of code demonstrates them:

Write (unit=6, fmt=" (F6.2,1X,I2,1X,I2)") &
REAL (1), INT(1.7), INT(-0.9999)
Write (unit=6, fmt=" (I3,1X,A1)") &

IACHAR('C'), ACHAR(67)
will produce the output 1.00 1 O
67 C

16

Mathematical Intrinsic Function Summary

ACOS (x) arccosine

ASIN (x) arcsine

ATAN (x) arctangent

ATAN2 (y, x) arctangent of complex number (x, y)
COS (x) cosine where x is in radians

COSH (x) hyperbolic cosine where x is in radians
EXP (x) e raised to the power x

LOG (x) natural logarithm of x

LOG10 (x) logarithm base 10 of x

SIN (x) sine where x is in radians

SINH (x) hyperbolic sine where x is in radians
SQRT (x) the square root of x

TAN (x) tangent where x is in radians

TANH (x) hyperbolic tangent where x is in radians

Numeric Intrinsic Function Summary

ABS (a) absolute value

AIMAG (z) imaginary part of complex value z

AINT (a) truncates a to whole REAL number

ANINT (a) nearest whole REAL number

CEILING (a) smallest INTEGER greater than or equal to REAL number
CMPLX (X, V) convert to COMPLEX

CONJG (z) conjugate of complex value z

DIM(X,y) positive difference

FLOOR (a) biggest INTEGER less than or equal to REAL number
INT (a) truncates a into an INTEGER

MAX (al,a2,a3,...)

the maximum value of the arguments

MIN(al,a2,a3,...)

the minimum value of the arguments

MOD (a, p) remainder function

MODULO (a, p) modulo function

NINT (x) nearest INTEGER to a REAL number
REAL (a) converts to the equivalent REAL value
SIGN(a,b) absolute value of a times the sign of b

17

Character Intrinsic Function Summary

ACHAR (1) 1™ character in ASCII collating sequence
ADJUSTL (str) adjust left

ADJUSTR (str) adjust right

CHAR (1) 1™ character in processor collating sequence
IACHAR (ch) position of character in ASCII collating sequence
ICHAR (ch) position of character in processor collating sequence
INDEX (str, substr) starting position of substring

LEN (str) length of string

LEN TRIM(str) length of string without trailing blanks

LGE (strl, str2 lexically .GE.

(
LGT (strl, str2
(

)
) lexically .GT.
LLE (strl, str2) lexically .LE.
LLT (strl, str2) lexically .LT.
REPEAT (str, 1) repeat string i times
SCAN (str, set) scan a string for characters in a set
TRIM (str) remove trailing blanks
VERIFY (str, set) verify the set of characters in a string

How to Writea Computer Program

There are 4 main steps:

specify the problem;

analyse and break down into a series of steps towards solution;
write the Fortran 95 code;

compile and run (i.e., test the program).

Ll e

It may be necessary to iterate between steps 3 and 4 in order to remove any mistakes.
The testing step is very important. For example, consider a program to convert a
temperature from Fahrenheit to Celsius scale.

To convert from °F (Fahrenheit) to °C (Celsius) we can use the following formula:
c=5x(f-32)/9

To convert from °C to °K (Kelvin) we add 273.

The algorithm consists of:

READ a value of temperature on the Fahrenheit scale;
calculate the corresponding temperature on the Celsius scale;
WRITE the value just found;

calculate the corresponding temperature in degrees Kelvin;
WRITE this value.

kWD =

18

To program this problem one might use the following code in a file called
TempFtoC. £95:

PROGRAM Temp Conversion
! Convert a temperature value from Fahrenheit to Celsius
IMPLICIT NONE

REAL :: Deg F, Deg C, Deg K ! 3 real type variables
! Obtain a temperature value
WRITE (unit=6, fmt=" (A28) " ,advance="no”) &
"Please type in the temp in F: "
READ*, Deg F
! Convert from Fahrenheit to Celsius
Deg C = 5.0*%(Deg F-32.0)/9.0
I Output this new wvalue
WRITE (unit=6, fmt=" (A17,F6.1,A2)") &
"This is equal to ", Deg C, " C"
! Convert to Kelvin and output
Deg K = Deg C + 273.0
WRITE (unit=6, fmt=" (A4,F6.1,A2)”) "and ", Deg K, " K"

END PROGRAM Temp Conversion

The form of the program source is essentially free with:

a up to 132 characters per line;

o significant blanks;

o !' comment initiator;

0 &' line continuation character;
o ;' statement separator.

Example:

WRITE (unit=6, fmt=" (A39)”) "This line is continued &
&on the next line"; END IF ! end if statement

Now looking more closely at the code. It is delimited by
PROGRAM
END PROGRAM

statements. Between these there are two distinct areas.

a Specification Part

This gives named memory locations (variables) for use, and specifies the type of each
variable.

0 IMPLICIT NONE -- this should always be present, meaning all variables must be
declared.

0 REAL :: Deg F, Deg C, Deg K --declares three REAL (numeric) type
variables.

Note that Fortran 95 is not case sensitive: K is the same as k and INTEGER is the
same as integer.

19

o Execution Part

This is the part of the program that does the actual work. It reads in data, calculates
the temp in °C and °K and writes out results.

O WRITE (unit=6,fmt=" (A28)"”,advance="no") &
"Please type in the temp in F: " --writes the string to the screen;
0 READ*, Deg F --reads a value from the keyboard and assigns it to the REAL
variable Deg F;
0 Deg C = 5.0*(Deg F-32.0) /9.0 -- the expression on the RHS is
evaluated and assigned to the REAL variable Deg C.

* is the multiplication operator;
is the subtraction operator;

is the division operator;

is the assignment operator.

| | ~ 1

O WRITE (unit=6,fmt=" (Al17,F6.1,A2)") "This is equal to ", &
Deg C, "C" --displays a string on the screen followed by the value of a
variable (Deg_C) followed by a second string ("C").

By default, input is from the keyboard and output to the screen.

Statement Ordering
The following table details the prescribed ordering:

PROGRAM, FUNCTION, SUBROUTINE or MODULE statement

USE statements

IMPLICIT NONE
PARAMETER IMPLICIT statements
FORMAT statements
statements
PARAMETER Derived-Type Definitions, Interface blocks,
statements Type declaration and specification statements
Executable constructs

CONTAINS statement

Internal or module procedures

END statement

20

Compiling and Running the Program

This program can be compiled on holyrood by using the command:

holyroods £f£95 TempFtoC.£f95

and this should produce an executable file named a . out

Now test the program to ensure it gives the correct answer:

holyroods$ a.out

Please type in the temp in F:
32

This is equal to 0.0 C
and 273.0 K

In addition a switch or flag can be supplied to the compiler to specify a name for the
executable file. For example the following compiles TempFtoC. £95 and sends the
output to a separate file called TempFtoC

holyroods £f95 -o TempFtoC TempFtoC.£f95

holyrood$ TempFtoC

Please type in the temp in F:
212

This is equal to 100.0 C
and 373.0 K

If you need more information about the compiler, give the command: man £95

It is important to exercise as much of the program as possible with the test data used
in demonstrating correctness.

Bugs

Compile-timeErrors
In the previous program, consider what would happen if we accidentally typed:

Dwg C = 5.0*(Deg F - 32.0)/9.0
The compiler generates a compile-time or syntax error:
holyrood$ £95 TempFtoC.f95

Dwg C = 5.0% (Deg F - 32.0)/9.0

“TempFtoC.f95”, Line = 10, Column = 4: ERROR: IMPLICIT
NONE is specified in the local scope, therefore an
explicit type must be specified for data object "Dwg C".

21

Run-timeErrors
With some compilers an expression such as

Deg C = 5.0*(Deg F - 32.0)/0.0
would compile but a run-time error would be generated. This might take the form:

holyroods$ a.out

Please type in the temp in F:
122

Arithmetic exception

It is also possible to write a program that runs to completion but gives the wrong
results. Be particularly wary if using a program written by someone else: the original
author may have thoroughly tested those parts of the program exercised by their data
but been less thorough with other parts of the program.

22

Practical Exercise1

Question 1: TheHello World Program
Write a Fortran 95 program to write out Hello World on the screen.

Question 2: Real For matting

Write a program which uses the expression 4 .0*atan2(1.0,1.0) toevaluaten
and store it in a variable. Write out this value 9 times using edit descriptors of the
form E12.d, F12.d, G12.d with d taking the values 2, 4 and 6.

Question 3: Some Division One Results

A particular number can be expressed as the sum of several integers, and the sum of
the reciprocals of these integers is, perhaps, surprising. Write a program to calculate
the values of the two following expressions and write a short text and the results:

2 + 6 + 8 + 10 + 12 + 40

I 1 1

1 1
+_ —
6 8 10 12 40

1
2
Hint: some constants are better as type INTEGER but some must be type REAL.

Now write similar results using the set of numbers {2,3,10,24,40}

Question 4: Area of aCircle

Write a simple program to read in the radius and calculate the area of the
corresponding circle and volume of the sphere. Demonstrate correctness by
calculating the area and volume using radii of 2, 5, 10 and -1.

Area of a circle:
area=nr’

Volume of a sphere:

4
volume =

Hint 1: place the READ, the area calculation and the WRITE statement in a loop as
shown in the program template given below.
Hint 2: use the value 3.14159 for .

23

PROGRAM Area_and Vol
!...Add specification part
DO
WRITE (unit=6, fmt="(A)”) "Type in the radius, &
&a negative value will terminate"
READ*, radius
IF (radius < 0) EXIT

!'...Add code to calculate area and volume

WRITE (unit=6, fmt=" (A26,F5.1,A4,F6.1)") &
"Area of circle with radius ", &
radius, " is ", area

WRITE (unit=6, fmt=" (A28,F5.1,A4,F6.1)") &
"Volume of sphere with radius ", &
radius, " is ", volume

END DO
END PROGRAM Area_and Vol

In this way when a negative radius is supplied the program will terminate.

Question 5: Point on a circle

Write a program to read in a vector defined by a length, r, and an angle, 0, in degrees
which writes out the corresponding (X, y) co-ordinates. Recall that arguments to
trigonometric functions are in radians.

Demonstrate correctness by finding the (x, y) co-ordinates for the following vectors:

. r=2, 0 =60°

2. r=3, 0=120°

3. r=5, 0 =240°

4. r=28, 6 =300°

5. r=13, 0 =450°

(xy)
Hint: remember that sin8 = Y and cosf = X and 180 degrees = T radians
r r

24

Question 6: Filed values

Write a program to open the file names statsa which has been provided: statsa
contains several values, each on a separate line (or record). Read the first value which
is an integer, and is in a field of width 5. Then read the second value which is of type
real, in a field of width 5 with two digits after the decimal point. Write these two
values within a line of explanatory text to the screen.

25

2. Control Constructs and Intrinsics

Control Flow

Control constructs allow the normal sequential order of execution to be changed.
Fortran 95 supports:

o conditional execution statements and constructs, (IF ... and IF ... THEN
... ELSE ... END IF);

o multi-way choice construct, (SELECT CASE);

a loops, (DO ... END DO).

IF Statement

o The basic syntax of an IF statement is:
IF (< logical-expression >)< exec-stmt >

If < logical-expression > evaluatesto . TRUE. then execute < exec-stmt >
otherwise do not.

For example:
IF (bool val) a =
IF (x > y) Maxi

||
NoWw

The second means "if x is greater than y then set Maxi to be equal to the value of x'.

More examples:

IF (a*b+c /= 47) Boolie = .TRUE.

IF (i /= 0 .AND. j /= 0) k = 1/(i*73)

IF ((i /= 0) .AND. (j /= 0)) k = 1/(i*3) | same
The IF Statement can be explained by a flow structure. Consider the IF statement:

IF (I > 17) Print*, "I > 17"

This maps onto the following control flow structure:

If (I > 17) \

I > 17

\

PRINT *, "I > 17"

y

INext statement

26

When using real-valued expressions (which are approximate) . EQ. and .NE. have
no useful meaning. This example shows a way of treating such a case: Tol has been
set to a suitable small value.

IF (ABS(a-b) < Tol) same = .TRUE.

IF.. THEN ... ELSE Construct

The block-IF is a more flexible version of the single line IF. A simple example:

IF (I > 17) THEN
Print*, "I > 17"
END TIF

This maps onto the following control flow structure:

If (I > 17) \\\\\\

I > 17

\

I <= 17 PRINT *, “I > 17"

END IF

Consider the IF ... THEN ... ELSE construct:

IF (I > 17) THEN
Print*, "I > 17"
ELSE
Print*, "I <= 17"
END IF

Note how the indentation helps. This maps onto the following control flow structure:

ELSE If (I > 17) R
I > 17
~a
PRINT *, “I <= 17" PRINT *, “I > 17"
END IF

27

IF ... THEN ELSEIF Construct

The IF construct has the following syntax:

IF (< logical-expression >)THEN
< then-block >

[ELSEIF (< logical-expression >)THEN
< elseif-block >

cee]

[ELSE
< else-block >]

END IF

The first branch to have a true < logical-expression > is the one that is
executed. Ifnone is found then the < else-block >, if present, is executed. Each
of ELSEIF and ELSE is optional.

Consider the IF ...THEN ... ELSEIF construct:

IF (I > 17) THEN
Print*, "I > 17"
ELSEIF (I == 17) THEN

Print*, "I == 17"
ELSE

Print*, "I < 17"
END IF

This maps onto the following control flow structure:

If (I > 17)
Ij/ I < = 17
PRINT *, “I>17" ELSEIF (I==17) THEN
T =:2{£;//// \\\3LSE
PRINT *, “I==17" PRINT *, “I<17”
END IF

28

You can also have one or more ELSEIF branches. IF blocks may also be nested. As

an example consider:

THEN

*

IF (x > 3)
B+

@
g

ELSET X) THEN

a
I
MU W

ELSEI X) THEN

e I e I
e
W
I

I

o
*
o

ELSE
IF
ENDIF

A=B

N
\
Il
o

Nested and Named | F Constructs

All control constructs can be both named and nested:

outa: IF (a == 0) THEN
WRITE (unit=6, fmt=" (A5)"”) "a = 0O"
inna: IF (¢ /= 0) THEN
WRITE (unit=6, fmt=" (Al6)”) "a =
ELSE

WRITE (unit=6, fmt=" (A15)") "a
ENDIF inna
ELSE IF (a > 0) THEN
WRITE (unit=6, fmt=" (A5)"”) "a > 0"
ELSE
WRITE (unit=6, fmt=" (A13)”) "a must
END IF outa

The names may only be used once per program unit.

Example Using | F constructs

0 AND ¢ /= 0"

0 BUT ¢ = O"

be < 0"

A program written to calculate the roots of a quadratic equation of the form:

ax’ +bx+c=0
will use some of the constructs just described.
The roots are given by the following formula:

e -b+ b’ —4ac

2a

The algorithm consists of:

READ values of a, b and c;
if a is zero then stop as we do not have a quadratic;

calculate the value of discriminant D = b* — 4ac

SN W N~

if D is zero then there is one root: ;—a

29

5. i1f D > 0 then there are two real roots:

~b++/D ~b-+J/D
—and—
2a 2a
—b+iv/-D —b-iv-D
2a and

2a

6. if D <0 there are two complex roots:

7. WRITE the solution.

The program for this might look like this:

PROGRAM QES
IMPLICIT NONE
INTEGER :: a, b, ¢, D
REAL :: Real Part, Imag Part
WRITE (unit=6, fmt=" (A29)”) "Type in values for a, b and c"
READ*, a, b, c
IF (a /= 0) THEN
! Calculate discriminant
D = b*b - 4*a*c

IF (D == 0) THEN ! one root
WRITE (unit=6, fmt=" (A8,F6.1)"”) "Root is ", -b/(2.0%*a)
ELSE IF (D > 0) THEN I real roots

WRITE (unit=6, fmt=" (A9,F6.1,1X,A3,F5.1)") &
"Roots are", (-b+SQRT (REAL(D)))/(2.0*a), &

"and", (-b-SQRT (REAL(D)))/ (2.0%*a)
ELSE ! complex roots
Real Part = -b/(2.0%*a)

! D < 0 so must take SQRT of -D
Imag_Part = (SQRT(REAL(-D))/(2.0%a))
WRITE (unit=6, fmt=" (A9,F6.1,1X,A1,F5.1,A1)") &

"lst Root ', Real_Part, "+", Imag Part, min
WRITE (unit=6, fmt=" (A9,F6.1,1X,A1,F5.1,A1)") &
"2nd Root ", Real Part, "-", Imag Part, "i"
END IF
ELSE I'a == 0

WRITE (unit=6, fmt=" (A24)"”) "Not a quadratic equation"
END TIF
END PROGRAM QES

The previous program introduces some new ideas:

O

& -- means the line is continued;

IF construct -- different statements are executed depending upon the value of the
logical expression;

relational operators -- == (is equal to) or > (is greater than);

nested constructs -- one control construct can be located inside another;

procedure call -- SQRT (X) returns the square root of X;

type conversion -- in the above call, X must be of type REAL. In the program, D is
INTEGER, REAL (D) converts D to be real valued. To save CPU time we
calculate the discriminant once and store it in D.

O

[W A)

30

SELECT CASE Construct

A simple example of a select case construct is:

SELECT CASE (1)
CASE (2,3,5,7)
WRITE(6,” (A10)"”) "i is prime"
CASE (10:)
WRITE(6,” (A10)"”) "i is >= 10"
CASE DEFAULT
WRITE(6,” (A26)") "i is not prime and is < 10"
END SELECT

An IF .. ENDIF construct could have been used but a SELECT CASE is neater and
more efficient. Here is the same example:

SELECT CASE (1)
CASE (2,3,5,7)
I IF (i== .OR. i==3 .OR. i== .OR. i==7) THEN
WRITE(6,” (A10)”) "I is prime"
CASE (10:)
! ELSE IF(i >= 10) .THEN
WRITE(6,” (A10)"”) "I is >= 10"
CASE DEFAULT
! ELSE
WRITE(6,” (A26)"”) "I is not prime and is < 10"
END SELECT
' END TIF

The SELECT CASE construct can be explained by a flow structure. Consider the
SELECT CASE construct:

SELECT CASE (I)

CASE (1) ; Print*, "I=1"

CASE (2:9) ; Print*, "I>=2 and I<=9"

CASE (10) ; Print*, "I=10"

CASE DEFAULT; Print*, "I<l or I>10"
END SELECT

31

This maps onto the following control flow structure:

SELECT CASE (I)

Case (1) Case (10) Case default
PRINT *, PRINT *, PRINT =*, PRINT *,
“I==1" "I>=2 and I<=9" "I = 10" “I<1l or I>10"

END SELECT

The SELECT CASE construct is useful if one of several paths must be chosen based
on the value of a single expression.

The syntax is as follows:

[< name >:] SELECT CASE (< case-expr >)
[CASE (< case-selector >)[< name >]
< exec-stmts >] .
[CASE DEFAULT [< name >]
< exec-stmts >]
END SELECT [< name >]

Note:

0 the < case-expr > mustbe scalarand INTEGER, LOGICAL or
CHARACTER valued;

o the < case-selector > is a parenthesised single value or range, for
example, (.TRUE.), (1) or (99:101);

a there can only be one CASE DEFAULT branch;

o control cannot jump into a CASE construct.

32

Conditional Exit L oop
It is possible to set up a DO loop which is terminated by simply jumping out of it:

i=0
DO
i=1i+1
IF (i > 100) EXIT
WRITE (unit=6,fmt=" (A4,I4)"”) "I is", i
END DO
1 if I5100 control jumps here
WRITE (unit=6, fmt=" (A27,I4)") &
"Loop finished. I now equals", i

This will generate:

I is 1

I is 2

I is 3

I is 100

Loop finished. I now equals 101

The EXIT statement tells control to jump out of the current DO loop.

Conditional Cycle L oops

You can also set up a DO loop which, on some iterations, only executes a subset of its
statements. Consider:

i=14+1
IF (i »>= 50 .AND. i <= 59) CYCLE
IF (i > 100) EXIT
WRITE (unit=6, fmt="(A4,I4)") i
END DO
WRITE (unit=6, fmt=" (A27,I4)") &
"Loop finished. I now equals", 1

This will generate:

I is 1
I is 2

I is 49
I is 60

I is 100
Loop finished. I now equals 101

CYCLE forces control to the innermost active DO statement and the loop begins a new
iteration.

33

Named and Nested L oops

Loops can be given names and an EXIT or CYCLE statement can be made to refer to
a particular loop. This is demonstrated by the code:

0-- outa: DO

1-- inna: DO

2-- IF (a > b) EXIT outa ! jump to line 9
4-- IF (a == b) CYCLE outa ! jump to line O
5-- IF (¢ > d) EXIT inna ! jump to line 8
6-- IF (c == a) CYCLE I jump to line 1
7-- END DO inna

8-- END DO outa

o--

The (optional) name following the EXIT or CYCLE determines which loop the
statement refers to. Note that the name given to a loop cannot be given to any other
object in the program unit.

Indexed DO L oops

Loops can be written which cycle a fixed number of times. For example:
DO i = 1, 100, 1
! 1 takes the values 1,2,3,...,100

I 100 iterations
END DO

The formal syntax is as follows:

DO < DO-var > = < exprl >, < expr2 > [,< expr3 >]
< exec-stmts >
END DO

The number of iterations, which is evaluated before execution of the loop begins, is
calculated as:

MAX (INT (< expr2 >-< exprl >+< expr3 >)/< expr3 >), 0)

If this is zero or negative then the loop is not executed.
If < expr3 > is absent it is assumed to be equal to 1.
The < DO-var > must not be explicitly modified within the DO construct.

Here are four examples of different loops:

Upper bound not exact

DO i =1, 30, 2
! i takes the values 1,3,5,7,...,29
! 15 iterations

END DO

34

Negative stride

DO j = 30, 1, -2
! j takes the values 30,28,26,...,2
... ! 15 iterations
END DO

Zero-trip loop

DO k = 30, 1, 2

! 0 iterations
... ! loop skipped
END DO

Missing stride -- assumed to be 1

DO 1 = 1, 30
! 1 takes the wvalues 1,2,3,...,30
! 30 iterations

END DO

DO construct index

The value of the index variable is incremented at the end of each loop ready for the
next iteration of the loop: this value is available outside the loop. With a piece of
code like this there are three possible outcomes for the index variable:

DO i =1, n

END DO

1. If, at execution time, n is less than 1 it is a zero-trip loop so 1 is given the value 1
and control passes to the statement following END DO.

2. Ifnis greater than 1 and not less than k then i will have the same value as k
when EXIT transfers control to the statement following END DO.

3. Ifnis greater than 1 and less than k then the loop will be executed n times with i
taking the values 1,2,....,n. At the end of the n'® loop i will be incremented to
n+1 and will have this value when control transfers to the statement following
END DO.

35

Practical Exercise 2

Question 1. Parity

Write a program to read several numbers, positive or negative, one at a time and for
each to write out a line giving the number just read and a description of it as an odd or
even number. Stop if the number read in is zero.

Question 2: A Triangle Program

Write a program to accept three (INTEGER) lengths and report back on whether these
lengths could define an equilateral, isosceles or scalene triangle (3, 2 or 0 equal length
sides) or whether they cannot form a triangle.

Demonstrate that the program works by classifying the following:

1. (1,1, 1)
2. 2,2, 1)
3. (1,1,0)
4, (3,4, 5)
5. 3,2, 1)
6. (1,2, 4)

Hint: If three lengths form a triangle then 2 times the longest side must be less than
the sum of all three sides. In Fortran 95 terms, the following must be true:
(2*MAX (sidel,side2,side3) < sidel+side2+side3l3)

Question 3: The Ludolphian Number
Write a program which uses 6 variables of type real; a, b, c, d, e, £ (or any other
names you choose). Set initial values as follows, remembering to match the type of

constant to the type of variable:

a=1, b:L c:l, d=1

V2I 4

Code these 7 lines as Fortran 95 statements (with constants of the correct type) within
a loop which is to be obeyed 4 times:
e=a

. (a+b)

2
b=+bxe

c=c—dx(a-e)’

d =2d

NS b)’
4c

output f

This algorithm was developed by Tamura and Kanada.

36

Question 4: Odd Numbers

Write a program which:

1. Asks how many odd numbers you want to use.

2. Reads in a number (16 would be sufficient to test your program).

3. Sums this many odd numbers, starting from 1 (Do not use the formula for the sum
of an arithmetic progression!)
As each number is added in, write out a count of how many odd numbers have
been added in and what the sum is. So the first line will simply be:

1 1

Question 5: Simple Sequences (symmetric, unitary, descending)
For each of these sequences set an initial value and use a DO-loop.

a) Write a program to calculate and write out each of the terms in this sequence:

1x1
11x11
111 x 111

11111 x 11111
Now calculate and write out the next term in this sequence. Anything strange?

b) Write a program to calculate and write out each of the terms in this sequence:

0x9 + 1
1x9 +2
12x9 + 3
123x9 + 4

12345678 x9 + 9

c) Write a program to calculate and write out each of the terms in this sequence:

I1x8 +1
12x8 + 2
123x8 + 3

123456789 x 8 + 9

Question 6: Mathematical Magic

If you take a positive integer, halve it if it is even or triple it and add one if it is odd,
and repeat, then the number will eventually become one. This is known as the
Syracuse algorithm.

Set up a loop containing a statement to read in a number (input terminated by zero)
and a loop to write out the sequence obtained from each input. The number 13 is
considered to be very unlucky and if it is obtained as part of the sequence then
execution should immediately terminate with an appropriate message.

37

Demonstrate that your program works by outputting the sequences generated by the
following sets of numbers:

a) 7

b) 106,

46, 3, 0

Question 7: Decimal to Roman Numer als Conversion

Using a SELECT CASE block and integer division write a program that reads in a
decimal number between 0 and 999 and writes out the equivalent in Roman Numerals.
Demonstrate that your program works with the numbers:

l.
2.
3.
4.

888

0

222

536

The output should contain no embedded spaces.

1 1 X 1 c
i 2 XX 2 cc
i1 3 XXX 3 cce
v 4 x1 4 cd
\% 5 1 5 d
vi 6 Ix 6 de
vii 7 Ixx 7 dcc
viil 8 Ixxx 8 dece
X 9 XC 9 cm

O 01NN B W — O

Hint: Use a CHARACTER string (or CHARACTER strings) to store the number before
output. The ‘longest' number is 888, dccclxxxviii (12 characters).

Question 8: Solving a Quadratic Equation

1.

2.

Using an editor, type the program QES on page 31 into a file called
QuadsSolver.f95

Compile and run the program. Verify the correctness of the code by
supplying the following test data:

a) a=1, b=-3 andc=2,

b) a=1, b=-2 andc=1,

c) a=1, b=1 andc=1,

d) a=0, b=2 andc=3.

Copy QuadSolver. £95 into a new file called
NewQuadSolver.f95.

Define a new REAL variable called sgqrt D and where appropriate pre-
calculate SQRT (REAL (D)) and substitute this new variable in place of
this expression. Compile the code to produce an executable file called
NewQuadSolver.

Use a different set of test data to that given above to convince yourself that
NewQuadSolver. f95 is a correct program.

Delete the original program file QuadSolver. £95 and the executable
file a.out.

38

3. Arrays

Arrays (or matrices) hold a collection of different values at the same time. Individual
elements are accessed by subscripting the array.

A 15-element array can be visualised as:

1 |2 |3 13 |14 15 |

And a 5 x 3 array as:

Dimension
R S L2 13
21 122 123
Dimension 3,1 13,2 13,3
Al 42 L 43
5,1 52 153

Every array has a type and each element holds a value of that type. Here are some
examples of declarations used in Fortran:

REAL, DIMENSION(15) :: X
REAL, DIMENSION(1:5,1:3) :: Y, Z ! 5 rows, 3 columns

The above are explicit-shape arrays. Further terminology you might meet includes:

o rank -- number of dimensions. Rank of X is 1; rank of Y and Z is 2.

o bounds-- lower and upper limits of indices. Bounds of X are 1 and 15; bounds
of Yand Z are 1 and 5 and 1 and 3.

o extent -- number of elements in dimension. Extent of X is 15; extents of Y and Z are 5
and 3.

O Size-- total number of elements. Size of X, Y and Z is 15.

o shape-- rank and extents. Shape of X is 15; shape of Yand Zis 5, 3.

o conformable -- same shape. Y and Z are conformable.

Declarations

Literals and constants can be used in array declarations:

REAL, DIMENSION(100) R
REAL, DIMENSION(l lO 1:10) : S
REAL, DIMENSION (- 1) 1 X
INTEGER, PARAMETER :: 1lda = 5
REAL, DIMENSION(0:1da-1) Y
REAL, DIMENSION(l+lda*1lda,10) Z

But note:
o the default lower bound is 1;
o bounds can begin and end anywhere.

39

Now consider how these arrays look diagrammatically:

REAL, DIMENSION(15) N

Individual array elements are denoted by subscripting the array name by an INTEGER,
for example, A (7), 7" element of A ;

|A(D) L e L A(15) |
REAL, DIMENSION(-4:0,0:2) :: B
REAL, DIMENSION(S,B) :: C
REAL, DIMENSION(0:4,0:2) :: D

or C(3,2), 3% row, 2" column of C:

B(-4,0) ! . B(-4,2)
c(1,1) ’ | | N c(1,3)
D(0,0) [A D(0,2)
B(0,0) ____________ B(0.2)
C(5,1) | | C(5,3)
D(4,0) > § § “ D(4,2)

Array Element Ordering

Organisation in memory:
o Fortran 95 does not specify anything about how arrays should be located in
memory. It hasno storage association.

o Fortran 95 does define an array element ordering for certain situations, which is of
column major form.

40

The array is conceptually ordered as:

first element
ca,l) — | - —C(,3)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

CG.1) / ¢ : ¢ ; \ C(5.3)

last element

c(1,1),c(2,1),..,¢(5,1),c(1,2),C(2,2),..,C(5,3)

Array Sections

These are specified by subscript-triplets for each dimension of the array. The general
form is:

[< boundl >]:[< bound2 >][:< stride >]

The section starts at < boundl > and ends at or before < bound?2 .
< stride > is the increment by which the elements are selected.

< boundl >, < bound2 >and < stride > must all be scalar integer
expressions. Thus, almost all of these are valid sections:

A() ! the whole array

A(3:9) ! A(3) to A(9) in steps of 1

A(3:9:1) ! as above

A(m:n) ! A(m) to A(n)

A(m:n:k) ! A(m) to A(n) in steps of k

A(8:3:-1) ! A(8) to A(3) in steps of —1

A(8:3) ! A(8) to A(3) in steps of 1 => Zero size
A(m:) ! from A(m) to UBOUND(A)

A(:n) ! from LBOUND(A) to A(n)

A(::2) ! from LBOUND(A) to UBOUND(A) in steps of 2
A(m:m) ! 1 element section of rank 1

A(m) ! scalar element - not a section

41

The following statements illustrate the declaration of an array and some sections of it:

REAL, DIMENSION(1:6,1:8) :: P

P(1:3,1:4) P(1:6:2,1:8:2)

Two sections each of shape 3,4

P(3,2:7) P(3:3,2:7

P(3,2:7) isasection of rank 1 whereas P (3:3,2:7) is a section of rank 2.

Array Conformance

Two arrays or sub-arrays are said to be conformable if they have the same shape
(identical rank and extents): a scalar is conformable with any array.

Array Syntax

You can reference a particular element of an array by using the array name and a valid
subscriptUsing the arrays which were declared previously:

REAL, DIMENSION (15) A
REAL, DIMENSION (-4:0,0:2) B
REAL, DIMENSION (5, 3) C
REAL, DIMENSION (0:4,0:2) D

.0 sets one element to zero,
A(3) + C(5,1) sets an element of B to the sum of an
element of A and an element of C.

o]
(@]
(@]
Il

Whole Array Expressions

If an unary intrinsic operation is applied to an array this produces an array of the same
shape where each element has a value equal to the operation being performed on the
corresponding element of the operand:

B = SIN(C) ! B(i,j) = SIN(C(i+5,3+1))

42

Similarly if a binary intrinsic operation is applied to two arrays of the same shape this
produces an array of the same shape where each element has a value equal to the
operation being performed on the corresponding element of the operand:

B=C+D ! B(i,j) = C(i+5,j+1) + D(i+4,3)

The correspondence of elements in these operations is by position in each extent and
not by subscript.

A scalar conforms to an array of any shape with the same value for every element:

C=1.0 1 C(i,3) = 1.0

Array Section Expressions
The rules which apply to whole array expressions also apply to array section
expressions.

The following program performs an array operation on only certain elements and uses
three functions on arrays. In each case an array section has been used: the statement,
the two transformational and one elemental functions are described before the
program code is given.

The Fortran standard does not prescribe the order in which scalar operations in any
array expression are executed so the compiler is free to optimize such expressions.

WHERE statement and construct

The general form of the statement is:
WHERE (<logical-array-expr>) <array-variable> = <expr>

The logical array expression <logical-array-expr> must have the same shape
as <array-variables. Itis evaluated first and for those elements which have the
value true the corresponding elements of <expr> are evaluated and assigned to the
corresponding elements of <array-variables. For all other elements the
corresponding values of <expr> are not evaluated and the corresponding elements of
<array-variables retain their existing values.

A single logical array expression can be used as a mask controlling several array
assignments if all the arrays are of the same shape:

WHERE (<logical-array-expr>)
<array-assignments>
END WHERE

43

COUNT function

The general form of the function is:
COUNT (<logical-array-exprs)

This returns the integer value of the number of elements in the logical array
expression <logical-array-expr> which have the value true. For example:

nonnegP = COUNT(P > 0.0)

SUM function

The general form of the function is:

SUM (<array>)

This returns the sum of the elements of an integer, real or complex <array>: it
returns the value zero if the <array> has size zero. For example:

sump = SUM(P)

MOD function

The general form of the function is:
MOD (A, P)

This returns the remainder A modulo P, that is A-INT(A/P) * P. A and P must both
be integer or real.

An old method of multiplying two numbers is to write down the two numbers and
then generate a sequence from each in the following manner. Choose one and halve
it, discarding any remainder, and continue until it becomes 1: double the other number
as many times as the first was halved. Cross out the numbers in the doubling
sequence which correspond to a number in the halving sequence which is even: then
sum the remaining numbers. For example, to multiply 13 by 37:

13 6 3. 1

375/74/5 1481 296] 481

44

PROGRAM old times

I An old method of multiplying two integers,

! described on page 44 of Curious and Interesting Numbers.
| program written by Neil Hamilton-Smith, March 2006

IMPLICIT NONE

INTEGER :: n=2, pl, p2, p3, z

INTEGER, PARAMETER :: rn = 32

INTEGER, DIMENSION(l:rn) :: rl, r2

Write (unit=6,fmt="(a46)",advance="no") &

"Please give the two numbers to be multiplied:
Read (unit=5, fmt=*) pl, p2

! store the two sequences of values in arrays rl and r2

rli(l) = pl
r2(1l) = p2
DO
rl(n) = rl(n-1)/2
r2(n) = r2(n-1)*2
IF (rl(n) == 1) EXIT
n=n-+»1
IF ((n > rn) THEN
Write (unit=6,fmt="(a43,13)") &
"Arrays rl, r2 need upper bound greater than", rn
STOP
END IF
END DO

! cross out value in r2 if value in rl is even
WHERE (Mod(rl(l:n),2) == 0) r2(l:n) = 0

I count the zeros in r2: equals count of evens in rl.
| For interest, not strict necessity

z = COUNT(r2(1l:n) == 0)
Write (unit=6,fmt="(a42,1i4)") &
" Number of even numbers in halved row =", z

! sum the values (including zeros) in r2

p3 = SUM(r2(1l:n))

Write (unit=6, fmt="(al0,i5,a4,i5,a3,i8)") "product of", &
pl, " and", p2, " is", p3

END PROGRAM old times

Suppose we have an array of numbers as shown below and wish to determine the
minimum and maximum values and their positions within the array:

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

The program to find the four items will use four transformational functions.

45

MINVAL function

The general form of the function is:

MINVAL (<array>)

This returns the minimum value of an element of an integer or real <arrays: it
returns the largest positive value supported by the processor if the <array> has size
Zero.

For example:

minP = MINVAL (P)

MAXVAL function

The general form of the function is:

MAXVAL (<array>)

This returns the maximum value of an element of an integer or real <array>: it
returns the largest negative value supported by the processor if the <array> has size
zZero.

For example:

maxP = MAXVAL (P)

MINLOC function

The general form of the function is:

MINLOC (<array>)

This returns a rank-one default integer array of size equal to the rank of <array>: its
value is the sequence of subscripts of an element of minimum value, as though all the
lower bounds of <array> were 1. If there is more than one such element then the
first in array element order is taken.

MAXLOC function
The general form of the function is:
MAXLOC (<array>)

This returns a rank-one default integer array of size equal to the rank of <array>: its
value is the sequence of subscripts of an element of maximum value, as though all the
lower bounds of <arrays> were 1. If there is more than one such element then the
first in array element order is taken.

The program could be:

46

program seek extremes
implicit none
! showing use of four intrinsic array functions

integer, dimension(l:5,1:5) :: magi
integer, dimension (1:2) :: posmax, posmin
integer :: ml, m25

! assign values to the rank-two array magi

ml = minval (magi)
m25 = maxval (magi)
posmin = minloc (magi)
posmax = maxloc (magi)

write(6," (a,13,a,1i2,a,12)") "The least value,", ml, &
", is in row", posmin(l), " and column", posmin(2)
write(6,"(a,13,a,12,a,12)") "The greatest value,", &
m25, ", is in row", posmax(l), " and column", posmax(2)

end program seek extremes

Array I/O

The conceptual ordering of array elements is useful for defining the order in which
array elements are output. If A is a rank 2 array then

WRITE (*,*) A
would produce output in the order:

A(1,1),A(2,1),A(3,1),..,A(1,2),A(2,2),..
and
READ (*,*) A

would assign to the elements in the above order.

Using intrinsic functions such as RESHAPE or TRANSPOSE you could change this
order. As an example consider the matrix A:

1047
2058
31619

The following WRITE statements

WRITE (unit=6, fmt=" (A19,I2)") 'Array element =',a(3,2)
WRITE (unit=6, fmt=" (A19,3I2)"”) 'Array section =',a(:,1)
WRITE (unit=6, fmt=" (A19,4I2)"”) 'Sub-array =',a(:2,:2)
WRITE (unit=6, fmt=" (A19,9I2)"”) 'Whole Array =',a

WRITE (unit=6, fmt=" (A19,9I2)"”) 'Array Transp''d =', &

&TRANSPOSE (a)
END PROGRAM WrtArray

47

produce on the screen:

Array element =
Array section =
Sub-array =
Whole Array =
Array Transp'd =

H R R RO

=N NN

N W kW

N & Ul
[S20N0)]
@ O
w 3
o
0

The TRANSPOSE Intrinsic Function

TRANSPOSE is a general intrinsic function, which takes a rank-two matrix and
returns a rank-two matrix of the same type which is its transpose, ie each element (i,j)
is replaced by element (j,1):

TRANSPOSE (<matrixs>)

For example:

1 4
245
3 16

Array Constructors

TRANSPOSE 123
— 4 516
7 18 19

Used to give arrays or sections of arrays specific values. For example:

IMPLICIT NONE

INTEGER I
INTEGER, DIMENSION (10) :: ints
CHARACTER (len=5), DIMENSION(3) :: colours
REAL, DIMENSION (4) :: heights
heights = (/5.10, 5.6, 4.0, 3.6/)

colours = (/'RED ', '"GREEN', 'BLUE '/)

! note padding so strings are 5 chars long
ints = (/ 100, (i, 1i=1,8), 100 /)

constructors and array sections must conform.

for higher rank arrays use RESHAPE intrinsic.

Q
0 must be rank 1.
Q
Q

(i, i=1,8) isanimplied DO and is 1,2,..,8: it is possible to specify a stride.

The RESHAPE Intrinsic Function

RESHAPE is a general intrinsic function, which delivers an array of a specific shape
given by the rank-one integer array <shape>:

RESHAPE (<source>,

<shape>)

48

For example:

! declare an array A

INTEGER, DIMENSION(1:2,1:2) :: A
! assign values to this array A

A = RESHAPE((/1,2,3,4/), (/2,2/))

A is filled in array element order and looks like:

1 3
4
Visualisation:
I
R — |
(11213 :4] — _lJlé_
RESHAPE 2,4
Named Array Constants
Named array constants may be created:
INTEGER, DIMENSION(3), PARAMETER :: &
Unit vec = (/1,1,1/)
REAL, DIMENSION(3,3), PARAMETER :: &
Unit matrix = &

RESHAPE((/1,0,0,0,1,0,0,0,1/), (/3,3/))

Allocatable Arrays

Fortran 95 allows arrays to be created by dynamic memory allocation.

o Declaration:

INTEGER, DIMENSION(:), ALLOCATABLE :: ages ! rank 1
REAL, DIMENSION(:,:), ALLOCATABLE :: speed ! rank 2

Note the ALLOCATABLE attribute and fixed rank. These are known as deferred-
shape arrays because the actual shape is deferred until allocation.
a Allocation:
READ (*,*) isize

ALLOCATE (ages (isize), STAT=ierr)
IF (ierr /= 0) WRITE(6,” (A)") "ages : Allocation failed"

ALLOCATE (speed(0:isize-1,10) ,STAT=1ierr)
IF (ierr /= 0) WRITE(6,'” (A)") "speed : Allocation failed"

o the optional STAT= field reports on the success of the storage request. If the
INTEGER variable ierr is zero the request was successful otherwise it failed.

49

Deallocating Arrays
Storage can be reclaimed by using the DEALLOCATE statement:

IF (ALLOCATED (ages)) DEALLOCATE (ages,STAT=ierr)

Q it is an error to deallocate an array without the ALLOCATE attribute or one that
has not previously been allocated space;

QO there is an intrinsic function, ALLOCATED, which returns a scalar LOGICAL
value reporting on the status of an array;

o the STAT= field is optional but its use is recommended;

o ifa procedure containing an allocatable array which does not have the SAVE
attribute (see page 62) is exited without the array being DEALLOCATEA then this
storage becomes inaccessible.

Vector and Matrix Multiplication

There are two intrinsic functions which perform vector and matrix multiplications.
Each function has two arguments which are both of numeric type (integer, real or
complex) or both of logical type: the result is of the same type as the multiply or
logical and operation between two such scalars.

The function for vectors is:
dot product (vector a, vector b)

which requires two arguments of rank-one and the same size.

e Ifvector ais oftype integer or real then the result is
sum(vector a * vector_ b)

e Ifvector ais of type complex then the result is
sum (conjg(vector a) * vector b)

e Ifvector aisoftype logical then the result is . true. if any element of
vector a .and. vector bis .true..

If at least one argument is a rank-two matrix then the function is:
matmul (matrix a, matrix b)

where there are three possibilities depending on the shape of the arguments.
e Ifmatrix ahasshape (n,m) and matrix b has shape (m,k) then the result

has shape (n, k) and element (i,7) has the value
sum(matrix a(i,:) * matrix b(:,7))

e Ifmatrix ahasshape (m) and matrix b has shape (m,k) then the result has
shape (k) and element (j) has the value sum (matrix a * matrix b(:,3))
e Ifmatrix a hasshape (n,m) and matrix b has shape (m) then the result has
shape (n) and element (i) has the value sum (matrix a(i,:) * matrix b)

e If the arguments are of logical type the shapes are as for numeric arguments
and the values are determined by replacing sum and * by any and .and..

50

Practical Exercise 3

Question 1: Rank, Bounds etc.
Give the rank, bounds, size and shape of the arrays defined as follows:

REAL, DIMENSION(1:10) :: ONE

REAL, DIMENSION(2,0:2) :: TWO
INTEGER, DIMENSION(-1:1,3,2) :: THREE
REAL, DIMENSION(0:1,3) :: FOUR

Write down the array element order of each array.

Which two of the arrays are conformable?

Question 2: Array Sections

Declare an array which would be suitable for representing a chess board. Write a
program to set all the white squares to zero and the black squares to one. (A chess
board is 8 x 8 with alternate black and white squares.) Use formatted output to
display your chess board on the screen.

Question 3: Array Constructor
Euler noted that a sequence of 40 prime numbers p starting at 41 can be found from
the formula:

p = 41 + x + xX?, for 0 £ x £ 39

Write a program using an array constructor to store this sequence of 40 primes in an
array, putting the first prime in element 0 or 1. Use formatted write to output the
sequence on your screen, with at most 5 primes on each row.

Question 4: Fibonacci Numbers
The Fibonacci numbers are defined as follows:

Uo = 0; Ui =1; Up=Un., + Up; forn = 2

Write a program to generate and store in an array the Fibonacci numbers up to and
including u.g.

The sum of the first n numbers is u,,, — 1. Use the intrinsic function SUM on an
array section to find the sum of the numbers u, to u,,. Compare this result with the
value of u,s — 1.

The sum of the first n numbers with odd indices is:

Ui + Uz + Us + .t Uzp-1 = Uon.
Use the intrinsic function SUM on an array section to find the sum of the numbers with
odd indices up to u,3. Compare this result with the value of u,,.

51

The sum of the first n numbers with even indices is:

Uy + Uz + Ug + ..t Usn = Usnst - 1.
Use the intrinsic function SUM on an array section to find the sum of the numbers with
even indices up to u,,. Compare this result with the value of u,s - 1.

Question 5: Magic Squares

A magic square is a set of numbers arranged in a square array so that the sum of the
numbers in each row, the sum of the numbers in each column and the sum of the
numbers along each diagonal are all equal. This sum is known as the magic number
of this particular magic square.

Write a program to create two 3 x 3 arrays holding these magic squares:

4 9 2 9 2 7
3 5 7 4 6 8
8 1 6 5 10 3

o For each magic square write a line of text as a heading and then the magic square.

o Add the two magic squares together and save the result in a third array: write a
heading and then this magic square.

o Check that this is a new magic square by comparing the sums across the first row,
down the last column and along the leading diagonal.

Question 6: Symmetry
Write a program to work with the first magic square of Question 5.

o Write the square’s magic number (the row, column or diagonal sum). You can
check your answer because for an n x n magic square consisting of any
arrangement of the integers 1 to n” the formula is (n® + n)/2

o Use the intrinsic function TRANSPOSE to save the transpose of the magic square
in anew 3 x 3 array.

o Add the magic square to its transpose and save the result in a new array: this
should be a symmetric matrix. Check that the bottom left and top right elements
are equal: write out the symmetric matrix.

Question 7: More Magic

Modify the Mathematical Magic program which you wrote for Exercise 2, Question 6
to save the sequences generated in an array. Write out each sequence and find the
largest value in each of these sequences and the position in the sequence at which it
occurs.

Question 8 MATMUL Intrinsic

For the declarations

REAL, DIMENSION(8,8) :: A, B, C

what is the difference between C=MATMUL (A, B) and C=A*B?

52

Question 9: More Filed values

Modify the Filed values program which you wrote for Exercise 2, Question 7 to
declare an allocatable rank one array of type real. Use the integer value which is read
in from the file statsa as the upper bound for the array when it is allocated (and
make the lower bound 1). Then fill the array with real values read from the file. (All
values are in fields of width 5 with two digits after the decimal point.) Write out these
real values, with 5 on each line. Deallocate the array.

53

4. Procedures

Program Units

Fortran 95 has two main program units:

0 main PROGRAM is the place where execution begins and where control should
eventually return before the program terminates. It may contain procedures.

0 MODULE is a program unit, which can contain procedures and declarations. It is
intended to be used by another program unit where the entities defined within it
become accessible.

There are two types of procedures:

O SUBROUTINE is a parameterised named sequence of code which performs one
or more specific tasks and can be invoked from within other program units.

0 FUNCTION is a parameterised named sequence of code which returns a result in
the function name (of any specified type and kind).

Main Program Syntax

PROGRAM Main

|

CONTAINS ! Internal Procs
SUBROUTINE Subl (..)
! Executable stmts
END SUBROUTINE Subl
I etc.

FUNCTION Funkyn(...)
! Executable stmts
END FUNCTION Funkyn
END PROGRAM Main

[PROGRAM [< main program name >]|]
< declaration of local objects >

< executable statements >

[CONTAINS
< internal procedure definitions >]
END [PROGRAM [< main program name >]]

As an example consider the following:

54

PROGRAM Main
IMPLICIT NONE
REAL :: X
READ (*,*) X
WRITE (unit=6,fmt=" (I6)"”) FLOOR (X) ! Intrinsic
WRITE (unit=6, fmt=" (F12.4)"”) Negative (x)
CONTAINS
REAL FUNCTION Negative (a)
REAL :: a
Negative = -a
END FUNCTION Negative
END PROGRAM Main

I ntroduction to Procedures

The first question should be: "Do we really need to write a procedure?" Functionality
often exists. For instance look first at:

O intrinsics, Fortran 95 has 121;

a libraries, for example, NAG flI90 Numerical Library has 300+, BLAS, IMSL,
LaPACK. Library routines are usually very fast, sometimes faster than Intrinsics.

0 modules, number growing, many free! See WWW.

Subroutines

Consider the following example:

PROGRAM Thingy
IMPLICIT NONE
REAL.DIMENSION(1:5) :: NumberSet = (/1,2,3,4,5/)

CONTAINS

SUBROUTINE OutputFigures (Numbers)

REAL, DIMENSION(:) :: Numbers

WRITE(6,” (A, (/5F12.4))") "Here are the figures", Numbers

END SUBROUTINE OutputFigures
END PROGRAM Thingy

Internal subroutines lie between the CONTAINS and END PROGRAM statements and
have the following syntax:

SUBROUTINE < procname >[(< dummy args >)]
< declaration of dummy args >
< declaration of local objects >

< executable stmts >
END [SUBROUTINE [< procname >] |

Note that, in the example, the IMPLICIT NONE statement applies to the whole
program including the SUBROUTINE.

55

Functions

Consider the following example:

PROGRAM Thingy
IMPLICIT NONE
WRITE (unit=6,fmt="(F7.3)") theta(a,b,c)
CONTAINS
REAL FUNCTION theta(x,y,z)
! return the angle between sides x and y
REAL :: x, vy, 2
! check that sides do make a triangle
IF (2*MAX(xX,VY,2) < (x+y+z)) THEN
theta = ACOS ((X**2+y**2-z**2) /(2.0*x*y))
ELSE ! gides do not make a triangle
theta 0.0
END IF
END FUNCTION theta
END PROGRAM Thingy

Internal functions also lie between the CONTAINS and END PROGRAM statements.
Functions have the following syntax:

[< prefix >] FUNCTION < procname > ([< dummyargs >])
< declaration of dummy args >
< declaration of local objects >

< executable stmts, assignment of result >
END [FUNCTION [< procname >] 1]

The function type could be declared in the declarations area instead of in the header.
A function returns its result through its name, and is usually used in an expression.

Argument Association

Recall, with the SUBROUTINE we had an invocation:
CALL OutputFigures (NumberSet)

and a declaration:

SUBROUTINE OutputFigures (Numbers)

where NumberSet is an actual argument and is argument associated with the
dummy argument Numbers. The actual argument must agree in type with the
dummy argument.

For the above call, in OutputFigures, the name Numbers is an alias for
NumberSet. Likewise, consider the two statements:

WRITE (unit=6,fmt="(F7.3)") theta(a,b,c)

REAL FUNCTION theta(x,y,z)

56

The actual arguments a, b and c are associated with the dummy arguments x, y and
z. If the value of a dummy argument changes and the actual argument is a variable
then so does the value of this variable.

Argument I ntent

Information to the compiler can be given as to whether a dummy argument will:

a only be referenced -- INTENT (IN);
a be assigned to before use -- INTENT (OUT) ;
o be referenced and assignedto ~ -- INTENT (INOUT).

SUBROUTINE example (argl,arg2,arg3)
REAL, INTENT (IN) :: argl
INTEGER, INTENT (OUT) :: arg?2
CHARACTER, INTENT (INOUT) :: arg3
REAL :: r

r = argl*ICHAR (arg3)

arg2 NINT (r)

arg3 CHAR (MOD (arg2,127))
END SUBROUTINE example

The use of INTENT attributes is recommended as it allows good compilers to check
for coding errors, and facilitates efficient compilation and optimisation.

Note: if an actual argument is ever a literal, then the corresponding dummy argument
must have the attribute INTENT (IN).

If the intent of a dummy argument is OUT or INOUT then the corresponding actual
argument must be a variable.

If a procedure changes the value of an argument then it is better for this procedure to
be a subroutine rather than a function.

L ocal Objects

In the following procedure

SUBROUTINE Madras (i, j)

INTEGER, INTENT (IN) :: i, jJ
REAL ::a
REAL, DIMENSION(i,j):: X

a and x are known as local objects. They:

a are created each time the procedure is invoked;

a are destroyed when the procedure completes;

o do not retain their values between calls;

o do not exist in the program’s memory between calls.
x could have a different size and shape on each call.

57

Scoping Rules
Fortran 95 is not a traditional block-structured language:

o the scope of an entity is the range of program unit where it is visible and
accessible;

o internal procedures can inherit entities by host association;

0 objects declared in modules can be made visible by use association (the USE
statement, explained in the next chapter): useful for global data.

Host Association -- Global Data

Consider:

PROGRAM CalculatePay
IMPLICIT NONE

REAL :: GrossPay, TaxRate, Delta
INTEGER :: NumberCalcsDone = 0
GrossPay = ...; TaxRate = ... ; Delta =

CALL PrintPay (GrossPay, TaxRate)
TaxRate = NewTax (TaxRate,Delta)

WRITE (unit=6, fmt="(a29,1i2)") &
"Number of calculations done =", NumberCalcsDone
CONTAINS
SUBROUTINE PrintPay (Pay, Tax)
REAL, INTENT (IN) :: Pay, Tax
REAL :: TaxPaid
TaxPaid = Pay * Tax
WRITE (unit=6, fmt="(F8.3)") Pay - TaxPaid

NumberCalcsDone = NumberCalcsDone + 1
END SUBROUTINE PrintPay
REAL FUNCTION NewTax (Tax,Delta)
REAL, INTENT(IN) :: Tax, Delta
NewTax = Tax + Delta*Tax
NumberCalcsDone = NumberCalcsDone + 1
END FUNCTION NewTax
END PROGRAM CalculatePay

NumberCalcsDone is a global variable and available in all procedures in this
program by host association.

58

Scope of Names

Consider the following example:

PROGRAM Proggie
IMPLICIT NONE

REAL :: A=1.0, B, C
CALL sub (A)
CONTAINS

SUBROUTINE Sub (D)
REAL :: D ! D is dummy (alias for A)
REAL :: C ! local C (diff from Proggie's C)
C = A**3 ! A cannot be changed
D = D**3 + C ! D can be changed
B =2C ! B from Proggie gets new value

END SUBROUTINE Sub
END PROGRAM Proggie

In Sub, as A is argument associated it may not have its value changed but may be
referenced.

C in Sub is totally separate from C in Proggie, changing its value in Sub does not
alter the value of C in Proggie.

SAVE Attribute

The SAVE attribute can be applied to a specified local variable in a procedure so that
it and its value are not lost on return from the procedure. In the following example
NumInvocations is initialised on first call and retains its new value between calls:

SUBROUTINE Barmy (argl, arg2)

REAL, INTENT (IN) :: argl
REAL, INTENT(OUT) :: arg2
INTEGER, SAVE :: NumInvocations = 0

NumInvocations = NumInvocations + 1

Variables with the SAVE attribute are static objects. Clearly, SAVE has no meaning
in the main program.

Strictly the SAVE attribute in this example is not necessary because all variables with
initial values acquire the SAVE attribute automatically.

59

Dummy Array Arguments

There are two main types of dummy array argument:

a

explicit-shape -- all bounds specified;
REAL, DIMENSION(8,8), INTENT(IN) :: expl shape

The actual argument that becomes associated with an explicit-shape dummy must
conform in size and shape.

assumed-shape -- no bounds specified, all inherited from the actual argument;
REAL, DIMENSION(:,:), INTENT(IN) :: ass_shape

The actual argument that becomes associated with an assumed-shape dummy must
conform in rank. An explicit interface must be provided.

dummy arguments cannot be (unallocated) ALLOCATABLE arrays.

Assumed-shape Arrays

Should declare dummy arrays as assumed-shape arrays:

PROGRAM Main

IMPLICIT NONE
REAL, DIMENSION (40) i: X
REAL, DIMENSION (40,40) 2 Y, Z

CALL gimlet (X,Y)
CALL gimlet (X(1:39:2),Y(2:4,4:4))
CALL gimlet (Y (1:39:2,1),Z(2:40:2,2:40:2))

CONTAINS

SUBROUTINE gimlet(a,b)
REAL, INTENT(IN) :: a(:), b(:,:)

END SUBROUTINE gimlet

END PROGRAM

Note:

e the actual argument cannot be a vector subscripted array;
e the actual argument cannot be an assumed-size array;
e in the procedure, bounds begin at 1.

60

External Functions

In an earlier example we had a program with an internal function:

PROGRAM Main
IMPLICIT NONE
REAL :: x
READ (*,*) x
WRITE (unit=6, fmt=" (F12.4)"”) Negative (x)

CONTAINS
REAL FUNCTION Negative (a)
REAL, INTENT(IN) :: a
Negative = -a

END FUNCTION Negative
END PROGRAM Main

Sometimes a function is defined outside the body of the program unit which uses it, ie
it is external to that unit. For example:

PROGRAM Main
IMPLICIT NONE

REAL :: X
READ (*,*) x
WRITE (unit=6, fmt=" (F12.4)") Negative (x)

END PROGRAM Main

REAL FUNCTION Negative (a)
REAL, INTENT(IN) :: a
Negative = -a

END FUNCTION Negative

So that the compiler may know about this object it is necessary to give both its type
and the fact that it is external in the specification part of the program. There are two
ways of doing this:

PROGRAM Main
IMPLICIT NONE
REAL :: x, Negative ! specify type REAL
EXTERNAL :: Negative I use EXTERNAL statement
READ (*, *) x

61

Or alternatively:

PROGRAM Main
IMPLICIT NONE
REAL :: x
REAL, EXTERNAL :: Negative! specify type REAL and use
! EXTERNAL attribute
READ (*, *) x

Subroutine or Function?

It is permissible to write a function which does more than calculate its result but if it
also performs action such as altering the values of arguments, input or output
operations these side-effects adversely affect optimization particularly on parallel
processors. Some side-effects in procedures to be aware of include:

e ifa function, it does not alter the value of any dummy argument: effectively
each dummy argument could have intent In: the name of the function behaves
like a dummy argument which is initially undefined and has intent ouT;
it does not alter any variable accessed by host or use association;
it does not contain any local variable with the attribute SavE;
it does not perform any operation on an external file;
it must not contain a STOP statement.

If it is necessary for a procedure to include any side-effect then a subroutine should be
written instead of a function.

62

Practical Exercise 4

Question 1. Simple example of a Subroutine
Write a main program and an internal subroutine that returns, as its first argument, the
sum of two real numbers.

Question 2: Simple example of a Function
Write a main program and an internal function that returns the sum of two real
numbers supplied as arguments.

Question 3: Switch or Stick

Write a main program and an internal subroutine with two arguments that returns, as
its first argument, the smaller of two real numbers and as its second argument, the
other number.

Question 4. Standard Deviation

Write a program which contains an internal function that returns the standard
deviation from the mean of an array of real values. Note that if the mean of a
sequence of values (X , i = 1, n) is denoted by mthen the standard deviation, S, is
defined as:

S:\/Z?l(x—m)z

(n=1)

[Hint: In Fortran 95 SUM (X) is the sum of the elements of X.]

To demonstrate correctness write out the standard deviation of the following numbers
(10 of them):

5.0 3.0 170 -756 78.1 99.99 0.8 117 33.8 29.6

and also the following 14:
1.0 20 30 40 50 60 70 80 90 100 11.0 12.0 13.0

The files statsa and statsb contain these two sets of real values preceded by the
relevant count (see Exercise 3, Question 9).

Question 5: Save Attribute
Write a skeleton procedure that records how many times it has been called.

63

14.0

5. Modules and Derived Types

Plane Geometry Program

The following program defines a simple 3 sided shape and contains two internal
functions:

PROGRAM Triangle
IMPLICIT NONE

REAL :: a, b, c
REAL, PARAMETER :: pi = 3.14159
WRITE (unit=6,fmt="(a)") 'Welcome, please enter the &

&lengths of the 3 sides.'
READ(5,*) a, b, c

WRITE (unit=6, fmt="(alé6,£5.1)") &
'Triangle''s area:', Areal(a,b,c)
CONTAINS

FUNCTION theta (x,v, z)
! return the angle between sides x and y
REAL :: theta ! function type
REAL, INTENT(IN) :: X, y, 2
! check that sides do make a triangle
IF (2*MAX(x,VY,2) < (x+y+z)) THEN
theta = ACOS ((xX**2+4y**2-z**2) /(2.0*x*Yy))
ELSE ! sides do not make a triangle
theta = 0.0
END IF
END FUNCTION theta

FUNCTION Area (x,y,Zz)

REAL :: Area ! function type
REAL, INTENT(IN) :: x, y, 2
REAL :: height

height = x*SIN(theta(x,y,z))
Area = 0.5*y*height
END FUNCTION Area

END PROGRAM Triangle

The main program can now call Area which uses 3 REAL values.

64

Reusability — M odules

To allow the constant pi and the function Area to be used elsewhere they should be
contained in a MODULE. This is called encapsulation.

The general form of a module is:

MODULE Nodule

! TYPE Definitions

! Global data

I etc
CONTAINS
SUBROUTINE Sub (. .)

! Executable stmts
CONTAINS
SUBROUTINE Intl(..)

| Executable stmts
END SUBROUTINE Intl

I etc.
SUBROUTINE Intn(..)

| Executable stmts
END SUBROUTINE Intn
END SUBROUTINE Sub

I etc.
FUNCTION Funky(..)

! Executable stmts
CONTAINS

! etc

END FUNCTION Funky
END MODULE Nodule

MODULE < module name >

< declarations and specifications statements >
[CONTAINS

< definitions of module procedures > |

END [MODULE [< module name >]]

65

The MODULE program unit provides the following facilities:

global object declaration;

procedure declaration (including operator definition);

semantic extension;

ability to control accessibility of above to different programs and program units;
ability to package together whole sets of facilities.

0000 D

Here is some of the code taken from the previous program example and encapsulated
in a module:

MODULE Triangle Operations
IMPLICIT NONE
REAL, PARAMETER :: pi = 3.14159
CONTAINS
FUNCTION theta(x,y,z)
! return the angle between sides x and y
REAL :: theta ! function type
REAL, INTENT(IN) :: X, y, Z
! check that sides do make a triangle
IF (2*MAX(x,vy,2z) < (x+y+z)) THEN
theta = ACOS ((xX**2+y**2-2%%*2) /(2.0*x*Yy))
ELSE ! sides do not make a triangle
theta = 0.0
END IF
END FUNCTION theta

FUNCTION Area (x,Vy,Z)

REAL :: Area ! function type
REAL, INTENT(IN) :: x, V, Z
REAL :: height

height = x*SIN(theta(x,y,z))
Area = 0.5*y*height
END IF
END FUNCTION Area

END MODULE Triangle Operations

Other programs can now access Triangle Operations. The USE statement
attaches it to a program, and must precede any specification statements:

66

PROGRAM TriangUser
USE Triangle Operations
IMPLICIT NONE
REAL :: a, b, ¢, angle rad, angle deg

WRITE (unit=6,fmt="(a)") 'Welcome, please enter the &
&lengths of the 3 sides.'!

READ(5,*) a, b, c

WRITE (unit=6,fmt="(alé6,f5.1)") &

'Triangle''s area:', Areaf(a,b,c)

angle rad = theta(a,b,c)

angle deg = angle rad*180.0/pi

WRITE (unit=6,fmt="(a,f6.2,a,f6.2,a)”) “Angle is”, &
angle rad, “ radians or”, angle deg, “ degrees”

END PROGRAM TriangUser

It is as if the code had been included in TriangUser.

Points raised:

within a module, functions and subroutines are called module procedures;
module procedures may contain internal procedures (like PROGRAMs);

module objects which retain their values should be given the SAVE attribute;
modules can also be USEd by procedures and other modules;

modules can be compiled separately. They must be compiled befor e the program
unit that uses them.

0O00D0O

Restricting Visibility
In the example, the main program has access to theta and Area. You can prevent

this by assigning visibility attributes:

PRIVATE :: theta ! hidden
PUBLIC :: Area ! not hidden

theta is hidden, Area is not.

This allows Area to use theta within the module and for there to be a distinct
object named theta defined outside this module which could be used in the
program. Alternatively, you could use statements or attributes:

PUBLIC ! set default visibility
PRIVATE :: theta ! hidden
REAL, PRIVATE :: height ! hidden

so, in the main PROGRAM:

abc = Area(3,4,5) ! OK
height = 2.9 ! Forbidden

67

The USE Renames Facility

The USE statement names a module whose public definitions are to be made
accessible. The syntax is:

USE < module-name > &
[,< new-name > => < use-name >...]

Module entities can be renamed:

USE Triangle Operations, Space => Area

The module object Area is renamed to Space when used locally.

USE ONLY Statement

Another way to avoid name clashes is to only use those objects which are necessary.
It has the following form:

USE < module-name > [, ONLY: < only-1list >...]

The < only-1ist > can also contain renames (=>). For example:

USE Triangle Operations, ONLY : pi, &
Space => Area

Only pi and Area are made accessible: Area is renamed to Space.

The ONLY statement gives the compiler the option of including only those entities
specifically named.
Derived Types

It is often advantageous to express some objects in terms of aggregate structures, for
example: coordinates, (x, v, z). Fortran 95 allows compound entities or derived types
to be defined:

TYPE COORDS_ 3D

REAL :: x, vy, 2
END TYPE COORDS 3D
TYPE (COORDS 3D) :: ptl, pt2

Derived types definitions should be placed in a MODULE.

Previously defined types can be used as components of other derived types. These are
sometimes known as supertypes:

TYPE SPHERE
TYPE (COORDS_3D) :: centre
REAL :: radius
END TYPE SPHERE

68

Objects of type SPHERE can be declared:

TYPE (SPHERE) :: bubble, ball

Values can be assigned to derived types either component by component or as an
object.

An individual component may be selected by using the % operator:

ptlsx = 1.0
bubble%radius = 3.0
bubble%centre%x = 1.0

The whole object may be selected and assigned to by using a constructor:

ptl = COORDS 3D(1.,2.,3.)

bubble%centre = COORDS 3D(1.,2.,3.)
bubble SPHERE (bubble%centre, 10.)
bubble SPHERE (COORDS 3D(1.,2.,3.),10.)

The derived type component of SPHERE must also be assigned to by using a
constructor. Note however, that assignment between two objects of the same derived
type is intrinsically defined:

ball = bubble

Derived type objects, which do not contain pointers (or private) components, may be
input or output using normal methods:

WRITE (unit=6,fmt="(4F8.3)") bubble

is exactly equivalent to:

WRITE (unit=6,fmt="(4F8.3)") bubble%centre%x, &
bubble%centre%y, bubble%centre%z, &
bubble%radius

Derived types are handled on a component by component basis. Their definitions
should be packaged in a MODULE.

MODULE VecDef

TYPE vec
REAL :: r
REAL :: theta

END TYPE vec
END MODULE VecDef

To make the type definitions visible, the module must be used:

69

PROGRAM Up
USE VecDef
IMPLICIT NONE
TYPE (vec) :: north
CALL subby (north)

CONTAINS
SUBROUTINE subby (arg)
TYPE (vec), INTENT(IN) :: arg

END SUBROUTINE subby
END PROGRAM Up

Type definitions can only become accessible by host or use association.

Functions can return results of an arbitrary defined type

FUNCTION Poo (kanga, roo)
USE VecDef

TYPE (vec) :: Poo
TYPE (vec), INTENT(IN) :: kanga, roo
Poo =...

END FUNCTION Poo

Recall that the definitions of VecDef must be made available by use or host
association.

True Portability

The range and precision of the values of numeric intrinsic types are not defined in the
language but are dependent upon the system used for the program. There are intrinsic
integer functions for investigating these:

INTEGER I
REAL 1 X
RI = RANGE (I)

RR = RANGE (X) ; PR = PRECISION (X)

, PR, RI, RR

If RT has the value 9 this means that any integer n
inthe range -999999999 < n < 999999999 can be handled by the program.

If RR has the value 37 and PR has the value 6 this means that any real value in the
range 10>7 to 10>’ can be handled in the program with a precision of 6 decimal
digits. As values of type complex consist of ordered pairs of values of type real,
similar values would be returned by the inquiry functions if their arguments were of
type complex instead of type real.

Intrinsic types can be parameterised by the KIND value to select the accuracy and
range of the representation.

For type integer the function SELECTED INT KIND with a single argument of type
integer giving the desired range will return the appropriate KIND value.

70

INTEGER, PARAMETER :: 1k9 = SELECTED_ INT KIND (9)
INTEGER (KIND=1ik9) N

If the given range can be supported, then the KIND value will be non-negative: a
value of -1 indicates that the range is not supported.

For type real the function SELECTED REAL_ KIND with two arguments of type
integer giving the desired precision and range will return the appropriate KIND value.

INTEGER, PARAMETER :: rk637 = SELECTED REAL KIND(6,37)
REAL (KIND=rk637) 1 X

If the given precision and range can be supported, then the KIND value will be non-
negative. A value of -1 indicates that insufficient precision is available, a value of
- 2 indicates that insufficient exponent range is available, and -3 indicates that
neither is attainable.

Constants should have their KIND value attached:

INTEGER (KIND=1ik9) : I=1 1k9
REAL (KIND=rk637) :: X=2.0 rké637
COMPLEX (KIND=rk637) C=(3.0_rk637,4.0 rk637)

I =1+ 5 ik9
X = X + 6.0 rk637
C=C+ (7.0 rk637,8.0 rk637)

You should make KIND value constants global by defining them in a module.

71

Practical Exercise5

Question 1: Encapsulation

Define a module called Simple Stats which contains encapsulated functions for
calculating the mean and standard deviation of an arbitrary length REAL vector. The
functions should have the following interfaces:

REAL FUNCTION mean (vec)
REAL, INTENT(IN), DIMENSION(:) :: wvec
END FUNCTION mean

REAL FUNCTION Std Dev (vec)
REAL, INTENT (IN), DIMENSION(:) :: vecC
END FUNCTION Std Dev

[Hint: In Fortran 95, SIZE (X) gives the number of elements in the array X.]

You may like to utilise your earlier code as a basis for this exercise.

Add some more code in the module, which records how many times each statistical
function is called during the lifetime of a program. Record these numbers in the
variables: mean use and std_dev_use.

Demonstrate the use of this module in a test program; in one execution of the program
give the mean and standard deviation of the following sequences of 10 numbers:

5.0 3.0 17.0 -7.56 781 9999 0.8 11.7 338 29.6
and then the following 14:
0O 20 30 40 50 60 70 80 90 100 11.0 12.0 13.0 14.0

Write out the values of mean use and std_dev_use for this run of the program.

Question 2: Binary Cut

Write a module containing a function which returns the position of a particular
number in an array of sorted integers. The function should employ the so-called
““binary cut" method. This method proceeds by determining in which half the number
is and then concentrating on that half. It is easily implemented by using two indices
to point at the low and high positions of the current area of interest. It is assumed that
if there is more than one occurrence of the number then the one with the higher index
will be chosen. This method is very efficient for very large arrays.

72

Algorithm:

. Let i and j be the indices of the low and high marks.

] Initially set i = 1 and j = n (the number in the list)
. Assume k is the number we are trying to find

= DO

. IF (i > j)EXIT

" determine the half way point ihalf = %

. IF kisabove ihalfputi = ihalf + 1

. Otherwise put j = ihalf

- END DO

. j will now point at the number k

Question 3: Spheres Apart

Write a program to look at the relationship between all pairs of an arbitrary number of
spheres defined in 3-dimensional space. Read in the number of spheres being used
and read the coordinates of the centres and the lengths of the radii of these spheres
into an allocatable array of a defined type variable. For spheres s, and s, the
separation of their centres is given by the formula:

\/(Xm_ Xn)2 + (ym_ yn)Z + (Zm_ Zn)2

If the centre of one sphere lies within the other then output a line stating this fact.
Otherwise are the surfaces of the two spheres touching, intersecting or separate? You
could try your program on spheres with these centres and radii:

(3.0,4.0,5.0), 3.0 (10.0,4.0,5.0), 4.0 (3.0,-3.0,5.0), 5.0 (3.0,4.0.8.0), 6.0

Question 4: Real Portability
Take a copy of the program you wrote in Question 3 of Exercise 2 to find the
Ludolphian number. Replace the statement of the form:

REAL :: a, b, ¢, 4, e, £
by the statements of the form:

INTEGER, PARAMETER :: k = SELECTED REAL KIND(P=15,R=31)
REAL (KIND=k) a, b, ¢, d, e, £

Add a statement to check that k > 0, and change the kind of the constants to k, for
example 1.0 _k Output the results with 12 decimal digits.

Run this program and compare the results with those you got earlier.

73

Question 5: Integer Portability
Take a copy of the program you wrote in Question 5(a) of Exercise 2 to find the first 5
terms of a sequence. Extend the range of those integers necessary to find the 6™ term

of this sequence.

74

6. Bibliography

Fortran95/2003 explained
Michael Metcalf, John Reid, Malcolm Cohen.

Oxford University Press
ISBN 0 19 852693 8

A formal definition of the language.

Fortran 90 Programming

T.M.R.Ellis, Ivor R.Philips, Thomas M.Lahey
Addison-Wesley

ISBN 0-201-54446-6

A full explanation of the language.

Fortran 90/95 for Scientists and Engineers
Stephen J.Chapman

McGraw Hill

ISBN 007-123233-8

Contains good examples.

75

	3570_ front.pdf
	Fort_Sep_08_v01.pdf
	1. Fundamentals of Computer Programming
	Telling a Computer What To Do
	Programming Languages
	Fortran Evolution
	Character Set
	Symbol Description Symbol Description

	How Does Computer Memory Work?
	Numeric Storage
	Intrinsic Types
	Literal Constants
	Names
	Significance of Blanks
	Implicit Typing
	Numeric and Logical Type Declarations
	Character Declarations
	Initialisation
	Constants (Parameters)
	Comments
	Expressions
	Assignment
	Intrinsic Numeric Operations
	Relational Operators
	Intrinsic Logical Operations
	Intrinsic Character Operations
	Operator Precedence
	Mixed Type Numeric Expressions
	Mixed Type Assignment
	Integer Division
	Formatting input and output
	WRITE Statement
	READ Statement
	Prompting for Input
	Reading and writing to a file
	Intrinsic Procedures
	Type Conversion Functions
	Mathematical Intrinsic Function Summary
	Numeric Intrinsic Function Summary
	Character Intrinsic Function Summary
	How to Write a Computer Program
	REAL :: Deg_F, Deg_C, Deg_K ! 3 real type variables
	! Obtain a temperature value

	Statement Ordering
	Compiling and Running the Program
	Bugs
	 Practical Exercise 1
	Question 1: The Hello World Program
	Question 2: Real Formatting
	Write a program which uses the expression 4.0*atan2(1.0,1.0) to evaluate π and store it in a variable. Write out this value 9 times using edit descriptors of the form E12.d, F12.d, G12.d with d taking the values 2, 4 and 6.
	Question 3: Some Division One Results
	Question 4: Area of a Circle
	Question 5: Point on a circle
	Question 6: Filed values

	2. Control Constructs and Intrinsics
	Control Flow
	IF Statement
	IF ... THEN ... ELSE Construct
	IF ... THEN ELSEIF Construct
	Nested and Named IF Constructs
	Example Using IF constructs
	 ELSE ! complex roots

	SELECT CASE Construct
	Conditional Exit Loop
	Conditional Cycle Loops
	Named and Nested Loops
	Indexed DO Loops
	DO construct index
	 Practical Exercise 2
	Question 1: Parity
	Question 2: A Triangle Program
	Question 3: The Ludolphian Number
	Question 4: Odd Numbers
	Question 5: Simple Sequences (symmetric, unitary, descending)
	Question 6: Mathematical Magic
	Question 7: Decimal to Roman Numerals Conversion
	Question 8: Solving a Quadratic Equation

	3. Arrays
	Declarations
	Array Element Ordering
	Array Sections
	Array Conformance
	Array Syntax
	Whole Array Expressions
	WHERE statement and construct
	COUNT function
	SUM function
	MOD function
	MINVAL function
	MAXVAL function
	MINLOC function
	MAXLOC function
	Array I/O
	The TRANSPOSE Intrinsic Function
	Array Constructors
	The RESHAPE Intrinsic Function
	 RESHAPE

	Named Array Constants
	Allocatable Arrays
	Deallocating Arrays
	Vector and Matrix Multiplication
	 Practical Exercise 3
	Question 1: Rank, Bounds etc.
	Question 2: Array Sections
	Question 3: Array Constructor
	Question 4: Fibonacci Numbers
	Question 5: Magic Squares
	Question 6: Symmetry
	Question 7: More Magic
	Question 8: MATMUL Intrinsic
	Question 9: More Filed values

	4. Procedures
	Program Units
	Main Program Syntax
	Introduction to Procedures
	Subroutines
	Functions
	Argument Association
	Argument Intent
	Local Objects
	Scoping Rules
	Host Association -- Global Data
	Scope of Names
	SAVE Attribute
	Dummy Array Arguments
	Assumed-shape Arrays
	External Functions
	Subroutine or Function?
	 Practical Exercise 4
	Question 1: Simple example of a Subroutine
	Question 2: Simple example of a Function
	Question 3: Switch or Stick
	Question 4: Standard Deviation
	Question 5: Save Attribute

	5. Modules and Derived Types
	Plane Geometry Program
	Reusability – Modules
	Restricting Visibility
	The USE Renames Facility
	USE ONLY Statement
	Derived Types
	Functions can return results of an arbitrary defined type
	True Portability
	 Practical Exercise 5
	Question 1: Encapsulation
	Question 2: Binary Cut
	Question 3: Spheres Apart
	Question 4: Real Portability
	Question 5: Integer Portability

	6. Bibliography

