
A Class of Loop Self-Scheduling for Heterogeneous Clusters

Anthony T. Chronopoulos� Razvan Andonie
Dept. of Computer Science, Dept. of Electronics and Computers,

University of Texas at San Antonio, Transilvania University of Brasov,
6900 North Loop 1604 West, San Antonio, TX 78249, Politehnicii 1-3, 2200, Brasov, Romania,

atc@cs.utsa.edu andonie@vega.unitbv.ro

Manuel Benche and Daniel Grosu
Dept. of Computer Science,

University of Texas at San Antonio,
6900 North Loop 1604 West, San Antonio, TX 78249,

fmbenche, dgrosug@cs.utsa.edu

Abstract

Distributed Computing Systems are a viable and less ex-
pensive alternative to parallel computers. However, a se-
rious difficulty in concurrent programming of a distributed
system is how to deal with scheduling and load balancing of
such a system which may consist of heterogeneous comput-
ers. Distributed scheduling schemes suitable for parallel
loops with independent iterations on heterogeneous com-
puter clusters have been designed in the past. In this work
we consider a class of Self-Scheduling schemes for parallel
loops with independent iterations which have been applied
to multiprocessor systems. We extend this type of schemes
to heterogeneous distributed systems. We present tests that
the distributed versions of these schemes maintain load bal-
anced execution on heterogeneous systems.

1 Introduction

To exploit the potential computing power of computer
clusters, an important issue is how to assign tasks to com-
puters so that the computer loads are well balanced. The
problem is how to assign the different parts of a parallel
application to the computing resources, so that to minimize
the overall computing time and use efficiently the resources.

Loops are one of the largest sources of parallelism in sci-
entific programs, and thus a lot of research work focused in
this area ([1], [2], [8], [12], [13] and the references there
in). If the iterations of a loop have no interdependencies,

�Corresponding author

each iteration can be considered as a task and can be sched-
uled independently. For distributed systems, characterized
by heterogeneity and large number of processors, the paral-
lelization of loops is now a current research topic.

Self-scheduling is a large class of adaptive/dynamic cen-
tralized loop scheduling methods. Various self-scheduling
schemes have been proven successful for shared memory
multiprocessor systems: Pure, Chunk, Guided ([8]), Trape-
zoid ([9]), Factoring ([3]), Fixed Increase ([7]). These
schemes will be referred to as Simple throughout this pa-
per.

One of the characteristics of the distributed systems is
their heterogeneity. Loop scheduling schemes that take into
account the characteristics of the different components of
the system were devised, for example: 1) Tree Scheduling
([5]), 2) Weighted Factoring ([4]) and 3) Distributed Trape-
zoid Self-Scheduling ([11]). Schemes 1), 2) and 3) take into
account the speeds of the processors of the system in as-
signing loop iterations whereas 3) is a dynamic scheme that
adapts to the actual load of the distributed system.

Here, we review loop scheduling problem solved via ex-
isting simple and distributed schemes mapped to a master-
slave model. We then propose a new simple self-scheduling
scheme, Trapezoid Factoring Self-Scheduling (TFSS), a
combination of two successful techniques, Trapezoid ([9])
and Factoring ([3]). When compared, experimentally, to
the other self-scheduling schemes, the new scheme exhibits
superior performance. Finally, we obtain distributed ver-
sions for the Factoring, Fixed Increase and TFSS. We map
and test these simple and distributed schemes on a hetero-
geneous distributed system.

We chose the Mandelbrot set application as our test prob-

Proceedings of the 2001 IEEE International Conference on Cluster Computing (CLUSTER�01)
0-7695-1116-3/02 $17.00 © 2002 � IEEE Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 15:45:19 UTC from IEEE Xplore. Restrictions apply.

lem because it has irregular size loop iterations. However,
this is not a limitation. The distributed algorithms (con-
sidered) have two adaptive properties with respect to: (i)
the task size and (ii) the available power of the processors.
The first property exists because of the original method de-
sign for parallel systems and the second property is due to
our design extension for distributed systems. Thus, these
schemes are expected to perform well on other types of loop
computations.

Notations:

The following are common notations used throughout
the whole paper:

� PE is a processor in the parallel or distributed system;

� I is the total number of iterations of a parallel loop;

� p is the number of PEs in the parallel or distributed
system;

� P1, P2, ..., Pp represent the p PEs in the system;

� A chunk is a collection of consecutive iterations. Ci

is the chunk-size at the i-th scheduling step (where:
i = 1; 2::);

� N is the number of scheduling steps;

� tj , j = 1; ::; p, is the execution time of Pj to finish all
its tasks assigned to it by the scheduling scheme;

� Tp = maxj=1;::;p (tj); is the parallel execution time of
the loop on p PEs;

In section 2, we discuss parallel loop styles, a Master-
slave model and the simple self-scheduling schemes. In
section 3, we review an existing distributed self-scheduling
scheme suitable for distributed computing systems. In
section 4, we propose and analyze a new load balancing
scheme for homogeneous systems. In section 5, we discuss
the implementation of the simple schemes. In section 6,
we extend a few schemes to distributed ones and implement
them. In section 7, we draw conclusions.

2 Review of loop self-scheduling schemes for
homogeneous parallel computers

2.1 Parallel loops distributions

Loops are one of the most important source of concur-
rency in parallel/distributed computations. A loop is called
a parallel loop if there are no dependencies among itera-
tions, i.e. iterations can be executed in any order or even
simultaneously.

Parallel loops may be presented in any of the styles
shown below. L(i) represents the execution time for iter-
ation i (see also [9]).

A parallel loop is uniformly distributed if the execution
times of all iterations are the same, i.e. the iterations have
the same L(i). The following is an example where the same
instruction is executed in each iteration:

DOALL K = 1 TO I
X[K] = X[K] + A

END DOALL

The following code fragments corresponds to linearly dis-
tributed loops (increasing and decreasing, respectively).

/* increasing */
DOALL K = 1 TO I

Serial DO J = 1 TO K
Serial Loop Body

End Serial DO
END DOALL

/* decreasing */
DOALL K = 1 TO I

Serial DO J = 1 TO I-K+1
Serial Loop Body

End Serial DO
END DOALL

A conditional loop, which may result from IF statements is
presented below:

DOALL K = 1 TO I
IF(Expression1) THEN

Block1
ELSE

Block2
ENDIF

END DOALL

Figure 1 gives an example of an irregular loop style rep-
resenting the loop distribution required by the Mandelbrot
set computation (see [6]).

The loop style can be manipulated in order to make it
easier to schedule for parallel execution. For example, there
are parallelizing compiler techniques ([8], [10]), such as
loop splitting, expression splitting, loop interchange, and
loop collapsing, which are used for this purpose.

The more information is available about the loop style,
the easier it is to load balance the computation in an effi-
cient manner. The simplest loops for scheduling are those
for which the required amount of computation for each iter-
ation is known at compile time. Another class of loops are
the predictable loops for which we cannot determine the
iteration sizes, but they can be ordered. The most difficult
class of loops are the irregular loops that cannot be ordered.

Proceedings of the 2001 IEEE International Conference on Cluster Computing (CLUSTER�01)
0-7695-1116-3/02 $17.00 © 2002 � IEEE Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 15:45:19 UTC from IEEE Xplore. Restrictions apply.

Figure 1. Mandelbrot Set, (a) original and (b)
reordered distribution

This class of loops is the most severe test for a scheduling
scheme. We use, in our tests, the Mandelbrot fractal compu-
tation algorithm ([6]) on the domain [-2.0, 1.25] � [-1.25,
1.25], for different window sizes (for example 4000� 2000,
5000 � 2000, and so on). The algorithm uses unpredictable
irregular loops.

We use a sampling technique to reorder loop iterations
so that the loop appears more uniform. For a loop with I it-
erations, a sampling frequency Sf is given. We sample the
loop Sf times, taking first the iterations whose index i satis-
fies imodSf = 0, then the iterations with imodSf = 1,
and so on. After sampling, the Sf samples are placed in a
sequence. Since no data dependency is assumed between
iterations, computing the sampled loops will produce the
same result as the original one. If one sampling is treated
as a task, then for some loops we obtain an almost uniform
distribution of tasks.

Figure 1 shows the loop distribution for the Mandelbrot
set computation, in its original form, and in the reordered
form with a Sf = 4. The picture corresponds to a windows
size of 1200 � 1200. The X coordinate holds the iteration
(column) number, and the Y coordinate shows the number
of basic computations associated with that column (ranging
from 1200 to 56,000). Figure 2 shows the graph generated
by the Mandelbrot set.

In our tests, the computation of one column is considered
the smallest unit that can be scheduled independently (i.e. a
task). Thus, every iteration corresponds to the computation
of the data associated with one column. Because of this, the

Figure 2. Mandelbrot fractal

tasks are still not uniformly distributed, but they seem more
uniform than if no reordering were taking place.

2.2 The Master-Slave model

Self-scheduling is a dynamic loop scheduling method in
which idle PEs dynamically request new loop iterations to
be assigned to them. The self-scheduling methods we are
going to discuss were initially designed for shared memory
multiprocessor computers, where requesting PE acquire a
lock on the loop index variable in order to be assigned new
iterations. This model does not assume a master PE to con-
trol lock access.

We will study these methods from the perspective of dis-
tributed systems. For this, we use the Master-Slave archi-
tecture model, presented in Figure 3. Idle slave PEs com-
municate a request to the master for new loop iterations.
The number of iterations a PE should be assigned is an im-
portant issue. Due to PEs heterogeneity and communication
overhead, assigning the wrong PE a large number of itera-
tions at the wrong time, may cause load imbalancing. Also,
assigning a small number of iterations may cause too much
communication and scheduling overhead.

Slave 1

Master

Slave 2 Slave 3

Busy Busy BusyIdle

Request task

Assign task

 ...
Slave p

Figure 3. Self-Scheduling schemes: the
Master-Slave model

Proceedings of the 2001 IEEE International Conference on Cluster Computing (CLUSTER�01)
0-7695-1116-3/02 $17.00 © 2002 � IEEE Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 15:45:19 UTC from IEEE Xplore. Restrictions apply.

In the remaining of this section we present the fol-
lowing most often used simple self-scheduling schemes
and we discuss their advantages and disadvantages: Pure
Self-Scheduling, Chunk Self-Scheduling, Guided Self-
Scheduling ([8]), Trapezoid Self-Scheduling ([9]), Fac-
toring Self-Scheduling ([3]) and Fixed Increase Self-
Scheduling ([7]). These schemes will be called simple
schemes to be distinguished from their distributed versions.

In a generic self-scheduling scheme, at the i-th schedul-
ing step, the master computes the chunk-size Ci and the
remaining number of tasks Ri:

R0 = I; Ci = f(Ri�1; p); Ri = Ri�1 � Ci (1)

where f(;) is a function possibly of more inputs than just
Ri�1 and p. Then the master assigns to a slave PE Ci tasks.
Imbalance depends on the (execution time gap) between tj ,
for j = 1; ::; p. This gap may be large if the first chunk is
too large or (more often) if the last chunk (called the critical
chunk) is too small.

The different ways to compute Ci has given rise to dif-
ferent scheduling schemes. The most notable examples are
the following.

Chunk Self-Scheduling (CSS) Ci = k, where k � 1
(known as chunk size is chosen by the user). For k = 1
CSS is the so-called (pure) Self-Scheduling. Weaknesses:
Increased chance of load imbalance due to difficulty to pre-
dict an optimal k, nonadaptive. Strengths: Reduced com-
munication/scheduling overheads.

Guided Self-Scheduling (GSS) Ci = dRi�1=pe.
Weaknesses: At the last steps too many small chunks are as-
signed. Strengths: Adaptive. Large chunks initially, implies
reduced communication/scheduling overheads in the begin-
ning. A modified version GSS(k) with minimum assigned
chunk-size k (chosen by the user) attempts to improve on
the weaknesses of GSS.

Trapezoid Self-Scheduling (TSS) Ci = Ci�1 � D,

with (chunk) decrement : D =
j
(F�L)
(N�1)

k
, where: the

first and last chunk-sizes (F,L) are user/compiler-input or

F =
j
I
2p

k
; L = 1. Weaknesses: Still many synchroniza-

tions may occur. One can improve this by choosing L > 1.
Strengths: Improves the GSS by decreasing the chunk-size
linearly. We can calculate the number of tasks assigned:

N =
l

2�I
(F+L)

m
. Note that CN = F � (N � 1)D and

CN � 1 due to integer divisions.
Factoring Self-Scheduling (FSS) Ci = dRi�1=(�p)e,

where the parameter � is computed (by a probability distri-
bution) or is suboptimally chosen � = 2 ([3]). The chunk-
size is kept the same in each stage (in which all PEs are
assigned one task) before moving to the next stage. Thus
Ri = Ri�1 � pCi after each stage. Weaknesses: Difficult
to determine the optimal parameters. Strengths: Tests show

improvement on previous adaptive schemes (possibly) due
to fewer adaptations of the chunk-size.

Fixed Increase Self-Scheduling (FISS) Ci = Ci�1 +

B, where initially C0 =
j

I
X�p

k
(with X a compiler/user

chosen parameter) and the (chunk increase or ’bump’) B =l
2I(1��=X)
p�(��1)

m
(where � the number of stages must be a

compiler/user chosen parameter; X = � + 2 was sug-
gested) ([7]). Weaknesses/Strengths similar to FSS. How-
ever the authors claim is that FISS reduces the commu-
nication/scheduling overheads of earlier adaptive schemes
which assign chunks with too small sizes.

Example 1: We show the chunk sizes selected by the
self-scheduling schemes discussed above. Table 1 shows
the different chunk sizes for a problem with I = 1000 and
p = 4. S stands for the static scheduling scheme, which
divides equally all the iterations to the number of PEs. For
CSS, k represents the fixed chunk size.

Table 1. Sample chunk sizes for I = 1000 and
p = 4

Scheme Chunk size
S 250 250 250 250
SS 1 1 1 1 1 ...
CSS k k k k k ...
GSS 250 188 141 106 79 59 45 33 25 19 14 11

8 6 4 3 3 2 1 1 1 1
TSS 125 117 109 101 93 85 77 69 61 53 45 37

29 21 13 5
FSS 125 125 125 125 62 62 62 62 32 32 32 32

16 16 16 16 8 8 8 8 4 4 4 4 2 2 2 2 1 1 1 1
FISS 50 50 50 50 83 83 83 83 117 117 117 117
TFSS 113 113 113 113 81 81 81 81 49 49 49 49

17 17 17 17

Remark: In the rest of the paper, we only consider adap-
tive schemes. We also do not considerGSS because we use
(its linearized approximation) the TSS, which has been re-
ported to have better performance.

3 Loop scheduling schemes for distributed
systems

Load balancing in distributed systems is a very impor-
tant factor in achieving near optimal execution time. To of-
fer load balancing, loop scheduling schemes must take into
account the processing speeds of the computers forming the
system. The PE speeds are not precise, since memory, cache
structure and even the program type will affect the perfor-
mance of PEs. However, one must run simulations to obtain

Proceedings of the 2001 IEEE International Conference on Cluster Computing (CLUSTER�01)
0-7695-1116-3/02 $17.00 © 2002 � IEEE Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 15:45:19 UTC from IEEE Xplore. Restrictions apply.

estimates of the throughputs and one must show that these
schemes are quite effective in practice.

3.1 An existing distributed scheme

One characteristic of the distributed systems is their het-
erogeneity. The load balancing methods adapted to dis-
tributed environments usually take into account the process-
ing speeds of the computers forming the cluster. The rela-
tive computing powers are used as weights that scale the
size of the sub-problem each process is assigned to com-
pute. This is shown to improve sometimes significantly the
total execution time when a heterogeneous computing envi-
ronment is used.

To illustrate this, let us consider the example shown in
Table 1 above, with I = 1000 and p = 4. We assume that
the relative processing powers of the four PEs are w1 =
1=2, w2 = 1=2, w3 = 1 and w4 = 2. The first stage of
500 iterations will be divided as 75, 75, 125 and 250 among
PEs.

Distributed Trapezoid Self-Scheduling (DTSS): DTSS
([11]) dynamically selects the chunk size for each request,
according to the computing power and the actual load of
the PE making the request. For this purpose, [11] proposes
a model for the computers cluster that includes the number
of processes in the run-queue of each PE.

Terminology:

� Vi is the virtual power of Pi (e.g. Vi = 1 for the slow-
est PE).

� V =
Pp

i=1 Vi is the total virtual computing power of
the cluster.

� Qi is the number of processes in the run-queue of Pi,
reflecting the total load of Pi.

� Ai =
j
Vi

Qi

k
is the available computing power (ACP) of

Pi (needed when the loop is executed in non-dedicated
mode).

� A =
Pp

i=1Ai is the total available computing power
of the cluster.

The assumption is made that a process running on a com-
puter will take an equal share of its computing resources.
Even if this is not entirely true, other factors being neglected
(memory, process priority, program type), this simple model
appears to be useful and efficient in practice. Note that
at the time Ai is computed, the parallel loop process is
already running on the computer. For example, if a pro-
cessor Pi with Vi = 2 has an extra process running, then
Ai = 2=2 = 1 which means that Pi behaves just like the

slowest processor in the system. The DTSS algorithm is
described as follows:
Master:

1. (a) Wait for all workers with Ai > 0 to report their Ai;
sort Ai in decreasing order and store them in a ACP
Status Array(ACPSA). For eachAi place a request in a
queue in the sorted order. Calculate A. (b) Use p = A
to obtain F;L;N;D as in TSS.

2. (a) While there are unassigned iterations, if a request
arrives, put it in the queue and store the newly received
Ai if it is different from the ACPSA entry.
(b) Pick a request from the queue, assign the next
chunk with Ci = Ai � (F �D � (Si�1+(Ai�1)=2)),
where: Si�1 = A1 + ::+Ai�1 (see [11]).
(c) If more than half of the Ai’s changed since the last
time, update the ACPSA and go to step 1, with total
number of iterations I set equal to the number of re-
maining iterations.

Slave:

1. Obtain the number of processes in the run-queue Qi

and recalculate Ai. If (Ai > 0) goto step 2.
else goto step 1.

2. Send a request (containing its Ai) to the coordinator.

3. Wait for a reply; if more tasks arrive
f compute the new tasks; go to step 1; g
else terminate.

Remark: (1) To determine chunk sizes, DTSS now ap-
plies the same technique as TSS ([9]), but using A instead
of p. Each idle processor will be assigned a number of itera-
tions according to its power. (2) To adjust the algorithm for
the dynamic changes in the running queues of the proces-
sors, DTSS proposes that the slaves report their Ai with
every request for work to the master. The master recom-
putes the scheduling parameters each time more than half
of the Ai’s have changed. This will ensure good perfor-
mance when computer loads change unexpectedly (e.g. a
new user logs in to the system and starts a computational
resources expensive task on some of the processors). This
adjustment can be viewed as a change in the slope of the
trapezoid function according to the up-to-date state of the
system.

4 A new simple Trapezoid scheme with stages

We propose in this section a new self-scheduling
scheme for homogeneous systems, Trapezoid Factoring
Self-Scheduling (TFSS), designed by combining the char-
acteristics of two of the most successful load balancing

Proceedings of the 2001 IEEE International Conference on Cluster Computing (CLUSTER�01)
0-7695-1116-3/02 $17.00 © 2002 � IEEE Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 15:45:19 UTC from IEEE Xplore. Restrictions apply.

schemes (see section 2), Trapezoid Self-Scheduling ([9])
and Factoring Self-Scheduling ([3]).

We use the idea of stages introduced by FSS meaning
that the iterations are scheduled in groups of p equal-sized
chunks. The analysis in [3] suggests that the chunk-size
of a stage be computed as half of the remaining number of
iterations.

We propose a different approach for determining the
number of stages and their chunk-size. Our scheme de-
creases linearly the chunk size similar to TSS, hopefully
producing little synchronization overhead (because of the
large chunks at the beginning, and thus, few scheduling
steps) and good load balancing (because of the small chunks
at the end). The size of a the next chunk is the sum of the
next p chunks that would have been computed by the TSS
algorithm. The chunk is then equally divided among the p
processors, as in FSS. Thus the TFSS chunk-size is com-
puted:

CTFSS
j =

k+pX
i=k

CFSS
i

Example 2: Table 1, illustrates this scheme for a prob-
lem with I = 1000 iterations to be solved with p = 4 pro-
cessors.

In this example, the first chunks of TFSS, containing 113
iterations, were computed as the sum of 125, 117, 109 and
101 (the first four chunks from TSS) divided by the num-
ber of processors, 4. In a similar way we obtain 81, 49
and 17 for the next stages. It can be observed that TFSS
follows the pattern of FSS (creates groups of p chunks of
equal size), but the number of scheduling steps (chunks) and
the linear decreasing evolution of the chunk size function is
similar to TSS.

5 Implementation of the simple schemes

Our implementation relies on the distributed program-
ming framework offered by the mpich.1.2.0 implemen-
tation of the Message Passing Interface (MPI).

The computation of one column of the Mandelbrot ma-
trix is considered the smallest schedulable unit. We re-
ordered the loop with Sf = 4. For the centralized schemes,
the master accepts requests from the slaves and services
them in the order of their arrival. It replies to each request
with a pair of numbers representing the interval of iterations
the slave should work on.

The slaves will attach (piggy-back) to each request, ex-
cept for the first one, the result of the computation due to
the previous request. This improves the communication ef-
ficiency. An alternative we tested was to perform the collec-
tion of data at the end of the computation (the slaves stored
locally the results of their requests). This technique pro-
duced longer finishing times because when all the slaves

finished, they seem to contend for master access in order
to send their results. During this process, they will have
to idle instead of doing useful work. By piggy-backing the
data produced by the previous request to the actual request
we achieve some degree of overlapping of computation and
communication. There will be still some contention for the
master access, but mostly the slaves will work on their re-
quests while few slaves communicate data to the master.

The implementation for the Tree Scheduling (TreeS)
([5]) is different. The slaves do not contend for a central
processor when making requests because they have pre-
defined partners. But the data still has to be collected on
a single central processor. When we used the approach de-
scribed above, of sending all the results at the end of the
computation, we observed a lot of idling time for the slaves,
thus degrading the performance. We implemented a better
alternative: the slaves send their results to the central coor-
dinator from time to time, at predefined time intervals. The
contention for the master cannot be totally eliminated, but
this appears to be a good solution.

5.1 Test results

We test the simple schemes (i.e. those described in Sec-
tion 2) on a heterogeneous cluster. All slaves (PEs) are
treated (by the schemes) as having the same computing
power. For the TreeS the master assigns an even number
of tasks to all slaves in the initial allocation stage.

This experiment included 9 computers, one of them be-
ing assigned the role of master. We wanted to test the be-
havior of these techniques in a heterogeneous computing
environment, so we used a combination of machines types.
The master is a Sun UltraSPARC 10 with 440 MHz CPU
speed and 384 MB of physical memory. Three of the slaves
are also Sun UltraSPARC 10, but with 128 MB of physical
memory, and the remaining of five slaves are Sun Ultra-
SPARC 1 with 166 MHz CPU speed and 64 MB of physical
memory. The LAN bandwidth (connecting the Master to
the Slaves) is also heterogeneous. It is 10Mbits/sec for the
slow slaves and 100Mbits/sec for the fast slaves.

We present two cases, dedicated and nondedicated. In
the first case, processors are dedicated to running our pro-
gram. In the second, we started resource expensive pro-
cesses on some slaves. Two such processes are started.
Each one adds two random matrices of size 1000. In the
nondedicated case, the ’overloaded’ processors are as fol-
lows: 1) p = 1: 1 fast slave; 2) p = 2: 1 fast and 1 slow
slave; 3) p = 4: 1 fast and 1 slow slave; 4) p = 8: 1 fast and
3 slow slaves;

The times (Communication/Waiting/Computation) of
the slave processors (PEi) are tabulated for 8 slaves. Tp
is the total time measured on the Master PE. Table 2 shows
the results. PEi, for i = 1; 2; 3 are the fast PEs. TSS

Proceedings of the 2001 IEEE International Conference on Cluster Computing (CLUSTER�01)
0-7695-1116-3/02 $17.00 © 2002 � IEEE Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 15:45:19 UTC from IEEE Xplore. Restrictions apply.

performed best, followed by TFSS. The execution is not
well-balanced.

We also plot the speedup of various schemes for p =
1; ::; 8 in Figures 4 - 5. The following configurations were
used. For p = 1: 1 fast PE. For p = 2: 1 fast and 1 slow
PE. For p = 4: 2 fast and 2 slow PEs. The ’dip’, for p = 2,
is due to the communication cost and load imbalance. The
TSS scales well in the nondedicated case. The results show
that in the simple schemes the communication and waiting
time is larger than in the distributed schemes (as expected
by the theory).

5.2 Improvements to DTSS

The DTSS Algorithm has a couple of difficulties in the
parameter computation, which we try to correct here.

(I) Let us assume that we want to solve a problem using
two processors, P1 with V1 = 1 and P2 with V2 = 3. More-
over, let us say that at the time the computation is started,
P1 will have Q1 = 2 processes and P2 will have Q2 = 3
processes in the run-queue. Using DTSS, there is no avail-
able computing power (A1 = A2 = 0), and the solving of
the problem will have to wait.

We propose the use of decimal division in the computa-
tion of the available computing power of each processorAi.
and its scaling by a constant integer value (e.g. 10 or 100).
Then we get:

Adeci =
Vi
Qi

; Ai = b10�Adecic (2)

Thus, for our example, P1 will have A1 =
b(1=2)� 10c = b0:5� 10c = 5, and P2 will have A2 =
b(3=4)� 10c = b0:75� 10c = 7. Now we have A = 12
and we can start solving the problem like in the old DTSS
version.

Also, with this approach it is easy to define a lower
bound for the load of a processor that will make it unavail-
able for another computation. We can, for our example, set
a limit of Amin = 6 for which a machine is declared not
available. This would mean that only the quick processor
can be used for our computation. This allows flexibility in
searching for the best configuration of computers to be used.

(II) DTSS assumes that the virtual computing powers
of the participating processors are integer numbers. But
in actual distributed systems we will never find a computer
whose performance can be evaluated exactly as an integer
multiple of another’s computer performance.

One solution is to use decimal numbers to represent the
virtual computing powers. For example, assume that V2 is
3.4 andQi = 4. ThenA2 = (3:4=4)�10 = 0:85�10 = 8.
If we did not use decimal numbers,A2 would be 7, which is
an under-estimation of the computing power of P2. So this
solution provides a more precise estimation of the relative
processing powers of the computing elements.

6 New distributed self-scheduling schemes

Using our enhanced model of DTSS we observe that
any self-scheduling scheme discussed in section 2 can be-
come a Master-Slave centralized distributed scheme. We
will regard as distributed the methods that follow the pat-
tern of DTSS (see section 3.1), i.e. use for load balancing
the initial computing power of the elements and the run-
time information of the number of processes each process
is running. For example, Weighted Factoring ([4]) is not
distributed, by this definition, because the actual state of the
system is not considered.

We obtained distributed versions for Distributed Trape-
zoid Factoring Self-Scheduling (DTFSS), Distributed
Factoring Self-Scheduling (DFSS) and Distributed Fixed
Increase Self-Scheduling (DFISS).

The algorithms are very similar to the algorithm for
DTSS. We must only modify parts 1.(a) and 2.(b) because
each of these schemes use different parameters in comput-
ing the chunk-size.

Let SCk denote the sum of the chunk-sizes at the k-th
stage of these schemes. Also, let Ck

i denote the chunk-sizes
at the k-th stage. For all these schemes, we observe that
the chunk size for PE Pj , j = 1; ::; p is given by Ck

j =
SCk � (Aj=A).

Modifications of the DTSS algorithm part 1.(b):
(i) DFTSS: same as DTSS 1.(b); (ii) DFSS: 1.(b) not
needed ; (iii) DFISS: 1.(b) Compute: SC0 =

�
I
X

�
and

B =
l
2I(1��=X)
�(��1)

m
.

Modifications of the DTSS algorithm part 2.(b):
(i) DFTSS: 2.(b) Compute SCk =

Pp
j=1 C

TSS
j and Ck

j ;

(ii) DFSS: 2.(b) Compute SCk =
j
2Ri�1

A

k
and Ck

j ; (iii)

DFISS: 2.(b) Compute SCk = SCk +B and Ck
j .

6.1 Implementation and test results

Again, we use the Mandelbrot computation for a window
size of 4000� 2000, on a system consisting of eight hetero-
geneous slave machines and one master. The machines used
for the dedicated and the non-dedicated case are the same
as in the tests described above. For the TreeS the master
assigns a number of tasks to the slaves (according to their
virtual power) in the initial allocation stage. For the rest of
machines the Distributed versions of the schemes are used.

The times (Communication/Waiting/Computation) of
the slave processors (PEi) are tabulated for 8 slaves. Tp
is the total time measured on the Master PE. Table 3 shows
the results. PEi, for i = 1; 2; 3 are the fast PEs. TSS
performed best, followed by DFISS. The execution is
well-balanced, in terms of the computation times. Also, the
communication/waiting times are much reduced compared
to the Simple schemes.

Proceedings of the 2001 IEEE International Conference on Cluster Computing (CLUSTER�01)
0-7695-1116-3/02 $17.00 © 2002 � IEEE Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 15:45:19 UTC from IEEE Xplore. Restrictions apply.

We also plot the speedup of various schemes for p =
1; ::; 8 in Figures 4 - 5. The following configurations were
used. For p = 1: 1 fast PE. For p = 2: 1 fast and 1 slow
PE. For p = 4: 2 fast and 2 slow PEs.

For nondedicated runs, the ’overloaded’ slaves were cho-
sen as in the ’simple’ case discussed above. The ’dip’, for
p = 2, is only due to the communication cost. The DTSS
scales the best.

Figures 4 - 5 are expected to have low speedup because
of the long Tcom=Twait times. In Figure 3 TSSS shows
high speedup (e.g. for p = 8) because 2 fast slaves are
without extra load. However all other schemes show low
speedup because all processors in these simple schemes get
assigned the same number of tasks at each stage.

In Figure 6 the PE speeds are according to virtual power
and we have 3 fast and 5 slow PEs. The fast PEs are about 3
times faster than slow ones. Thus, without Tcom=Twait we
expect Sp � 4:5.

In Figure 7 two fast PEs are dedicated and each is 3 times
faster than a slow PE. Thus, we expect Sp � 6.

7 Conclusions

In this paper we obtain distributed extensions for some
important loop self-scheduling schemes. We compare the
new schemes against their counterparts on a heterogeneous
workstation cluster. The main feature of the new schemes is
that they take into account the computer processing speeds
and their actual loads. Thus the master adapts the assigned
load accordingly in order to maintain load balancing. Our
test results demonstrate that the new schemes are effective
for distributed applications with parallel loops (i.e. loops
without inter-iterations dependencies). The DTSS and
DFISS were the most efficient amongst all the distributed
schemes.

Acknowledgements

The CS graduate student Yu Du did some of the program-
ming. Some reviewer comments helped enhance the quality
of presentation. This research was supported, in part, by re-
search grants from (1) NASA NAG 2-1383 (1999-2000),
(2) State of Texas Higher Education Coordinating Board
through the Texas Advanced Research/Advanced Technol-
ogy Program ATP 003658-0442-1999 (3) Air Force grant
F49620-96-1-0472.

References

[1] M. Cierniak, W. Li, M. J. Zaki. Loop Scheduling for Hetero-
geneity, Proc. of the 4th IEEE Intl. Symp. on High Perfor-
mance Distributed Computing, 1995, pp 78 - 85.

[2] E. H. D’Hollander. Partitioning and Labeling of Loops by
Unimodular Transformations, IEEE Trans. on Parallel and
Distributed Systems, Vol 3, No 4, July 1992, pp 465 - 476.

[3] S. F. Hummel, E. Schonberg, L. E. Flynn. Factoring, a
Method for Scheduling Parallel Loops, Communications of
the ACM, Vol 35, No 8, Aug. 1992.

[4] S. F. Hummel, J. Schmidt, R. N. Uma and J. Wein. Load-
Sharing in Heterogeneous Systems via Weighted Factoring,
Proc. of 8th Annual ACM Symp. on Parallel Algorithms and
Architectures, 1996.

[5] T. H. Kim, and J. M. Purtilo. Load Balancing for Parallel
Loops in Workstation Clusters, Proc. of Intl. Conference on
Parallel Processing, Vol III, pp 182 - 189, 1996.

[6] B. B. Mandelbrot. Fractal Geometry of Nature, W.H. Free-
man & Co, August 1988.

[7] T. Philip and C. R. Das. Evaluation of Loop Scheduling Al-
gorithms on Distributed Memory Systems, Proc. of Intl Conf.
on Parallel and Distributed Computing Systems, 1997.

[8] C. D. Polychronopoulos and D. Kuck. Guided Self-
Scheduling: a Practical Scheduling Scheme for Parallel Su-
percomputers, IEEE Trans. on Computers, Vol 36, Dec.
1987, pp 1425 - 1439.

[9] T. H. Tzen and L. M. Ni. Trapezoid Self-Scheduling: A Prac-
tical Scheduling Scheme for Parallel Compilers, IEEE Trans.
on Parallel and Distributed Systems, Vol 4, No 1, Jan. 1993,
pp 87 - 98.

[10] M. J. Wolfe. Languages and Compilers for Parallel Comput-
ing, MIT Press, July 1990.

[11] J. Xu and A. T. Chronopoulos. Distributed Self-Scheduling
for Heterogeneous Workstation Clusters, Proc. of the 12th
Intl. Conf. on Parallel and Distributed Computing Systems,
1999, pp. 211-217.

[12] E. P. Markatos and T. J. LeBlanc. Using Processor Affin-
ity in Loop Scheduling on Shared-Memory Multiprocessor,
IEEE Trans. on Parallel and Distributed Systems, Vol 5, No
4, April 1994, pp 379 - 400.

[13] Yong Yan, Canming Jin, Xiaodong Zhang. Adaptively
Scheduling Parallel Loops in Distributed Shared-Memory
Systems, IEEE Trans. on Parallel and Distributed Systems,
Vol 8, No 1, Jan. 1997, pp 70 - 81.

Proceedings of the 2001 IEEE International Conference on Cluster Computing (CLUSTER�01)
0-7695-1116-3/02 $17.00 © 2002 � IEEE Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 15:45:19 UTC from IEEE Xplore. Restrictions apply.

Table 2. Simple Schemes, p = 8; PEi: Tcom/Twait/Tcomp (sec)
PE TSS FSS FISS TFSS TreeS

Dedicated:

1 2.7/17.5/3.5 0.2/0.8/3.2 1.5/18.5/3.7 2.3/18.7/3.2 0.6/0.0/3.3
2 0.9/18.8/3.7 4.4/15.1/3.3 1.5/19.8/3.4 0.1/0.9/3.2 6.3/12.9/5.4
3 1.3/18.3/3.7 2.8/16.6/3.3 1.8/19.3/3.5 2.1/18.4/3.2 6.1/12.1/5.6
4 1.0/17.5/4.4 1.6/17.6/8.9 1.1/19.8/9.0 0.6/16.7/8.8 6.6/9.2/7.3
5 0.9/12.3/8.0 4.5/9.1/9.3 2.2/7.9/9.6 2.8/9.5/9.7 7.6/6.0/6.5
6 2.4/7.5/10.4 4.2/9.2/9.8 3.8/6.2/8.9 5.0/8.7/9.9 4.9/2.1/9.7
7 4.0/5.7/10.7 3.8/5.9/9.9 3.8/4.4/9.3 4.9/5.9/10.1 3.5/0.0/7.4
8 3.6/4.8/11.8 8.1/4.0/10.4 2.2/4.3/8.9 5.3/4.2/10.2 5.1/0.0/6.0
Tp 23.6 28.1 30.0 26.2 25.0

NonDedicated:

1 6.0/12.3/9.5 7.0/13.9/9.0 2.3/1.1/9.1 2.9/21.4/11.6 1.8/0.0/9.4
2 8.8/13.4/5.5 0.4/0.8/3.1 2.7/1.0/3.4 2.8/23.0/3.6 9.7/20.8/6.9
3 6.1/14.3/7.2 2.9/2.6/3.4 2.4/1.4/3.5 1.6/18.7/4.0 19.7/19.9/5.7
4 3.0/11.3/13.3 4.6/13.2/28.2 2.8/8.8/27.4 3.9/17.4/26.9 14.0/14.5/15.9
5 4.7/10.4/9.2 9.8/10.7/9.1 3.7/6.0/9.3 3.2/7.4/9.2 23.2/9.0/7.2
6 5.1/8.2/10.3 10.1/10.0/9.6 3.2/7.6/9.1 3.0/5.7/8.9 19.7/4.1/9.8
7 1.1/5.5/17.3 2.8/10.3/28.9 1.5/12.5/27.6 2.7/9.1/28.4 4.6/4.1/15.8
8 4.2/3.8/15.9 6.1/8.9/30.3 2.9/13.7/26.6 3.3/7.1/25.6 15.9/0.0/12.7
Tp 27.8 46.0 48.1 45.8 46.8

Table 3. Distributed Schemes, p = 8; PEi: Tcom/Twait/Tcomp (sec)
PE DTSS DFSS DFISS DTFSS TreeS

Dedicated:

1 2.2/1.8/6.3 4.1/7.8/5.6 2.5/6.4/5.6 1.4/9.3/5.6 3.1/9.0/5.7
2 2.7/1.2/6.6 2.9/8.8/5.8 2.5/6.2/5.8 1.9/8.5/5.6 3.4/7.7/6.1
3 2.1/1.6/7.0 1.7/10.5/5.3 1.5/7.9/5.4 1.4/9.6/5.6 8.9/0.0/10.2
4 2.5/2.2/5.9 3.3/7.3/6.8 2.3/6.0/6.5 2.4/7.9/6.5 3.1/0.0/5.6
5 2.4/4.2/4.4 2.5/8.3/6.0 1.9/7.3/6.1 1.6/9.2/6.3 2.4/0.0/5.8
6 2.0/5.7/3.7 2.1/8.5/6.3 0.9/9.2/5.6 2.0/9.4/6.0 4.9/0.0/6.1
7 0.5/7.7/4.2 1.6/9.8/5.7 1.9/8.4/5.9 1.5/10.1/6.0 5.2/2.1/5.7
8 1.3/9.5/2.6 2.8/8.3/6.1 3.5/7.3/6.0 3.4/8.3/6.0 4.3/0.0/10.4
Tp 13.4 17.6 16.9 17.6 18.1

NonDedicated:

1 1.2/3.0/8.5 0.9/9.8/10.6 0.9/8.4/6.5 1.9/9.3/10.7 10.8/14.1/6.7
2 2.2/1.5/8.5 2.5/13.6/7.0 1.6/5.8/7.8 3.4/13.3/6.7 11.1/15.3/6.3
3 1.3/2.4/8.5 2.1/14.7/6.2 0.8/7.3/7.4 1.3/15.7/6.5 7.5/16.2/9.8
4 0.7/5.5/6.6 5.8/0.8/14.4 2.5/3.3/9.8 4.7/2.3/15.1 3.9/0.0/13.6
5 0.4/6.6/7.7 3.0/5.3/13.4 1.3/6.0/8.9 3.2/4.6/14.7 5.9/1.3/14.6
6 1.6/3.9/7.1 0.8/13.7/7.3 1.4/7.3/7.6 0.9/15.6/7.1 9.0/4.0/12.2
7 0.9/8.2/7.2 1.0/8.0/13.0 2.6/5.5/8.4 1.3/7.8/13.1 14.0/7.5/7.0
8 1.8/4.5/6.3 1.1/13.5/7.4 2.1/7.0/8.0 1.8/13.7/7.2 12.6/10.4/8.8
Tp 16.6 23.3 17.7 23.6 33.3

Proceedings of the 2001 IEEE International Conference on Cluster Computing (CLUSTER�01)
0-7695-1116-3/02 $17.00 © 2002 � IEEE Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 15:45:19 UTC from IEEE Xplore. Restrictions apply.

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

P

tss
fss
fiss
tfss

tree_s

Figure 4. Speedup of Simple Schemes - Ded-
icated

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

P

tss
fss
fiss
tfss

tree_s

Figure 5. Speedup of Simple Schemes -
NonDedicated

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

P

dtss
dfss
dfiss
dtfss

tree_s

Figure 6. Speedup of Distributed Schemes -
Dedicated

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

P

dtss
dfss
dfiss
dtfss

tree_s

Figure 7. Speedup of Distributed Schemes -
NonDedicated

Proceedings of the 2001 IEEE International Conference on Cluster Computing (CLUSTER�01)
0-7695-1116-3/02 $17.00 © 2002 � IEEE Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 15:45:19 UTC from IEEE Xplore. Restrictions apply.

