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Abstract

In this paper we formulate the static load balancing
problem in single class job distributed systems as a coop-
erative game among computers. It is shown that the Nash
Bargaining Solution (NBS) provides a Pareto optimal allo-
cation which is also fair to all jobs. We propose a cooper-
ative load balancing game and present the structure of the
NBS. For this game an algorithm for computing NBS is de-
rived. We show that the fairness index is always 1 using
NBS which means that the allocation is fair to all jobs. Fi-
nally, the performance of our cooperative load balancing
scheme is compared with that of other existing schemes.

1 Introduction

The cost/performance ratio of networks of workstations
has been constantly improving. This trend is expected to
continue in the near future. The aggregate peak rate of such
systems often matches or exceeds the peak rate offered by
the fastest parallel computers. Thus, distributed computing
systems are a viable and less expensive alternative to paral-
lel computers. However, a serious difficulty in concurrent
programming of a distributed system is how to deal with
scheduling and load balancing of such a system which may
consist of heterogeneous computers.

A distributed system can be viewed as a collection of
computing and communication resources shared by active
users. When the demand for computing power increases the
load balancing problem becomes important. We can state
the load balancing problem as follows. Given the initial job
arrival rates at each computer in the system find an alloca-
tion of jobs among the computers so that the response time�
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of the entire system over all jobs is minimized.
Often, jobs in a distributed system can be divided into

different classes based on their resource usage characteris-
tics and ownership. For example the jobs that belong to
a single user can form a class. Alternatively, we can dis-
tinguish different classes of jobs by their execution times.
Depending on how many job classes are considered we can
have single class or multi-class job distributed systems. In
this paper we consider the load balancing problem in single
class job distributed systems.

There are three typical approaches to load balancing
problem in single class job distributed systems:

i) Global approach: In this case there is only one deci-
sion maker that optimizes the response time of the entire
system over all jobs and the operating point is called social
optimum. This is the classical approach and has been stud-
ied extensively using different techniques such as nonlinear
optimization [29, 30] and polymatroid optimization [25].

ii) Cooperative approach: In this case there are several
decision makers (e.g. jobs, computers) that cooperate in
making the decisions such that each of them will operate
at its optimum. Decision makers have complete freedom
of preplay communication to make joint agreements about
their operating points. This situation can be modeled as a
cooperative game and game theory offers a suitable model-
ing framework [6].

iii) Noncooperative approach: In this case each of in-
finitely many jobs optimizes its own response time indepen-
dently of the others and they all eventually reach an equi-
librium. This situation can be viewed as a noncooperative
game among jobs. The equilibrium is called Wardrop equi-
librium [8]. At the Wardrop equilibrium a job cannot re-
ceive any further benefit by changing its own decision. If
the number of jobs are finite the Wardrop equilibrium re-
duces to the well known Nash equilibrium [6].
Our results
Most of the previous works on static load balancing con-
sidered as their main objective the minimization of overall
expected response time. The fairness of allocation, which is
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an important issue for modern distributed systems, has re-
ceived relatively little attention. Our goal is to find a formal
framework for characterization of fair allocation schemes
that are also optimal for each job. The framework was pro-
vided by cooperative game theory. Using this framework
we formulate the load balancing problem in single class job
distributed systems as a cooperative game among comput-
ers. We show that the Nash Bargaining Solution(NBS) pro-
vides a Pareto optimal operation point for the distributed
system. We give a characterization of NBS and an algo-
rithm for computing it. We prove that the NBS is a fair so-
lution and we compare its performance with other existing
solutions. In other words the NBS guarantees the optimality
and the fairness of allocation.
Related work
The problem of static load balancing in single class job dis-
tributed systems has been studied extensively. The previous
studies have employed only the global and the noncoopera-
tive approach.

i) Global approach: The focus is on minimizing the
expected response time of the entire system over all jobs.
Tantawi and Towsley [30] formulated the load balancing
problem as a nonlinear optimization problem and gave an
algorithm for computing the allocation. Kim and Kameda
[11] derived a more efficient algorithm to compute the al-
location. Li and Kameda [15, 16] proposed algorithms for
static load balancing in star and tree networks. Tang and
Chanson [29] proposed and studied several static load bal-
ancing schemes that take into account the job dispatching
strategy. Also, there exist several studies on static load bal-
ancing in multi-class job systems [10, 14, 17, 22].

ii) Cooperative approach: There are no known studies
that involve the cooperative approach for the load balanc-
ing problem in distributed systems. This paper makes an
attempt to study the cooperative approach.

iii) Noncooperative approach: There exist only few
studies on game theoretic models and algorithms for load
balancing in distributed systems. All of them involve non-
cooperative games. Kameda et al. [8] studied noncoopera-
tive games and derived load balancing algorithms for both
single class and multi-class job distributed systems. For sin-
gle class job systems they proposed an algorithm for com-
puting the Wardrop equilibrium. Roughgarden [26] formu-
lated the load balancing problem as a Stackelberg game. In
this type of noncooperative game one player acts as a leader
and the rest as followers. He showed that it is NP-hard
to compute the optimal Stackelberg strategy and presents
efficient algorithms to compute strategies inducing near-
optimal solutions.

Routing traffic in networks is a closely related problem
which was studied from a game theoretic perspective. Orda
et al. [23] studied a noncooperative game in a network of
parallel links with convex cost functions. They studied the

existence and uniqueness of the Nash equilibrium. Altman
et al. [2] investigated the same problem in a network of par-
allel links with linear cost functions. An important line of
research was initiated by Koutsoupias and Papadimitriou
[13], who considered a noncooperative routing game and
proposed the coordination ratio (i.e. the ratio between the
worst possible Nash equilibrium and the overall optimum)
as a measure of effectiveness of the system. Mavronicolas
and Spirakis [19] derived tight bounds on coordination ratio
in the case of fully mixed strategies where each user assigns
its traffic with non-zero probability to every link. Rough-
garden and Tardos [27] showed that in a network in which
the link cost functions are linear, the flow at Nash equilib-
rium has total latency at most 4/3 that of the overall optimal
flow. They also showed that if the link cost functions are
assumed to be only continuous and nondecreasing the total
latency may be arbitrarily larger than the minimum possible
total latency.

Recently, applications of game theory to computer sci-
ence have attracted a lot of interest and have become a major
trend. It is worth mentioning the recent DIMACS Workshop
on Computational Issues in Game Theory and Mechanism
Design [1].
Organization
The paper is structured as follows. In Section 2 we
present the Nash Bargaining Solution concept for cooper-
ative games and state several lemmas and theorems needed
for our result. In Section 3 we introduce our cooperative
load balancing game and derive an algorithm for comput-
ing the solution. In Section 4 the performance and fairness
of our cooperative solution is compared with those of other
existing solutions.

2 Cooperative Game Theory Concepts

In the following we discuss the Nash Bargaining Solu-
tion (NBS) [20, 21] for cooperative games. The Nash Bar-
gaining Solution is different from the Nash Equilibrium for
noncooperative games. In a cooperative game the perfor-
mance of each player may be made better than the perfor-
mance achieved in a noncooperative game at the Nash Equi-
librium.
A cooperative game:

Assume that there are � players. Player � , ����
	����	 � , has ��������� as objective function. Each ��� is a func-
tion from � to � , where ������� ( � a positive integer)
is a nonempty, closed and convex set, and � � is bounded
above. We want to maximize simultaneously all � � ����� . Let "! ����# ! $ 	 # ! % 	����	 # ! & � be the minimal performance re-
quired by the players without cooperation to enter the game.
In other words, # ! � represents a minimum performance guar-
antee that the system must provide to the player � .  '! is
called the initial agreement point.
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Let (*)+� & be a nonempty convex and closed set
which is the set of achievable performances. Let ,-�. �/( 	  '! �102(3)4� & is a nonempty convex and bounded
set, and  '!65 � & is such that ( ! � .  75 (�0  98: '!<; is
nonempty ; . , is the set of achievable performances with
respect to the initial agreement point.

Definition 2.1 Assume � 5 � and =>����� ��?� $ ����� 	����	 � & �����@� , =A�B��� 5 ( . Then � is said to be
Pareto optimal if for each �DC 5 � , ��EA�B�DC/� 8 ��EA����� ,F � �A	����G	 � imply ��EA���HC/�I�J��EA����� , F � �A	����G	 � . K
Remark: Pareto optimality means that it is impossible to
find another point which leads to strictly superior perfor-
mance for all the players.

In general, for an � -player game the set of Pareto opti-
mal points form an ��L � dimensional hypersurface con-
sisting of an infinite number of points [24]. What is the
desired operating point for our system among them? To an-
swer this question we need additional criteria for selecting
the optimal point. Such criteria are the so called fairness
axioms that characterize the Nash Bargaining Solution.
The Nash Bargaining Solution (NBS):

Definition 2.2 [28] A mapping MONP,RQS� & is said to be
a Nash Bargaining Solution if:

i) MT�/( 	  '! � 5 ( ! ;
ii) MU�/( 	  "! � is Pareto optimal;

and satisfies the following axioms:
iii) Linearity axiom: If VWNX� & QY� & , VZ�  �[�  C

with # CE � \
E#]E1^`_aE , \
Ecbed , F � �
	����	�f
thenMT�?VZ�/(g� 	 VZ�  "! �@�2�JVZ�?MT�h( 	  "! �@� .

iv) Irrelevant alternatives axiom: If (i)j( C , �h( 	  '! � 5, and MT�/(kC 	  '! � 5 ( , then MU�/( 	  "! �2�:MT�h(lC 	  "! � .
v) Symmetry axiom: If ( is symmetrical with

respect to a subset m � . �
	�����n	 � ; of indices
( i.e. if  5 ( and � 	/F 5 m , �po F

imply
( # $ 	�����	 # ��q $ 	 #]E 	 #]Ear $ 	����G	 #]E q $ 	 # � 	 #sEar $ 	�����	 # & � 5
( ) and if # ! � �i# !E , � 	/F 5 m then MT�/( 	  '! � � �tMU�/( 	  "! �?E ,
for � 	/F 5 m . K
Definition 2.3  vu is a bargaining point if it is given byMT�/( 	  '! � . We call = q $ �  vu � the set of bargaining solutions.K
Remarks: Axioms iii)-v) are called the fairness axioms. Es-
sentially they say the following. The NBS is unchanged if
the performance objectives are affinely scaled (Axiom iii).
The bargaining point is not affected by enlarging the do-
main (Axiom iv). The bargaining point does not depend on
the specific labels, i.e. players with the same initial points
and objectives will obtain the same performance (Axiom v).

Stefanescu [28] gave the following characterization of
the Nash bargaining point.

Theorem 2.1 Let � be a convex compact subset of � � .
Let �<�wNx�yQ � , �z� �
	����G	 � be concave functions,
bounded above. Let =A�B{'�|�}�/� $ �B{'� 	 � % �B{'� 	�����	 � & ��{'�a� ,(�� .  ~5 � & 0I��{ 5 � 	 =>��{'� 8� �; , �9�  ��� . { 5��0"=A�B{'� 8i 2; and � ! �i�9�  ! � be the set of strategies
that enable the players to achieve at least their initial per-
formances. Then there exists a bargaining solution and a
unique bargaining point  Iu . The set of the bargaining solu-
tions = q $ �  Iu � is determined as follows:

Let m be the set of players able to achieve a performance
strictly superior to their initial performance, i.e. m�� . F 5. �A	����n	 � ; 0<��{ 5 � ! 	 � E �B{'��b�# !E ; . Each vector { in the
bargaining solution set verifies � E �B{'��bi# !E , for all

F 5 m
and solves the following maximization problem:

������-�EG�A� �/��E
��{'�vL�# !E � { 5 � ! (1)

Hence  Iu satisfies # uE b�# !E for
F 5 m and # uE ��# !E other-

wise.

Remark: From the assumption on m , the product in equation
(1) is positive. The players outside of m are not considered
in the optimization problem.

Yaiche et al. [31] formulated an equivalent optimization
problem and proved the following results. These results are
needed for proving Theorem 3.1.

Proposition 2.1 If each � E N"��Q�� , (
F 5 m ) is one-to-

one on � ! )�� then = q $ �  vu � is a singleton. K
Remark: Following the terminology used in [31], we call
the point in this set the Nash Bargaining Solution in the rest
of the paper.

Lemma 2.1 Let ��N<��Q��[r�� . d ; be a concave function,
where � r is the set of nonnegative real numbers. Then� �����"����� � �a�TN���QS� is concave. If � is one-to-one, then�

is strictly concave. K
Theorem 2.2 Suppose that for each

F 5 m , � E N<��Q3� , is
one-to-one on � ! . Under the assumption of Theorem 2.1,
we consider the following problems:

�? Z�H�¡N ������ �EG�A� �?�¢EA��{'�vL�# !E � { 5 � ! (2)

�?  C� �¡N ������}£EG�A� ���"�/��EA��{'�IL|# !E �¤{ 5 � ! (3)

then:
1. (  Z� ) has a unique solution and the bargaining solution

is a single point.
2. (  kC� ) is a convex optimization problem and has a

unique solution.
3. (  v� ) and (   C� ) are equivalent. The unique solution of

(  kC� ) is the bargaining solution. K
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Yaiche et al.[31] used this equivalent problem and de-
rived a game theoretic model for bandwidth allocation and
pricing in broadband networks.

3 Load balancing as a cooperative game
among computers

We consider a single class job distributed system that
consists of ¥ heterogeneous computers. We consider a game
in which each computer is a player and it must minimize the
expected execution time of jobs that it processes. If ¦Z�a�B§D�¨�
denotes the expected execution time of jobs processed at
computer � , we can express the game as follows:

��© �ª¬« ¦'����§H�h� 	 �I� �A	����G	 ¥ (4)

where §H� is the average arrival rate of jobs at computer � .
Modeling each computer as an M/M/1 queueing system

[18], ¦'����§H�h�g� $ « q ª « , where ®¯� is the average processing
rate of computer � . The minimization problem, associated
with the above game, becomes:

��© �ª�« �
® � L|§ � 	 �Z� �
	����G	 ¥ (5)

subject to: §H�Io9®¯� 	 �I� �A	����G	 ¥ (6)°
£ ��± $ §H�'�J² (7)

§D� 8 d 	 �v� �
	����	 ¥ (8)

where ² is the total job arrival rate of the system. The first
constraint is the ‘stability’ condition and the second one is
the ‘conservation law’ for the M/M/1 system.

This problem is equivalent to:

�����ª « �³LT§ � � 	 �v� �
	����	 ¥ (9)

subject to:

LT§H�vbJLT®¯� 	 �I� �A	����G	 ¥ (10)°
£ ��± $ §H�'�J² (11)

LT§H�v´�d 	 �v� �A	����G	 ¥ (12)

Based on this optimization problem we can formulate an
equivalent game as follows. The ¥ computers are the play-
ers, each having ���@�B§D�¨�l�`LT§D� as objective functions. All
players need to maximize their objective functions simulta-
neously. The set � is defined by the constraints:

LT§H� 8 LT®¯� 	 �I� �A	����G	 ¥ (13)

°
£ �µ± $ § � ��² (14)

LT§ � ´�d 	 �Z� �A	����G	 ¥ (15)

Remark: To satisfy the compactness requirement for � we
allow the possibility that § � �:® � . This requirement will be
dropped in the following.

We assume that all ¥ computers in the set m of players are
able to achieve performance strictly superior to the initial
performance. The initial performance is given by § � �j® � ,
which corresponds to � � ��LT® � , ( �Z� �
	����G	 ¥ ). We assume
that the initial agreement point is # ! � �iLT®¯� , �T� �A	����G	 ¥ .
In other words all computers agree that they will choose §D�
such that LT§D�Xb~LT®¯� . This is also the ’stability’ condition
for the M/M/1 system.

Our results are given in Theorem 3.1 - 3.3 and Proposi-
tion 3.1. Their proofs are presented in the Appendix.

Theorem 3.1 For the load balancing cooperative game de-
fined above the bargaining solution is determined by solving
the following optimization problem:

���<�ª
°
£ ��± $ �µ�"��® � L|§ � � (16)

subject to: § � o�® � 	 �Z� �
	����G	 ¥ (17)°
£ �µ± $ §H�'��² (18)

§H� 8 d 	 �Z� �
	�����G	 ¥ (19)

K
As a first step in obtaining the solution for our load bal-

ancing cooperative game we solve the optimization problem
given in Theorem 3.1 without requiring § � ( �Z� �
	�����	 ¥ ) be
non-negative. The solution of this problem is given in the
following proposition.

Proposition 3.1 The solution of the optimization problem
in Theorem 3.1 without the constraint §D� 8 d , �2� �A	����G	 ¥
is given by:

§D�"�:®¯��Lj¶
°E ± $ ®HEUL·²¥ (20)

K
In practice we cannot use this solution because there is

no guarantee that §D� ( ��� �
	����	 ¥ ) is always non-negative.

Note that §H¸ is negative when ®"¸Ro ¶º¹»?¼�½  » qH¾° . This
means that computer

f
is very slow. In such cases we make

the solution feasible by setting §H¸���d and remove com-
puter

f
from the system. Setting § ¸ equal to zero means

that we do not assign jobs to the extremely slow computers.
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Assuming that computers are ordered in decreasing order
of their processing rates, we eliminate the slowest computer
and recompute the allocation for a system with ¥¿L � com-
puters. This procedure is applied until a feasible solution is
found.

Based on this fact and Proposition 3.1, we derive an
algorithm (called COOP) for obtaining the Nash Bargaining
Solution for the load balancing cooperative game. In the
following we present this algorithm:

COOP algorithm:

Input: Average processing rates: ® $ , ® % , ���� ® ° ;
Total arrival rate: ²

Output: Load allocation: § $ , § % , ���� § ° ;
1. Sort the computers in decreasing order of

their average processing rates
( ® $ 8 ® % 8 ���� 8 ® ° );

2. ÀÂÁ ¶ ¹»?¼�½  » q�¾° ;
3. while ( ÀÃb9® ° ) do§ ° Á�d ;¥|Á�¥1L � ;ÀxÁS�?ÀXL  ¹¢Ä

½° r $ � ° r $° ;
4. for �v� �A	����	 ¥ do§H�vÁ�®¯��LÅÀ ;

The following theorem proves the correctness of this algo-
rithm.

Theorem 3.2 The allocation
. § $ 	 § % 	�����G	 § ° ; computed

by the COOP algorithm solves the optimization problem in
Theorem 3.1 and is the NBS for our cooperative game. K

The execution time of this algorithm is in Æ��B¥Ã�µÇ
È¡¥'� . In
general determining the NBS is an NP-hard problem [5]. In
our case we were able to obtain an Æ���¥l��ÇAÈ2¥'� algorithm
because the cooperative load balancing game is a convex
game (i.e. player’s objective functions are convex).

The fairness index

É �?Ê6�2��Ë ¶
°��± $HÌ �ÎÍ %¥ ¶
°��± $HÌ %� (21)

was proposed in [7] to quantify the fairness of load bal-
ancing schemes. Here the parameter Ê is the vector ÊÏ�� Ì $ 	 Ì % 	����	 Ì ° � where Ì � is the average execution time for
jobs that are processed at computer � .
Remark: This index is a measure of the ‘equality’ of exe-
cution times at different computers. So it is a measure of
load balance. If all the computers have the same expected
job execution times then

É � � and the system is 100% fair
to all jobs and is load balanced. If the differences on Ì �
increase,

É
decreases and the load balancing scheme favors

only some tasks.
For the proposed load balancing cooperative game we

can state the following:

Theorem 3.3 The fairness index equals 1 when we use the
Nash Bargaining Solution for the proposed load balancing
cooperative game. K

This means that all jobs receive a fair treatment indepen-
dent of the allocated computer.

4 Experimental Results

4.1 Simulation Environment

The simulations were carried out using Sim++ [4], a
simulation software package written in C++. This pack-
age provides an application programming interface which
allow the programmer to call several functions related to
event scheduling, queueing, preemption and random num-
ber generation. The simulation model consists of a collec-
tion of computers connected by a communication network.
Jobs arriving at the system are distributed by a central dis-
patcher to the computers according to the specified load bal-
ancing scheme. Jobs which have been dispatched to a par-
ticular computer are run-to-completion (i.e. no preemption)
in FCFS (first-come-first-served) order.

Each computer is modeled as an M/M/1 queueing system
[12]. The main performance metrics used in our simulations
are the expected response time and the fairness index. The
simulations were run over several millions of seconds, suf-
ficient to generate a total of 1 to 2 millions jobs typically.
Each run was replicated five times with different random
number streams and the results averaged over replications.
The standard error is less than 5% at the 95% confidence
level.

4.2 Performance Evaluation

For comparison purposes we consider both static and
dynamic load balancing schemes. In addition to our co-
operative static scheme (COOP) we implemented one dy-
namic and three static schemes. A brief description of these
schemes is given below:Ð Static Schemes:

- Proportional Scheme (PROP) [3]: According to
this scheme jobs are allocated in proportion to the pro-
cessing speed of computers. The following algorithm
is used for obtaining the load allocation.

PROP algorithm:

Input: Average processing rates: Ñ¯Ò , Ñ�Ó , ÔÕÔÕÔnÑDÖ ;
Total arrival rate: × ;

Output: Load allocation: ØDÒ , ØPÓ , ÔÕÔÕÔGØ>Ö ;
for Ù�Ú�Û�ÜnÔÕÔÕÔÕÜ¨Ý doØ>Þ�ß�× à «¶ ¹»?¼�½ à » ;
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This allocation seems to be a natural choice but it may
not minimize the average response time of the system
and is unfair.

- Overall Optimal Scheme (OPTIM) [29, 30]: This
scheme minimizes the expected execution time over all
jobs executed by the system. The loads at each com-
puter ( §D� ) are obtained by solving the following non-
linear optimization problem:

��© � �²
°
£ �µ± $ §H�?¦Z����§D�¨� (22)

subject to the constraints (6-8). The following algo-
rithm is used for obtaining the load allocation.

OPTIM algorithm:

Input: Average processing rates: Ñ¯Ò , ÑHÓ , ÔÕÔnÔnÑDÖ ;
Total arrival rate: × ;

Output: Load allocation: Ø Ò , Ø Ó , ÔÕÔÕÔGØ Ö ;
1. Sort the computers in decreasing order of

their average processing rates
( Ñ Ò�á Ñ Ó�á ÔÕÔÕÔ á Ñ Ö );

2. â¡ß ¶:¹« ¼>½ à «¨ãPä¶å¹« ¼>½Aæ à « ;

3. while ( â�çÅè Ñ Ö ) doØ�Ögß�é ;Ý�ßtÝ�êzÛ ;
â¡ß ¶ ¹« ¼>½ à «¨ãPä¶ ¹« ¼�½<æ à « ;

4. for ÙHÚ�Û¢ÜnÔÕÔÕÔ�Ü¨Ý doØ Þ ß�Ñ Þ ê�âGè Ñ Þ ;
This scheme provides the overall optimum for the ex-
pected execution time but is unfair.

- Wardrop Equilibrium Scheme (WARDROP) [8]:
In this scheme each of infinitely many jobs optimizes
its response time for itself independently of others. In
general the Wardrop equilibrium solution is not Pareto
optimal and in some cases we expect worse response
time than the other policies [8]. It is based on an itera-
tive procedure that is not very efficient. For a complete
description of WARDROP algorithm see [8]. The ad-
vantage of this scheme is that it provides a fair alloca-
tion.Ð Dynamic Scheme:

- Shortest Expected Delay Scheme (DYNAMIC) [3]:
This is a centralized scheme in which a newly arrived
job is assigned to the computers that yield the mini-
mum expected delay. The expected delay of computer� is estimated using the equation: ë � �íì « r $ « , whereî � is the queue length of computer � and ® � is the av-
erage processing rate of computer � . The following al-
gorithm is executed by the dispatcher when a new job
arrives in the system.

DYNAMIC algorithm:

1. Find ïkðòñ�óô Þ@õ Ù�Ú�Û¢ÜnÔ�ÔÕÔÕÜ¨ÝHö .
2. If minimum is not unique

then select ÷ such that Ñ�ø is the maximum
among ties.

3. Assign the new job to computer ÷ .
The expected execution time obtained by this scheme
is used in our comparisons as a lower bound to the ex-
ecution times of the static schemes.

Remark: Among the four schemes described above, the
WARDROP scheme is the only scheme that is based on
game theoretic concepts.

We evaluated the schemes presented above under vari-
ous system loads and configurations. In the following we
present and discuss the simulation results.

4.2.1 Effect of System Utilization

To study the effect of system utilization we simulated a het-
erogeneous system consisting of 16 computers with four
different processing rates. In Table 1 we present the system
configuration. The first row contains the relative processing
rates of each of the four computer types. Here, the relative
processing rate for computer ù�� is defined as the ratio of the
processing rate of ù � to the processing rate of the slowest
computer in the system. The second row contains the num-
ber of computers in the system corresponding to each com-
puter type. The last row shows the processing rate of each
computer type in the system. We choose 0.013 jobs/sec. as
the processing rate for the slowest computer because it is
a value that can be found in real distributed systems [29].
Also we consider only computers that are at most ten times
faster than the slowest because this is the case in most of the
current heterogeneous distributed systems.

Relative processing rate 1 2 5 10
Number of computers 6 5 3 2
Processing rate (jobs/sec) 0.013 0.026 0.065 0.13

Table 1. System configuration.

In Figure 1 we present the expected response time of
the system for different values of system utilization (rang-
ing from 10% to 90%). System utilization ( ú ) is defined as
the ratio of total arrival rate to aggregate processing rate of
the system: ú·� ¾

¶ ¹« ¼�½  « . It can be observed that at low

loads ( ú from 10% to 40%) all the schemes except PROP
yield almost the same performance. The poor performance
of PROP scheme is due to the fact that the less powerful
computers are significantly overloaded.
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Figure 1. The expected response time and
fairness index vs. system utilization.

At medium loads ( ú from 40% to 60%) the COOP
scheme performs significantly better than PROP and ap-
proaches the performance of OPTIM. For example at load
level of 50% the mean response time of COOP is 19% less
than PROP and 20% greater than OPTIM.

At high loads COOP and PROP yield the same expected
response time which is greater than that of OPTIM. The
DYNAMIC scheme outperforms all static schemes under
heavy loads. This implies that at high load the dynamic
scheme is effective.
Remark: The WARDROP and COOP yield the same per-
formance for the whole range of system utilization and they
are also 100% fair. The reason for this is that the nonco-
operative game used to derive the Wardrop equilibrium is a
convex game and it has a unique equilibrium that is a Pareto
optimal solution [9]. The advantage of COOP scheme is
that the algorithm for computing the allocation is very sim-
ple. The WARDROP scheme involves a more complicated
algorithm that require an iterative process that take more
time to converge. We ran both algorithms for a system of
16 computers on a SUN 10 (440 MHz) workstation and
we obtained the following execution times: ý �µ� msec for
WARDROP and d � þ msec for COOP.

An important performance metric is the fairness index.

Figure 2. The expected response time at com-
puter 1 to 8 (high system load).

Figure 3. The expected response time at com-
puter 9 to 16 (high system load).

The COOP and WARDROP schemes maintain a fairness
index of 1 over the whole range of system loads and they
are the only fair schemes here. It can be shown that the
PROP has a fairness index of 0.731 which is a constant in-
dependent of the system load. The fairness index of OPTIM
varies from 1 at low load, to 0.88 at high load.

An interesting issue is the impact of static load balanc-
ing schemes on individual computers. In Figure 2 and 3 we
present the expected response time at each computer in the
system when the system is heavily loaded ( ú[� þ d>ÿ ). The
WARDROP scheme gives the same results as COOP and is
not presented in these figures. The COOP scheme guaran-
tees the same execution time at each computer and utilizes
all the computers. The value of the expected response time
for each computer is equal to the value of overall expected
response time. The difference in the expected response time
between the fastest and slowest computers is huge in the
case of PROP (350 sec.) and moderate in the case of OP-
TIM (130 sec.).

In the case of PROP and OPTIM jobs are treated unfairly
in the sense that a job allocated to a fast computer will have
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a low expected response time and a job allocated to a slow
computer will have a high expected response time. COOP
scheme provides really a fair and load balanced allocation
and in some systems this is a desirable property.

4.2.2 Effect of heterogeneity

In a distributed system, heterogeneity usually consists of:
processor speed, memory and I/O. A simple way to char-
acterize system heterogeneity is to use the processor speed.
Furthermore it is reasonable to assume that a computer with
high speed processor will have matching resources (mem-
ory and I/O). One of the common measures of heterogeneity
is the speed skewness [29] which is defined as the ratio of
maximum processing rate to minimum processing rate of
the computers. This measure is somehow limited but for
our goals it is satisfactory.

In this section we investigate the effectiveness of load
balancing schemes by varying the speed skewness. We sim-
ulate a system of 16 heterogeneous computers: 2 fast and 14
slow. The slow computers have a relative processing rate of
1 and we varied the relative processing rate of the fast com-
puters from 1 (which correspond to a homogeneous system)
to 20 (which correspond to a highly heterogeneous system).
The system utilization was kept constant ú = 60%.

In Figure 4 we present the effect of speed skewness on
the expected response time and fairness. It can be observed
that increasing the speed skewness the OPTIM and COOP
schemes yield an expected response time close to that of
DYNAMIC which means that in highly heterogeneous sys-
tems the COOP and OPTIM are very effective. COOP has
the additional advantage of a fair allocation which is very
important in some systems. PROP scheme performs poorly
because it overloads the slowest computers.

5 Conclusion

In this paper we have presented a game theoretic frame-
work for obtaining a fair load balancing scheme. The main
goal was to derive a fair and optimal allocation scheme. We
formulated the load balancing problem in single class job
distributed systems as a cooperative game among comput-
ers. We showed that the Nash Bargaining Solution (NBS)
of this game provides a Pareto optimal operation point for
the distributed system and it is also a fair solution. For the
proposed cooperative load balancing game we presented the
structure of the NBS. Based on this structure we derived a
new algorithm for computing it. We showed that the fair-
ness index is always 1 using our new cooperative load bal-
ancing scheme, which means that the solution is fair to all
jobs. We compared the performance of our cooperative load
balancing scheme with other existing schemes.
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Figure 4. The effect of heterogeneity on the
expected response time and fairness index.

Future work will address the development of game theo-
retic models for load balancing in the context of uncertainty
as well as game theoretic models for dynamic load balanc-
ing.
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A Appendix

In this section we present the proofs of the results used
in the paper.
Proof of Theorem 3.1:
In Theorem 2.1 we consider � � ��§ � �x��LT§ � which are con-
cave and bounded above. The set defined by the constraints
is convex and compact. The conditions of Theorem 2.1 are
satisfied. Using the result of Theorem 2.1 and the fact that� � �B§ � �x�4LT§ � are one-to-one functions of § � and applying
Theorem 2.2 the results follows. K
Proof of Proposition 3.1:
The constraints in Theorem 3.1 are linear in § � and � � �B§ � �I�LT§ � has continuous first partial derivatives. This implies
that the first order Kuhn-Tucker conditions are necessary
and sufficient for optimality [18].

Let �~´�d , �
�6´td , �g� �
	����	 ¥ denote the Lagrange
multipliers [18]. The Lagrangian is:

�Â�B§D� 	 � 	 �
�¨�I� °
£ ��± $ �µ�"��®¯�¯L|§H�h�¯^���� °

£ �µ± $ §D��L·²T�@^
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°
£ ��± $ � � ��§ � L|® � � (23)

The first order Kuhn-Tucker conditions are:
� �� §D� ��L

�
®¯��L|§H� ^����̂� � �:d 	 �v� �A	����G	 ¥ (24)

� �� � �
°
£ �µ± $ § � L·²9�:d (25)

® � L¿§ � 8 d 	 � � �B® � L¿§ � �I�ºd 	 � � ´Od 	 �I� �A	����G	 ¥ (26)

We have ®¯�2L�§H��b4d 	 ��� �
	����G	 ¥ . This implies that
�
�'�åd 	 �Z� �
	����G	 ¥ .

The solution of these conditions is:�
® � L|§ � L��|�:d 	 �I� �A	����G	 ¥ (27)

°
£ ��± $ §H�'�J² (28)

It then follows that:

§H�'�å®¯�¯Lj¶
°E ± $ ®HEUL·²¥ (29)

K
Lemma A.1 Let ® $ 8 ® % 8 ���� 8 ®�� . If ®�� o
¶ �»?¼�½  » qH¾� then the objective function from Theorem 3.1
is maximized, subject to the extra constraint §	� 8 d , when§
�J�:d . K
Proof: We add a new condition to the first order conditions
(24-26). The new set of conditions is as follows:

� �� § � ��L
�

® � L|§ � ^��I�̂�
�"�åd 	 �Z� �
	�����G	� L � (30)

� �� § � ��L
�

® � L|§ � ^��1�̂�����̂�����:d (31)

� �� � �
�
£ �µ± $ §D��L·²9�:d (32)

®¯�<L�§D� 8 d 	 �
����®¯�
L�§D�¨�I�:d 	 �A�I´�d 	 �v� �
	����G	� (33)

§ � 8 d 	 � � § � �:d 	 � � ´Od (34)

We have ® � Lz§ � bOd 	 �v� �
	����	� . This implies that
� � �åd 	 �Z� �
	����G	� .�

® � L�§ � L��|�ºd 	 �v� �
	����G	� L � (35)�
® � L|§ � L��1�̂� � �ºd (36)

�
£ �µ± $ § � ��² (37)

§ � 8 d 	 � � § � �ºd 	 � � ´�d (38)

From equation (38) the value of §H� is either zero or posi-
tive. We consider each case separately.

Case 1: § � b:d . Equation (38) implies � � ��d and the
solution of the conditions is:

§ � �O® � Lj¶ �E ± $ ®HETL·² �I� �A	����G	� (39)

Case 2: § � �+d . It follows from equation (38) that
� � ´�d .

The restriction § � 8 d becomes active when
$ � q ª � L

�:� L���� bWd which implies that ®�� o ¶ �»?¼�½  » qH¾� and
lemma is proved. K
Proof of Theorem 3.2:
The while loop in step 3 finds the minimum index


for

which ® � o ¶ �»?¼�½  » qH¾� .
If
 �i¥ (that means that all §D� are positive) we apply

Proposition 3.1 and the result follows.

If
 o�¥ we have ® � o ¶

«»?¼>½  » q�¾� for �U� �	����G	 ¥ .
According to Lemma A.1 §
� 	����G	 § ° must be 0 in order
to maximize the objective function from Theorem 3.1. The
algorithm sets § � �ºd for �v� �	�����	 ¥ in the while loop.

Because ® � o ¶ �»?¼�½  » q�¾� implies d3oY® �  ´
¶ �E ± $ ®HEZLw² and then ²:o ¶ �E ± $ ®HE , we can apply Propo-
sition 3.1 to the first


indices (that corresponds to the

first


fast computers) and the values of the load allocation. § $ 	 § % 	����	 §
� ; maximizes the objective function and are
given by:

§ � �:® � L�¶ �E ± $ ®HETL·² 	 �Z� �
	����	� (40)

This is done in step 4. All these § � , for �k� �A	����G	� are

guaranteed to be nonnegative because ®¯�zb ¶ �»?¼>½  » qH¾� .
The load allocation

. § $ 	 § % 	�����	 § � ; is the solution of the
optimization problem in Theorem 3.1. According to Theo-
rem 3.1 this is also the NBS of our cooperative load balanc-
ing game. K
Proof of Theorem 3.3:
Using Proposition 3.1, Ì � for all ¥�� allocated computers
( § ����:d , �Z� �
	����	 ¥�� ) can be expressed as:

Ì �"� �
��® � L�§ � � � ¥ �

¶
°��E ± $ ® E L·² (41)

Thus all Ì � , �Z� �2����G	 ¥ � are equal and this implies
É �BÊ6����

. K
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