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Abstract

In this paper we present a game theoretic framework for
obtaining a user-optimal load balancing scheme in hetero-
geneous distributed systems. We formulate the static load
balancing problem in heterogeneous distributed systems as
a noncooperative game among users. For the proposed non-
cooperative load balancing game, we present the structure
of the Nash equilibrium. Based on this structure we derive a
new distributed load balancing algorithm. Finally, the per-
formance of our noncooperative load balancing scheme is
compared with that of other existing schemes. Our scheme
guarantees the optimality of allocation for each user in the
distributed system.

1 Introduction

A distributed system can be viewed as a collection of
computing and communication resources shared by active
users. When the demand for computing power increases the
load balancing problem becomes important. A general for-
mulation of this problem is as follows: given a large number
of jobs, find the allocation of jobs to computers optimizing
a given objective function (e.g. total execution time).

There are three typical approaches to load balancing
problem in distributed systems:

1. Global approach: In this case there is only one de-
cision maker that optimizes the response time of the entire
system over all jobs and the operating point is called social
(overall) optimum. This is the classical approach and has
been studied extensively using different techniques such as�
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nonlinear optimization [7, 8, 12, 18, 19] and polymatroid
optimization [15].

2. Cooperative approach: In this case there are sev-
eral decision makers (e.g. jobs, computers) that cooperate
in making the decisions such that each of them will operate
at its optimum. Decision makers have complete freedom
of preplay communication to make joint agreements about
their operating points. This situation can be modeled as a
cooperative game and game theory offers a suitable model-
ing framework [2].

3. Noncooperative approach: In this case there are sev-
eral decision makers (e.g. users, jobs) that are not allowed
to cooperate in making decisions. Each decision maker op-
timizes its own response time independently of the others
and they all eventually reach an equilibrium. This situation
can be viewed as a noncooperative game among decision
makers. The equilibrium is called Nash equilibrium[2] and
it can be obtained by a distributed noncooperative policy. At
the Nash equilibrium a decision maker cannot receive any
further benefit by changing its own decision. If the num-
ber of decision makers is not finite the Nash equilibrium is
called Wardrop equilibrium[6].

Past results
There exist only few studies on game theoretic models
and algorithms for load balancing in distributed systems.
Kameda et al. [6] studied noncooperative games and de-
rived load balancing algorithms for computing the Wardrop
equilibrium in single class and multi-class job distributed
systems. Roughgarden [16] formulated the load balancing
problem as a Stackelberg game. In this type of noncooper-
ative game one player acts as a leader and the rest as fol-
lowers. He showed that it is NP-hard to compute the op-
timal Stackelberg strategy and presents efficient algorithms
to compute strategies inducing near-optimal solutions.

Routing traffic in networks is a closely related problem
that received more attention. Orda et al. [14] studied a non-
cooperative game in a network of parallel links with convex
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cost functions. They studied the existence and uniqueness
of the Nash equilibrium. Altman et al. [1] investigated the
same problem in a network of parallel links with linear cost
functions. Korilis et al.[10] considered the capacity alloca-
tion problem in a network shared by noncooperative users.
They studied the structure and the properties of Nash equi-
librium for a routing game with M/M/1 type cost functions.
An important line of research was initiated by Koutsoupias
and Papadimitriou [11], who considered a noncooperative
routing game and proposed the ratio between the worst pos-
sible Nash equilibrium and the overall optimum as a mea-
sure of effectiveness of the system. Roughgarden and Tar-
dos [17] showed that in a network in which the link cost
functions are linear the flow at Nash equilibrium has total
latency at most 4/3 that of the overall optimal flow. They
also showed that if the link cost functions are assumed to be
only continuous and nondecreasing the total latency may be
arbitrarily larger than the minimum possible total latency.
Our results
Most of the previous studies on static load balancing con-
sidered as their main objective the minimization of overall
expected response time. This is difficult to achieve in dis-
tributed systems where there is no central authority control-
ling the allocation and users are free to act in a selfish man-
ner. Our goal is to find a formal framework for characteriz-
ing user-optimal allocation schemes in distributed systems.
The framework was provided by noncooperative game the-
ory which has been applied to routing and flow control prob-
lems in networks but not to load balancing in distributed
systems. Using this framework we formulate the load bal-
ancing problem in distributed systems as a noncooperative
game among users. The Nash equilibrium provides a user-
optimal operation point for the distributed system. We give
a characterization of the Nash equilibrium and a distributed
algorithm for computing it. We compare the performance
of our noncooperative load balancing scheme with that of
other existing schemes. Our scheme guarantees the opti-
mality of allocation for each user in the distributed system.
Organization
The paper is structured as follows. In Section 2 we present
the system model and we introduce our load balancing non-
cooperative game. In Section 3 we derive a greedy dis-
tributed algorithm for computing the Nash equilibrium for
our load balancing game. In Section 4 the performance of
our load balancing scheme is compared with those of other
existing schemes. In Section 5 we draw conclusions and
present future directions.

2 Load balancing as a noncooperative game
among users

We consider a distributed system that consists of � het-
erogeneous computers shared by � users. Each computer is
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Figure 1. The distributed system model.

modeled as an M/M/1 queueing system (i.e. Poisson arrivals
and exponentialy distributed processing times) [9]. Com-
puter � is characterized by its average processing rate �	� ,��
������������� . Jobs are generated by user � with an average
rate ��� , and ��
����� �"! �#� is the total job arrival rate in the
system. The total job arrival rate � must be less than the ag-
gregate processing rate of the system (i.e. �%$ �'&�(�"! � � ).
The system model is presented in Figure 1. The users have
to decide on how to distribute their jobs to computers such
that they will operate optimally. Thus user � (�)
*�+����������� )
must find the fraction , � � of all its jobs that are assigned to
computer � ( ��&�-�"! , � � 
.� and /102, � � 03� , �4
%������������� )
such that the expected execution time of its jobs is mini-
mized.

We formulate this problem as a noncooperative game
among users under the assumption that users are ’selfish’.
This means that they minimize the expected response time
of their own jobs.

Let ,�� � be the fraction of jobs that user � sends to com-
puter � . The vector 5��6
 78,��9!:�9,�� ;����������<,�� &>= is called
the load balancing strategyof user � . The vector 53
7?5:!@�<5�;���������� 5 � = is called the strategy profileof the load bal-
ancing game.

We assume that each computer is modeled as an M/M/1
queueing system and the expected response time at com-
puter � is given by:A � 785 = 
 ��	�	B �C�� �"! ,�� �D��� (1)

Thus the overall expected response time of user � is given
by: E � 785 = 
 &F �(�"! , � � A � 785 = 
 &F �(�"! , � �� � BG� �H �"! , H � � H (2)
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The goal of user � is to find a feasible load balancing strat-
egy 5 � such that

E � 785 = is minimized.
A feasible load balancing strategy profile 5 must satisfy

the following restrictions:
(i) Positivity: ,�� �JIK/ , �L
*�+��������� � , �)
M������������� ;
(ii) Conservation: �'&�(�"! ,�� �N
2� , �)
M����������� � ;
(iii) Stability: � �� �"! ,O� �P���Q$R�	� , �N
*������������� ;
The decision of user � depends on the load balancing

decisions of other users since
E � 7?5 = is a function of 5 . We

adopt here the Nash equilibrium as optimality concept [2].

Definition 2.1 A Nash equilibriumof the load balancing
game defined above is a strategy profile 5 such that for every
user � : 5��TSVUXW<Y[Z]\-^_`Pa E ��785@!X���������Ob5O����������� 5 � = (3)

In other words a strategy profile 5 is a Nash equilibrium if
no user can benefit by deviating unilaterally from its load
balancing strategy to another feasible one.

Similar games were studied in the context of control flow
and routing in networks. Orda et al. [14] proved that if the
expected response time functions are continuous, convex
and increasing there exist a unique Nash equilibrium for the
game. The closest work to our study is that of Korilis et al.
[10] in which it is studied a similar game in the context of
capacity allocation in networks. They studied the structure
and properties of Nash equilibrium for the game. Here, we
are interested in finding a way to compute the Nash equilib-
rium for our load balancing noncooperative game.

We need to determine the strategy profile of user � which
must be optimal with respect to the other users strategies.
Let � � � 
c� � BK� �H �"!Od H�e�f� , H � � H be the available process-
ing rate at processor � as seen by user � . The problem of
computing the optimal strategy of user � (�)
*����������� � ) re-
duces to computing the optimal strategy for a system with� processors having � � � ( �Q
g�+��������� � ) as processing rates
and �#� as the job arrival rate in the system.

For user � , the associated optimization problem ( hTi	j )
can be described as follows:Zk\(^`Pa E �+7?5 = (4)

subject to the constraints:, � � IR/l� �L
M������������� (5)&F �(�"! , � � 
2� (6)�FH �"! , H �P� H $��	�m� �N
*������������� (7)

Remark:The strategies of all the other users are kept fixed,
thus the variables involved in hTi j are the load fractions of
user � , i.e. 5 � 
378, �9! �9, � ; ���������<, � & = .

There exist few algorithms for finding the optimum
for similar optimization problems. One was proposed by
Tantawi and Towsley [19] but it is complex and involves
a method for solving a nonlinear equation. Another one
which is very close to our approach was proposed by Tang
and Chanson [18]. These algorithms cannot be applied di-
rectly for our problem because there are some other issues
that must be addressed. Our approach is inspired by [18] but
it considers a different model in which the influence of the
other users’ decisions on the optimum is taken into account.
We propose in the following an algorithm for computing the
optimum considering our model.

We can characterize the optimal solution of hTi j as fol-
lows:

Theorem 2.1 Assuming that computers are ordered in de-
creasing order of their available processing rates ( � � ! I� � ; In�����LIM� � & ), the solution 5 � of the optimization prob-
lem hTi j is given by:

,�� �"
 op q !r ats � � � BKu � � � ��v aw-xzy+{ aw9| r a� v aw-xzy>} { a w�~ \�����0��J$K�<�/ \���� � 0R��0�� (8)

where � � is the minimum index that satisfies the inequality:u � � � a 0 � � aH �"! � � H BG� �� � aH �"! u � � H (9)

Proof: In Appendix.
Based on the above theorem we derived the following

algorithm for solving user � ’s optimization problem hTi�j .
OPTIMAL( ��� �9�9�9�9�<�P� � � , � � )
Input: Available processing rates: ��� � , ��� � , �9�9��� � � ;

Total arrival rate: � �
Output: Load fractions: � � � , � � � , �O�<��� � � ;

1. Sort the computers in decreasing order of their
available processing rates ( � � �J� � � �4� �O�9� � � � � );

2. ��� �C�w(x�y�� aw��z� a� �w-xzy�} � a w ;

3. while ( � � } � � � ) do� � � �n� ;� � �k��� ;��� � �w(x�y�� aw��z� a���w-xzy�} � a w ;

4. for �f� � �9�9�9�<� � do� ��� �¡ ���� � � � } ��� � ¢ �� a ;

The following theorem proves the correctness of this al-
gorithm.

Theorem 2.2 The load balancing strategy78,��9!X�<,�� ;����������<,�� &l= computed by the OPTIMAL algo-
rithm solves the optimization problem hTi j and is the
optimal strategy for user � .
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Proof: In Appendix.
Remarks: (1) The execution time of this algorithm is£ 7¤��¥-¦+YJ� = . This is due to the sorting procedure in step 1.
(2) To execute this algorithm each user needs to know the
available processing rate at each computer and its job ar-
rival rate. The available processing rate can be determined
by statistical estimation of the run queue length of each pro-
cessor.

3 A distributed load balancing algorithm

The computation of Nash equilibrium might require
some coordination between the users. From the practical
point of view we need decentralization and this can be ob-
tained by using distributed greedy best response algorithms
[2]. In these algorithms each user updates from time to time
its load balancing strategy by computing the best response
against the existing load balancing strategies of the other
users. In our case each user will update its strategy in a
round-robin fashion.

Based on the OPTIMAL algorithm presented in the pre-
vious section, we devised the following greedy best reply
algorithm for computing the Nash equilibrium for our non-
cooperative load balancing game.

We use the following notations: § - the number of
iterations; 5�¨�©�ª� - the strategy of user � computed at iteration§ ; E ¨�©�ª� - user � ’s expected execution time at iteration § ; « -
a properly chosen acceptance tolerance; Send(� , (¬ ,  )) -
send the message ( ¬ ,  ) to user � ; Recv(� , (¬ ,  )) - receive
the message (¬ ,  ) from user � .

NASH distributed load balancing algorithm:

User ® , (®¯� � �O�9�9�9�±° ) executes:
1. Initialization:²´³¶µm·� �n¸ ; ¹ ³¶µm·� �c¸ ; º>� � ;
2. while ( 1 ) do

if(®t»� � )
Recv(® ��� , ( ��¼�½ ° , º ));
if ( ��¼�½ °M� �¾� )

if (®]»� � ) Send(®J¿ � , ( �¾� , �¾� ));
exit;

else
if ( ºL» � � )

Recv( � , ( ��¼�½ ° , º ));
if ( ��¼�½ °À�Á )

Send(®J¿ � , ( �¾� , �¾� ));
exit;

if(®Â� � ) �l¼�½ °3�n� ;
for �Ã� � �O�9�9�<� � do

Obtain �z� � by inspecting the run queue of each
computer: ÄÅ�z� � �%� � � ��ÆÇ9È �PÉ Ç@Ê È � � Ç � � Ç´Ë ;²´³¶Ì¶·� � OPTIMAL( ��� �9�<�9�9�9�±� � � , � � );

Compute Í ³¶Ì¶·� ;��¼�½ °Q®Â�ÏÎ Í ³¶Ì � � ·� � Í ³¶Ì¶·� Î ;

�l¼�½ °Ð� ��¼�½ °�¿ �l¼�½ °Q® ;
if(®¯� � ) ºl�nº+¿ � ;
if(®¯� � ) Send( � , ( ��¼�½ ° , º ));
else Send(®J¿ � , ( ��¼�½ ° , º ));

The execution of this algorithm is initiated periodically
or when the system parameters are changed. Once the Nash
equilibrium is reached, the users will continue to use the
same strategies and the system remains in equilibrium. This
equilibrium is maintained until a new execution of the algo-
rithm is initiated.

An important practical question is whether such ’best re-
ply’ algorithms converge to the Nash equilibrium. The only
known results about the convergence of such algorithms
have been obtained in the context of routing in parallel links.
These studies have been limited to special cases of two par-
allel links shared by two users [14] or by �¡I3Ñ users but
with linear cost links [1]. For M/M/1 type cost functions
there is no known proof that such algorithms converge for
more than two users. Several experiments done on different
settings show that they converge for more than two users.
In the next section we present experiments that confirm this
hypothesis. The convergence proof for more than two users
is still an open problem.

4 Experimental results

4.1 Simulation environment

The simulations were carried out using Sim++ [4], a
simulation software package written in C++. This pack-
age provides an application programming interface which
allows the programmer to call several functions related to
event scheduling, queueing, preemption and random num-
ber generation. The simulation model consists of a collec-
tion of computers connected by a communication network.
Jobs arriving at the system are distributed to the comput-
ers according to the specified load balancing scheme. Jobs
which have been dispatched to a particular computer are
run-to-completion(i.e. no preemption) in FCFS (first-come-
first-served) order. Each computer is modeled as an M/M/1
queueing system [9]. The main performance metrics used
in our simulations are the expected response timeand the

fairness index. The fairness indexÒf7?Ó = 
ÕÔ �CÖa x�y�× amØ¶Ù& ��Öa x�y�× Ùa ,

was proposed in [5] to quantify the fairness of load bal-
ancing schemes. Here the parameter Ó is the vector ÓÚ
7 E !@� E ;X��������� E � = where

E � is the expected execution time
of user � ’s jobs. The simulations were run over several thou-
sands of seconds, sufficient to generate a total of 1 to 2 mil-
lions jobs typically. Each run was replicated five times with
different random number streams and the results averaged
over replications. The standard error is less than 5% at the
95% confidence level.
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4.2 Performance evaluation

For comparison purposes we consider three existing
static load balancing schemes [3, 6, 7]. A brief description
of these schemes is given below:Û Proportional Scheme (PS) [3]: According to this
scheme each user allocates its jobs to computers in propor-
tion to their processing rate. This allocation seems to be a
natural choice but it may not minimize the user’s expected
response time or the overall expected response time. It can
be shown that for this scheme the fairness index is always
1. Û Global Optimal Scheme (GOS) [7]: This scheme
minimizes the expected execution time over all jobs ex-
ecuted by the system. The load fractions ( 5 ) are ob-
tained by solving the nonlinear optimization problemZk\(^ ` !Ü ���� �"! � � E � 7?5 = subject to the constraints (5) - (7).
This scheme provides the overall optimum for the expected
execution time but it is not user-optimal and is unfair.Û Individual Optimal Scheme (IOS) [6]: In this scheme
each job optimizes its response time for itself independently
of others. In general the Wardrop equilibrium, which is the
solution given by this scheme, is not optimal and in some
cases we expect worse response time than the other policies
[6]. It is based on an iterative procedure that is not very
efficient. For a complete description of IOS algorithm see
[6]. The advantage of this scheme is that it provides a fair
allocation.
Remark: Among the three schemes described above, the
IOS scheme is the only scheme that is based on game theo-
retic concepts.

We evaluated the schemes presented above under various
system loads and configurations. Also the convergence of
the NASH load balancing algorithm is investigated. In the
following we present and discuss the simulation results.

4.2.1 The convergence of NASH algorithm

An important issue related to the greedy best reply al-
gorithm presented above is the dynamics of reaching the
equilibrium. We consider first the NASH algorithm using5 ¨�Ý9ª 
3Þ as the initialization step. This variant of the algo-
rithm will be called NASH 0. This initialization step is an
obvious choice but it may not lead to a fast convergence to
the equilibrium.

We propose a variant of the algorithm in which the ini-
tialization step is replaced by:

1. Initialization:¹ ³¶µm·� �c¸ ; ºl� � ;
for �Ã� � �O�9�9�<� � do� ³¶µm·� � � � w� � ß x�y � ß ;
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We call this new version NASH P. Using this initial-
ization, the starting point will be a proportional allocation
of jobs to computers according to their processing rate.
We expect a better convergence using NASH P instead of
NASH 0. To study the convergence of these algorithms we
consider a systems with 16 computers shared by 10 users.
The norm vs. the number of iterations is shown in Figure
2. It can be seen that the NASH P algorithm significantly
outperforms NASH 0 algorithm. The intuitive explanation
for this performance is that the initial proportional alloca-
tion is close to the equilibrium point and the number of it-
erations needed to reach the equilibrium is reduced. Using
the NASH P algorithm the number of iterations needed to
reach the equilibrium is reduced to more than a half com-
pared with NASH 0.

Next, we study the influence of the number of users on
the convergence of both algorithms. In Figure 3 we present
the number of iterations needed to reach the equilibrium for
a system with 16 computers and a variable number of users
(from 4 to 32). It can be observed that NASH P signifi-
cantly outperforms NASH 0 reducing the number of itera-
tions needed to reach the equilibrium in all the cases.

4.2.2 Effect of system utilization

To study the effect of system utilization we simulated a het-
erogeneous system consisting of 16 computers with four
different processing rates. This system is shared by 10
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users. In Table 1, we present the system configuration. The
first row contains the relative processing rates of each of the
four computer types. Here, the relative processing rate for
computer â4� is defined as the ratio of the processing rate ofâ4� to the processing rate of the slowest computer in the sys-
tem. The second row contains the number of computers in
the system corresponding to each computer type. The last
row shows the processing rate of each computer type in the
system. We consider only computers that are at most ten
times faster than the slowest because this is the case in most
of the current heterogeneous distributed systems.

Relative processing rate 1 2 5 10
Number of computers 6 5 3 2
Processing rate (jobs/sec) 10 20 50 100

Table 1. System configuration.

In Figure 4, we present the expected response time of the
system and the fairness index for different values of system
utilization (ranging from 10% to 90%). System utilization
( ã ) is defined as the ratio of total arrival rate to aggregate
processing rate of the system: ãk
 Ü� �w(x�y+{ w .

It can be observed that at low loads ( ã from 10% to
40%) all the schemes except PS yield almost the same per-
formance. The poor performance of PS scheme is due
to the fact that the less powerful computers are signifi-
cantly overloaded. At medium loads ( ã from 40% to 60%)
NASH scheme performs significantly better than PS and
approaches the performance of GOS. For example at load
level of 50% the mean response time of NASH is 30% less
than PS and 7% greater than GOS. At high loads IOS and
PS yield the same expected response time which is greater
than that of GOS and NASH. The expected response time
of NASH scheme is very close to that of GOS.

An important performance metric is the fairness index.
The PS and IOS schemes maintain a fairness index of 1 over
the whole range of system loads. It can be shown that the
PS has a fairness index of 1 which is a constant independent
of the system load. The fairness index of GOS varies from
1 at low load, to 0.92 at high load. The NASH scheme has a
fairness index close to 1 and each user obtains the minimum
possible expected response time for its own jobs (i.e. it is
user-optimal). User-optimality and decentralization are the
main advantages of NASH scheme.

An interesting issue is the impact of static load balanc-
ing schemes on individual users. In Figure 5, we present
the expected response time for each user considering all
static schemes at medium load ( ã =60%). The PS and IOS
schemes guarantee equal expected response times for all
users but with the disadvantage of a higher expected execu-
tion time for their jobs. It can be observed that in the case of
GOS scheme there are large differences in users’ expected
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execution times. NASH scheme provides the minimum pos-
sible expected execution time for each user. Thus, from
users’ perspective NASH is the most desirable scheme.

4.2.3 Effect of heterogeneity

In a distributed system, heterogeneity usually consists of:
processor speed, memory and I/O. A simple way to char-
acterize system heterogeneity is to use the processor speed.
Furthermore, it is reasonable to assume that a computer with
high speed processor will have matching resources (mem-
ory and I/O). One of the common measures of heterogeneity
is the speed skewness[18] which is defined as the ratio of
maximum processing rate to minimum processing rate of
the computers. This measure is somehow limited but for
our goals it is satisfactory.

In this section, we investigate the effectiveness of load
balancing schemes by varying the speed skewness. We sim-
ulate a system of 16 heterogeneous computers: 2 fast and 14
slow. The slow computers have a relative processing rate of
1 and we varied the relative processing rate of the fast com-
puters from 1 (which correspond to a homogeneous system)
to 20 (which correspond to a highly heterogeneous system).
The system utilization was kept constant ã = 60%.

In Figure 6, we present the effect of speed skewness
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Figure 5. Expected response time for each
user.

on the expected response time and fairness. It can be ob-
served that increasing the speed skewness the GOS and
NASH schemes yield almost the same expected response
time which means that in highly heterogeneous systems the
NASH scheme is very effective. NASH scheme has the ad-
ditional advantage of decentralization and user-optimality
which is very important in actual distributed systems. PS
scheme performs poorly because it overloads the slowest
computers. The IOS scheme performs well at high speed
skewness approaching the performance of NASH and GOS,
but at low speed skewness it performs poorly.

5 Conclusion

In this paper we have presented a game theoretic frame-
work for obtaining a user-optimal load balancing scheme in
heterogeneous distributed systems. We formulated the load
balancing problem in heterogeneous distributed systems as
a noncooperative game among users. For this game the
Nash equilibrium provides an user-optimal operation point
for the distributed system. For the proposed noncoopera-
tive load balancing game, we presented the structure of the
Nash equilibrium. Based on this structure we derived a new
distributed algorithm for computing it. We compared the
performance of our noncooperative load balancing scheme
with other existing schemes. Future work will address the
development of game theoretic models for load balancing in
the context of uncertainty as well as game theoretic models
for dynamic load balancing.
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A Appendix

Proof of Theorem 2.1:
We begin with the observation that at the Nash equilibrium
the stability condition (7) is always satisfied because of (3)
and the fact that the total arrival rate ( � ) does not exceed
the total processing rate of the distributed system. Thus we
consider hTi	j problem with only two restrictions, (5) and
(6). We first show that

E �+785 = is a convex function in 5O�
and that the set of feasible solutions defined by the con-
straints (5) and (6) is convex. From (2) it can be easily

show that æ × a ¨ ` ªæ@ç a w Ic/ and æ Ù × a ¨ ` ªæ ¨ ç a w ª Ù I%/ for �Q
Ï������������� .
This means that the Hessian of

E �+785 = is positive which im-
plies that

E �+7?5 = is a convex function of the load fractions5O� . The constraints are all linear and they define a convex
polyhedron. Thus, hTi�j involves minimizing a convex func-
tion over a convex feasible region and the first order Kuhn-
Tucker conditions are necessary and sufficient for optimal-
ity [13].

Let èI%/ , é � Ic/ , �ê
ë�+��������� � denote the Lagrange
multipliers [13]. The Lagrangian is:ì 7D,O�9!X���������9,�� & � è���é�!X����������é &l= 
� &�(�"! ç a w{ a w�| ç a w r a Bíè47D� &�(�"! ,�� �	B�� = Bî� &�-�"! é��8,�� �

The Kuhn-Tucker conditions imply that , � � , �k
ï�+��������� �
is the optimal solution to hTi j if and only if there existsèKI�/ , é+�ðI�/ , �4
�+��������� � such that: æ´ñæ@ç a w 
2/ ; æ@ñæ´ò 
M/ ;é��±,O� �t
ó/��ôé��õIg/��ö,�� �÷Ig/l�ø�t
Ú������������� . These
conditions are equivalent to:è�
 � � �7¤� � � Bù, � � � � = ; �ø\��ú,�� �[ûK/ �Q0R��0�� (10)

èG0 � � �7¤� � � Bù, � � � � = ; �ø\��ú, � � 
�/ �Q0R��0�� (11)&F �(�"! , � � 
*�+�ö, � � I�/l�ü�[
2�+����������� (12)

Claim: Obviously, a computer with a higher average pro-
cessing rate should have a higher fraction of jobs assigned
to it. Under the assumption on the ordering of computers
( � � ! Iý� � ; IÏ������Iþ� � & ), we have the following order on
load fractions: ,O�9!ÿI.,�� ;VIý������I.,�� & . This implies that
may exist situations in which the slow computers have no
jobs assigned to them. This means that there exist an index�<� ( ��0R�<�Q0R� ) so that ,�� �L
'/ for �N
C�9����������� � .

From (10) and based on the above claims we can obtain
by summation the following equation:� a | !F �(�"! u � � � 
�� èð7 � a | !F �-�L! � � � B � a | !F �(�"! , � � � � = (13)

Using (11) the above equation becomes:

� èí
 � � a | !�-�L! u � � �� � a | !�-�L! � � � B � � a | !�(�"! , � � � � 0 �u � � a� (14)

This is equivalent to:u � � a� � aF �(�"! u � � � 0 � aF �-�L! � � � BG� � (15)

Thus, the index � � is the minimum index that satisfies the
above equation and the result follows. �
Proof of Theorem 2.2:
The while loop in step 3 finds the minimum index �<� for

which u � � � a 0 � v aß xzy+{ a ß | r a��v aß xzy } { a ß . In the same loop, ,�� � are

set to zero for ��
n�<������������� . In step 4, ,O� � is set equal to!r a s � � � B�u � � � � v aw(x�y { a w | r a��v aw(x�y } { a w ~ for ��
Ð�+���������<� � B�� . These

are in accordance with Theorem 2.1. Thus, the allocation
( , �9! ���������9, � & ) computed by the OPTIMAL algorithm is the
optimal solution of hTi�j . �
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