
Algorithmic Mechanism Design for Load Balancing in Distributed Systems �

Daniel Grosu and Anthony T. Chronopoulos
Department of Computer Science,

University of Texas at San Antonio,
6900 N. Loop 1604 West, San Antonio, TX 78249

fdgrosu, atcg@cs.utsa.edu

Abstract

Computational Grids are large scale computing system
composed of geographically distributed resources (comput-
ers, storage etc.) owned by self interested agents or organi-
zations. These agents may manipulate the resource alloca-
tion algorithm in their own benefit and their selfish behav-
ior may lead to severe performance degradation and poor
efficiency. In this paper we investigate the problem of de-
signing protocols for resource allocation involving selfish
agents. Solving this kind of problems is the object of mech-
anism design theory. Using this theory we design a truthful
mechanism for solving the static load balancing problem in
heterogeneous distributed systems. We prove that using the
optimal allocation algorithm the output function admits a
truthful payment scheme satisfying voluntary participation.
We derive a protocol that implements our mechanism and
present experiments to show its effectiveness.

1. Introduction

In current distributed systems such as computational
grids, resources belong to different self interested agents or
organizations. These agents may manipulate the load allo-
cation algorithm in their own benefit and their selfish behav-
ior may lead to severe performance degradation and poor
efficiency. Solving such problems involving selfish agents
is the object of mechanism design theory (also called imple-
mentation theory)[10]. This theory helps design protocols
in which the agents are always forced to tell the truth and
follow the rules. Such mechanisms are called truthful or
strategy-proof.

Each participating agent has a privately known function

�This research was supported, in part, by research grants from: (1)
NASA NAG 2-1383 (1999-2001); (2) State of Texas Higher Education Co-
ordinating Board through the Texas Advanced Research/Advanced Tech-
nology Program ATP 003658-0442-1999. Some reviewers’ comments
helped enhance the quality of presentation.

called valuation which quantifies the agent benefit or loss.
The valuation depends on the outcome and is reported to
a centralized mechanism. The mechanism chooses an out-
come that maximizes a given objective function and makes
payments to the agents. The valuations and payments are
expressed in some common unit of currency. The payments
are designed and used to motivate the agents to report their
true valuations. Reporting the true valuations leads to an
optimal value for the objective function. The goal of each
agent is to maximize the sum of her valuation and payment.

In this paper we consider the mechanism design prob-
lem for load balancing in distributed systems. A general
formulation of the load balancing problem is as follows:
given a large number of jobs, find the allocation of jobs to
computers optimizing a given objective function (e.g. to-
tal execution time). Our goal is to design a mechanism
that uses the optimal load balancing algorithm. The optimal
algorithm belongs to the global approach in the classifica-
tion presented in [4]. To design our mechanism we use the
framework derived by Archer and Tardos in [1]. We assume
that each computer in the distributed system is characterized
by its processing rate and only computer i knows the true
value of its processing rate. Jobs arrive at the system with a
given arrival rate. The optimal algorithm finds the fraction
of load that is allocated to each computer such that the ex-
pected execution time is minimized. The cost incurred by
each computer is proportional to its utilization. The mecha-
nism will ask each agent (computer) to report its processing
rate and then compute the allocation using the optimal algo-
rithm. After computing the allocation the mechanism hands
payments to computers. Each computer goal is to chose
a processing rate to report to the mechanism such that its
profit is maximized. The profit is the difference between
the payment handed by the mechanism and the true cost
of processing the allocated jobs. The payments handed by
the mechanism must motivate the computers to report their
true value such that the expected response time of the entire
system is minimized. Thus we need to design a payment
function that guarantees this property.

Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’02)
0-7695-1745-5/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:08:54 UTC from IEEE Xplore. Restrictions apply.

Related work
Recently, with the emergence of the Internet as a global
platform for computation and communication, the need for
efficient protocols that deals with self-interested agents has
increased. This motivated the use of mechanism design
theory in different settings such as market based protocols
for resource allocation in computational grids [3, 13], mar-
ket based protocols for scheduling [12], congestion control
[5] and mechanisms for trading CPU time [8]. For an in-
troduction to general mechanism design theory see [10].
The most important result in mechanism design theory is
the Vickrey-Clarke-Groves (VCG) mechanism [10]. The
VCG mechanism allows arbitrary form for valuations and
its applicability is restricted to utilitarian objective functions
(i.e. the objective function is the sum of agents’ valuations).
Nisan and Ronen [9] studied the mechanism design problem
for several standard problems in computer science. Using
the VCG mechanism they solved the shortest path problem
in a graph where each edge belongs to a different agent.
For scheduling on unrelated machines they designed an n-
approximation truthful mechanism, where n is the number
of agents. Archer and Tardos [1] applied mechanism de-
sign theory to several combinatorial optimization problems
where agent’s secret data is represented by a single real val-
ued parameter. They provided a method to design mech-
anisms for general objective functions and restricted form
for valuations. For scheduling related parallel machines
they gave a 3-approximation algorithm and used it to de-
sign a truthful mechanism. They also gave truthful mech-
anisms for maximum flow, scheduling related machines to
minimize the sum of completion times, optimizing an affine
function and special cases of uncapacitated facility location.
Our results
We design a truthful mechanism for solving the static load
balancing problem in distributed systems. We prove that
using the optimal allocation algorithm the output function
admits a truthful payment scheme satisfying voluntary par-
ticipation. We derive a protocol that implements our mech-
anism and present experiments to show its effectiveness.
Organization
The paper is structured as follows. In Section 2 we present
the mechanism design terminology. In Section 3 we present
our distributed system model. In Section 4 we design a
truthful mechanism for load balancing in distributed sys-
tems. In Section 5 the effectiveness of our load balancing
mechanism is investigated. In Section 6 we draw conclu-
sions and present future directions.

2. Mechanism Design Concepts

In this section we introduce some important mechanism
design concepts. We limit our description to mechanism
design problems for one parameter agents. In this type of

mechanism design problems each agent has some private
data represented by a single real valued parameter [1]. In
the following we define such problem.

Definition 2.1 (Mechanism design problem) A mecha-
nism design problem for one parameter agents is charac-
terized by:

(i) A finite set � of allowed outputs. The output is a vec-
tor �(b) = (�1(b); �2(b); : : : ; �n(b)), �(b) 2 �, computed
according to the agents’ bids, b = (b1; b2; : : : ; bn). Here, bi
is the value (bid) reported by agent i to the mechanism.

(ii) Each agent i, (i = 1; : : : ; n), has a privately known
parameter ti called her true value. The cost incurred by
each agent depends on the output and on her true value and
is denoted as costi.

(iii) Each agent goal is to maximize her profit. The profit
of agent i is profiti = Pi(b) � costi(b), where Pi is the
payment handed by the mechanism to agent i.

(iv) The goal of the mechanism is to select an output �
that optimizes a given cost function g(b; �). 2

We assume that the cost functions have the following par-
ticular form: costi(ti; �) = ti�i, i.e. ti represents the cost
per unit load.

Definition 2.2 (Mechanism) A mechanism is character-
ized by two functions:

(i) The output function �(b) =
(�1(b); �2(b); : : : ; �n(b)). This function has as input
the vector of agents’ bids b = (b1; b2; : : : ; bn) and returns
an output � 2 �.

(ii) The payment function P (b; �) that gives the payment
handed by the mechanism to each agent. 2

Notation: In the rest of the paper we denote by b�i the
vector of bids not including the bid of agent i. The vector b
is represented as (b�i; bi).

Definition 2.3 (Truthful mechanism) A mechanism is
called truthful if for every agent i of type ti and for every
bids b�i of the other agents, the agent’s profit is maximized
when she declares her real type ti. (i.e. truth-telling is a
dominant strategy). 2

Definition 2.4 (Truthful payment scheme) We say that an
output function admits a truthful payment scheme if there
exists a payment function P such that the mechanism is
truthful. 2

A desirable property of a mechanism is that the profit of
a truthful agent is always non-negative. The agents hope for
a profit by participating in the mechanism.

Definition 2.5 (Voluntary participation mechanism) We
say that a mechanism satisfies the voluntary participation
condition if profiti(ti; (b�i; ti)) � 0 for every agent i, true
values ti, and other agents’ bids b�i (i.e. truthful agents
never incurs a loss). 2

Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’02)
0-7695-1745-5/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:08:54 UTC from IEEE Xplore. Restrictions apply.

3. Distributed System Model

We consider a distributed system that consists of n het-
erogeneous computers connected by a communication net-
work. Computers have the same processing capabilities in
the sense that a job may be processed from start to finish
at any computer in the system. We assume that each com-
puter is modeled as an M/M/1 queueing system (i.e. Pois-
son arrivals and exponentially distributed processing times)
[6] and is characterized by its average processing rate �i,
i = 1; : : : ; n. Jobs are generated by users and arrive at the
system according to a time invariant Poisson process with
average rate �. We call � the total job arrival rate in the
system. The total job arrival rate must be less than the ag-
gregate processing rate of the system (i.e. � <

Pn

i=1 �i).
The system has to decide on how to distribute jobs to com-
puters such that it will operate optimally. We assume that
the decision to distribute jobs to computers is static i.e. it
does not depend on the current state of the system. Thus
we need to find the load �i that is assigned to computer i
(i = 1; : : : ; n) such that the expected response time of all
jobs is minimized. The expected response time at computer
i is given by:

Fi(�i) =
1

�i � �i
(1)

Thus the overall expected response time is given by:

D(�) =
1

�

nX
i=1

�iFi(�i) =
1

�

nX
i=1

�i
�i � �i

(2)

where � = (�1; �2; : : : ; �n) is the vector of loads assigned
to computers.

We assume that computers are agents and each of them
has a true value ti represented by the inverse of its pro-
cessing rate, ti = 1

�i
. Only computer i knows ti. The

mechanism will ask each computer i to report its value bi
(the inverse of its processing rate). The computers may
not report the true value. After all the computers report
their values the mechanism computes an output function
�(b) = (�1(b); �2(b); : : : ; �n(b)) according to the agents’
bids such that the overall expected execution time is min-
imized. The mechanism also hands a payment Pi(b) to
each computer. All computers know the algorithm used to
compute the output function (allocation) and the payment
scheme.

Each computer incurs some cost: costi = ti�i(b). The
cost is equivalent to computer utilization. The greater the
utilization, the greater the cost. We assume each computer
wants to choose its strategy (what value bi to report) such
that its profit is maximized. The profit for each computer is
defined as the payment received from the mechanism mi-
nus the cost incurred in running the jobs allocated to it:
profiti = Pi(b)� costi(b).

Our goal is to design a truthful mechanism that min-
imizes the overall expected response time of the system.
This involves finding an allocation algorithm and a payment
scheme that minimizes the overall expected response time
according to the computer bids bi and motivates all the com-
puters to report their true values ti.

4. Designing the Mechanism

To design our load balancing mechanism we use the
framework proposed by Archer and Tardos in [1]. They pro-
vided a method to design mechanisms where each agent’s
true data is represented by a single real valued parameter.
According to this method, to obtain a truthful mechanism
we must find an output function satisfying two conditions:
(a) it minimizesD(�) and, (b) it is decreasing in the bids. In
addition, we want a mechanism satisfying voluntary partic-
ipation. To guarantee this property we must find a payment
function satisfying voluntary participation.

First we are interested in finding an output function �(b)
that minimizes the expected execution time over all jobs,
D(�), and produces a feasible allocation. Then we will
show that this output function is decreasing in the bids.

Definition 4.1 (Feasible allocation) A feasible allocation
� = (�1; �2; : : : ; �n) is a load allocation that satisfies the
following conditions:

(i) Positivity: �i � 0, i = 1; : : : ; n;
(ii) Conservation:

Pn

i=1 �i = �;
(iii) Stability: �i < �i, i = 1; : : : ; n. 2

The optimal load allocation can be obtained solving the
following nonlinear optimization problem: min�D(�) sub-
ject to the constraints defined by the conditions i)-iii).

Thus, obtaining the solution to this problem involves
minimizing the convex function D(�) over a convex fea-
sible region defined by the conditions i)-iii). In this case the
first order Kuhn-Tucker conditions are necessary and suffi-
cient for optimality [7].

Let � � 0, �i � 0, i = 1; : : : ; n denote
the Lagrange multipliers [7]. The Lagrangian function
is: L(�1; �2; : : : ; �n; �; �1; : : : ; �n) =

Pn

i=1 �iFi(�1) �
�(
Pn

i=1 �i ��)�
Pn

i=1 �i�i.
The Kuhn-Tucker conditions imply that �i, i = 1; : : : ; n

is the optimal solution to our problem if and only if there
exists � � 0, �i � 0, i = 1; : : : ; n such that:

@L

@�i
= 0

@L

@�
= 0 (3)

�i�i = 0; �i � 0; �i � 0; i = 1; : : : ; n (4)

These conditions become:

� = �iF
0

i (�i) + Fi(�i); if �i > 0 1 � i � n (5)

Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’02)
0-7695-1745-5/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:08:54 UTC from IEEE Xplore. Restrictions apply.

� � �iF
0

i (�i) + Fi(�i); if �i = 0 1 � i � n (6)
nX
i=1

�i = �; �i � 0; i = 1; : : : ; n (7)

By solving these conditions one can obtain the optimal
algorithm but this is not our focus in this paper. Algorithms
for this kind of optimization problem were proposed in the
past [11]. For the clarity of presentation we describe a vari-
ant of the algorithm in [11] using our notations. Our deriva-
tion of this algorithm is different from their approach and
was partially presented above because some of the equa-
tions will be used to prove our results in Theorem 4.1 and
Theorem 4.2 below. We now present the algorithm.
OPTIM algorithm:

Input: Bids submitted by computers: b1, b2, : : : bn;
Total arrival rate: �

Output: Load allocation: �1, �2, : : : �n;
1. Sort the computers in increasing order of

their bids (b1 � b2 � : : : � bn);

2. c
P

n

i=1
1=bi��P

n

i=1

p
1=bi

;

3. while (c >
p
1=bn) do

�n 0; n n� 1;

c
P

n

i=1
1=bi��P

n

i=1

p
1=bi

;

4. for i = 1; : : : ; n do
�i 1=bi � c

p
1=bi;

This algorithm computes an allocation �(b) =
(�1(b); �2(b); : : : ; �n(b)) that provides the overall opti-
mum for the expected execution time. This optimum is
obtained according to the bids reported by computers. If
some of the computers declare values different than their
true values (ti = 1=�i), this optimum may not be the same
as the ‘true optimum’ obtained when all the computers de-
clare their true values. So if some of the computers lie we
expect worse performance (i.e. higher overall expected ex-
ecution time).

We found an output function (given by OPTIM) that
minimizes D(�). Now we must prove that this output func-
tion admits a truthful mechanism. In the following we state
two theorems: (i) that the output function is decreasing in
the bids (thus guaranteeing truthfulness) and, (ii) that our
mechanism admits a truthful payment scheme satisfying
voluntary participation. Due to space limitation the proofs
of these two theorems are not presented here. They will be
presented in the full version of the paper.

Definition 4.2 (Decreasing output function) An output
function �(b) = (�1(b); �2(b); : : : ; �n(b)) is decreasing if
each �i(b�i; bi) is a decreasing function of bi for all i and
b�i. 2

Theorem 4.1 The output function �(b) computed by the
optimal algorithm is decreasing. 2

Theorem 4.2 The output function �(b) computed by the
optimal algorithm admits a truthful payment scheme sat-
isfying voluntary participation and the payment for each
computer i (i = 1; 2; : : : ; n) is given by:

Pi(b�i; bi) = bi�i(b�i; bi) +

Z
1

bi

�i(b�i; x)dx (8)

2

Remark: Analogously to [1] we obtained Pi(b�i; bi) for
our mechanism. The first term, bi�i(b�i; bi), of the pay-
ment function in equation (8) compensates the cost in-
curred by computer i. The second term,

R
1

bi
�i(b�i; x)dx

represents the expected profit of computer i. If com-
puter i bids its true value, ti, then its profit is:
profiti(b�i; ti) = ti�i(b�i; ti) +

R
1

ti
�i(b�i; x)dx �

ti�i(b�i; ti) =
R
1

ti
�i(b�i; x)dx.

Because the optimal algorithm assumes a central dis-
patcher, the mechanism will be implemented in a central-
ized way as part of the dispatcher code. We assume that
the dispatcher is run on one of the computers and is able to
communicate with all the other computers in the distributed
system.

In the following we present the protocol that implements
our load balancing mechanism (LBM). This protocol has
two phases: bidding and completion.

Protocol LBM:

Phase I: Bidding

1. The dispatcher sends a request for bids message (Re-
qBid) to each computer in the system.

2. When a computer receives a ReqBid it replies with its
bid bi to the dispatcher.

Phase II: Completion

1. After the dispatcher collects all the bids it does the fol-
lowing:

1.1. Computes the allocation using OPTIM algorithm.
1.2. Computes the payments Pi for each computer us-

ing equation (8).
1.3. Sends Pi to each computer i.

2. Each computer receives its payment and evaluates its
profit.

This protocol is executed periodically or when there is a
change in the total job arrival rate. During two executions of
this protocol the jobs will be allocated to computers by the
dispatcher according to the allocation computed by OPTIM.
Computers will receive the maximum profit only when they
report the true value.

5. Experimental results

To study the effectiveness of our truthful mechanism we
simulated a heterogeneous system consisting of 16 com-
puters with four different processing rates. In Table 1 we

Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’02)
0-7695-1745-5/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:08:54 UTC from IEEE Xplore. Restrictions apply.

present the system configuration. The first row contains the
relative processing rates of each of the four computer types.
Here, the relative processing rate for computerCi is defined
as the ratio of the processing rate ofCi to the processing rate
of the slowest computer in the system. The second row con-
tains the number of computers in the system corresponding
to each computer type. The last row shows the processing
rate of each computer type in the system.

Relative processing rate 1 2 5 10
Number of computers 6 5 3 2
Processing rate (jobs/sec) 0.013 0.026 0.065 0.13

Table 1. System configuration.

0

10

20

30

40

50

60

70

80

10 20 30 40 50 60 70 80 90

P
er

fo
rm

an
ce

 d
eg

ra
da

tio
n

(%
)

System utilization (%)

OPTIM(high)
OPTIM(low)

Figure 1. Performance degradation vs. sys-
tem utilization.

We study the performance degradation due to false bids
declarations. We define performance degradation(PD) as
follows: PD = ((DF �DT)=DT)100%, where DF is the
response time of the system when one or more computers
report false values; and DT is the response time of the sys-
tem when all computers report their true value. PD quanti-
fies the increase in the execution time due to false bidding.
We expect an increase in the response time and PD when
one or more computers lie.

In our experiments we consider that the fastest computer
C1 declares false bids. C1 has t1 = 1=�1 = 7:69 as its true
value. In Figure 1 we present the degradation in expected
response time of the system for different values of system
utilization (ranging from 10% to 90%) and two types of bid-
ding: overbidding and underbidding. System utilization (�)
is defined as the ratio of total arrival rate to aggregate pro-
cessing rate of the system: � = �P

n

i=1
�i

. In the first ex-

periment, C1 bids 7% lower than the true value. In this
case the performance degradation is around 2% for low and
medium system utilization, increasing drastically (around

Figure 2. Profit for each computer (medium
system load)

Figure 3. Payment structure for each com-
puter (C1 bids higher)

300%) for high system utilization. This increase is due to
computer C1 overloading. The overloading occurs because
C1 bids lower, that means it reports a higher value for its
processing rate. The algorithm will allocate more jobs to
C1 increasing its response time. This increase is reflected
in the expected response time of the system. In the sec-
ond experiment, C1 bids 33% higher than the true value. In
this case the performance degradation is about 6% at low
system utilization, about 15% at medium system utilization
and more than 80% at high system utilization. It can be ob-
served that small deviations from the true value of only one
computer may lead to large values of performance degrada-
tion. If we consider that more than one computer does not
report its true value then we expect very poor performance.
This justifies the need for a mechanism that will force the
computers to declare their true values.

In Figure 2 we present the profit for each computer at
medium system loads (� = 50%). It can be observed that
the profit at C1 is maximum if it bids the true value, 3%
lower if it bids higher and 1% lower if it bids lower. The

Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’02)
0-7695-1745-5/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:08:54 UTC from IEEE Xplore. Restrictions apply.

Figure 4. Payment structure for each com-
puter (C1 bids lower)

mechanism penalizes C1 if it does not report the true value.
When C1 bids lower the other computer’s profits are lower
because their payments decrease. Computers C11 to C16
are not utilized when C1 underbids and when it reports the
true value, thus they will not gain anything (profiti = 0,
i = 11; 12; : : : ; 16). These computers will be utilized in the
case when C1 overbids, getting a small profit. When C1
overbids the profit for all the computers except C1 is higher
than in the case whenC1 bids the true value. This is because
the payments increase for these computers.

An important issue is the frugality of our mechanism.
We say that a mechanism is frugal if the mechanism’s pay-
ments are small by some measure [2]. This property gives
us an idea of how efficient a mechanism is. The mechanism
is interested in keeping its payments as small as possible.
Our mechanism must preserve voluntary participation, so
the lower bound on its payments is the total cost incurred
by the computers. In Figure 3 and 4 we present the cost and
profit as fractions of the payment received by each computer
at medium loads. It can be observed that the cost incurred
by C1 when it bids higher is about 25% of the payment. In
the case when C1 bids lower its cost is about 35% of the
payment. For the other computers the cost is between 50%
and 90% when C1 bids higher and between 53% and 100%
when C1 bids lower. For the distributed system considered
in these experiments (medium loads) the highest payment
given to a computer is about 3 times its cost.

6. Conclusion

In this paper we investigated the problem of designing
protocols for resource allocation involving selfish agents.
Solving this kind of problems is the object of mechanism
design theory. Using this theory we designed a truthful
mechanism for solving the load balancing problem in het-
erogeneous distributed systems. We proved that using the

optimal allocation algorithm the output function admits a
truthful payment scheme satisfying voluntary participation.
We derived a protocol that implements our mechanism and
presented experiments to show its effectiveness. Future
work will address the implementation of our load balanc-
ing mechanism in a real distributed system as well as the
design of a distributed load balancing mechanism.

References

[1] A. Archer and E. Tardos. Truthful mechanism for one-
parameter agents. In Proc. of the 42nd IEEE Symp. on Foun-
dations of Computer Science, pages 482–491, October 2001.

[2] A. Archer and E. Tardos. Frugal path mechanisms. In
Proc. of the 13th Annual ACM-SIAM Symp. on Discrete Al-
gorithms, pages 991–999, January 2002.

[3] R. Buyya, D. Abramson, and J. Giddy. A case for econ-
omy grid architecture for service-oriented grid computing.
In Proc. of the 10th IEEE Heterogeneous Computing Work-
shop, April 2001.

[4] D. Grosu, A. T. Chronopoulos, and M. Y. Leung. Load bal-
ancing in distributed systems: An approach using coopera-
tive games. In Proc. of the 16th International Parallel and
Distributed Processing Symposium, April 2002.

[5] R. Karp, E. Koutsoupias, C. H. Papadimitriou, and
S. Shenker. Optimization problems in congestion control. In
Proc. of the 41st IEEE Symp. on Foundations of Computer
Science, pages 66–74, November 2000.

[6] L. Kleinrock. Queueing Systems - Volume 1: Theory. John
Wiley and Sons, 1975.

[7] D. G. Luenberger. Linear and Nonlinear Programming.
Addison-Wesley, Reading, Mass., 1984.

[8] N. Nisan, S. London, O. Regev, and N. Camiel. Globally dis-
tributed computation over Internet - The POPCORN project.
In Proc. of the 18th IEEE International Conference on Dis-
tributed Computing Systems, pages 592–601, May 1998.

[9] N. Nisan and A. Ronen. Algorithmic mechanism design. In
Proc. of the 31rd Annual ACM Symp. on Theory of Comput-
ing (STOC’ 1999), pages 129–140, May 1999.

[10] M. Osborne and A. Rubinstein. A Course in Game Theory.
MIT Press, Cambridge, Mass., 1994.

[11] X. Tang and S. T. Chanson. Optimizing static job scheduling
in a network of heterogeneous computers. In Proc. of the
Intl. Conf. on Parallel Processing, pages 373–382, August
2000.

[12] W. E. Walsh, M. P. Wellman, P. R. Wurman, and J. K.
MacKie-Mason. Some economics of market-based dis-
tributed scheduling. In Proc. of the 18th IEEE International
Conference on Distributed Computing Systems, pages 612–
621, May 1998.

[13] R. Wolski, J. S. Plank, T. Bryan, and J. Brevik. G-commerce:
market formulations controlling resource allocation on the
computational grid. In Proc. of the 15th IEEE International
Parallel and Distributed Processing Symposium, April 2001.

Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’02)
0-7695-1745-5/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:08:54 UTC from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

