
Cooperative Load Balancing for a Network of Heterogeneous
Computers

Satish Penmatsa and Anthony T. Chronopoulos

The University of Texas at San Antonio
Dept. of Computer Science

6900 N Loop, 1604 W, San Antonio, Texas 78249, USA
{spenmats, atc}Acs.utsa.edu

Abstract

In this paper we present a game theoretic approach to
solve the static load balancing problem in a distributed
system which consists of heterogeneous computers con-
nected by a single channel communication network. We
use a cooperative game to model the load balancing
problem. Our solution is based on the Nash Bargaining
Solution (NBS) which provides a Pareto optimal solu-
tion for the distributed system and is also a fair solu-
tion. An algorithm for computing the NBS is derived
for the proposed cooperative load balancing game. Our
scheme is compared with that of other existing schemes
under simulations with various system loads and con-
figurations. We show that the solution of our scheme
is near optimal and is superior to the other schemes in
terms of fairness.

1. Introduct;ion

In this paper, we consider the static load balancing
problem for single class jobs in a distributed computer
system that consists of heterogeneous host computers
(nodes) interconnected by a single channel communi-
cation network. Load balancing is achieved by trans-
ferring some jobs from nodes that are heavily loaded to
those that are idle or lightly loaded. A communication
delay will be incurred as a result of sending a job to a
different computer for processing.

The load balancing problem is formulated as a co-
operative game among the computers and the commu-
nication subsystem and game theory offers a suitable
modeling framework [21. The several decision makers
(e.g. computers and the communication subsystem) co-
operate in making decisions such that each of them will

operate at its optimum. Based on the Nash Bargaining
Solution (NBS) which provides a Pareto optimal and
fair solution, we provide an algorithm for computing
the NBS for our cooperative load balancing game.

Past work on load balancing jobs considered opti-
mization of the entire system expected response time
[17, 7, 9, 16, 6] or applied game theory without taking
into account the communication subsystem [4, 3, 14].

The main goal of our load balancing scheme is to
provide fairness to all the jobs, i.e. all the jobs should
experience the same expected response time indepen-
dent of the allocated computer. The fairness of al-
location is an important factor in modern distributed
systems and our scheme will be suitable for systems
in which the fair treatment of the users' jobs is as im-
portant as other performance characteristics. We show
that our cooperative load balancing scheme not only
provides fairness but also provides a Pareto optimal
operating point for the entire system. We make sim-
ulations with various system loads and configurations
to evaluate the performance of our cooperative load
balancing scheme.

2. Cooperative Game Theory Concepts

In this section, we summarize some concepts and
results from cooperative game theory which are used
in the sequel.

Definition 2.1 (A cooperat'ive game) A coopera-
tive game consists of:

* N players;

* A nonempty, closed and convex setX C RN which
is the set of strategies of the N players.

1-4244-0054-6/06/$20O00 ©2006 IEEE

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:22:06 UTC from IEEE Xplore. Restrictions apply.

* For each player i, i - 1,2,. ..N, an objective
function fi. Each fi is a function from X to R
and it is bounded below. The goal is to minimize
simultaneously all fi(X).

i For each player i, i = 1, 2,.. ., N, a minimal value
of fi, denoted u?, required by player i without
any cooperation to enter the game. The vector
u° = (uO, u, .. e u) is called the initial agree-
ment point.

We are interested in finding solutions for the coop-
erative game defined above that are Pareto optimal.

Definition 2.2 (Pareto optimality) [11] The point
u E U is said to be Pareto optimal if for each v E U,
v < u then v = u. Here U, U C RN is the set of
achievable performances [18].
Definition 2.3 (The Nash Bargaining Solution
(NBS))[12, 13, 15] A mapping S : G -X RN is said to
be a NBS if:

i) S(U,U°) EUO;
ii) S(U, un) is Pareto optimal;
and satisfies the fairness axioms [13]. Here G denotes
the set of achievable performances with respect to the
initial agreement point [18].
Definition 2.4 (Bargaining point) [151 u* is a
(Nash) bargaining point if it is given by S(U, uo) and
f-'(u*) is called the set of (Nash) bargaining solu-
tions.

The following characterization of the Nash bargain-
ing point forms the basis for the results in the sequel.

Theorem 2.1 (Nash bargaining point character-
ization) [15, 18] Consider the assumptions from the
above definitions and references therein. Let J denote
the set of players who are able to achieve a performance
strictly superior to their initial performance and let Xo
denote the set of strategies that enable the players to
achieve at least their initial performances. Let the vec-
tor function {ff}, j E J be one-to-one on Xo. Then,
there exists a unique bargaining point u* and the set
of the bargaining solutions f-1(u*) is determined by
solving the following optimization problems:

(Pi) mi f(f (x)-UO) xEX0 (1)
x

(ri): min . (fj (x)-uo) x (X0 (2)
JC

Then, (Pi) and (Pi) are equivalent. (Pf) is a convex
optimization problem and has a unique solution. The
unique solution of (PJ) is the bargaining solution. c:

3. System Model

We consider a distributed system model with n
nodes (or computers) connected by a single channel
communication network as shown in Figure 1. The
computers and the communication network are as-
sumed to be product-form queuing network models.

Communication Network

Figure 1. Distributed System Model

Terminology and Assumptions:
(i) Xi denotes the external job arrival rate at node

i. The total external job arrival rate of the system is
denoted by b (bj. ii) The job processing rate
(load) at node i is denoted by ,i. (iii) xij denotes the
job flow rate from node i to node j. (iv) A job arriving
at node i may be either processed at node i or trans-
ferred to another node j through the communication
network. The decision of transferring a job does not
depend on the state of the system and hence is static
in nature. (v) A job transferred from node i to node j
receives its service at node j and is not transferred to
other nodes. If a node i sends (receives) jobs to (from)
node j, node j does not send (receive) jobs to (from)
node i.

(vi) The response time of a job in a system as above
consists of a node delay (queuing and processing de-
lays) at the processing node and also some possible
communication delay incurred due to a job transfer.
We denote the mean node delay or the expected re-
sponse time of a job at node i by Di(/i). Modeling
each node as an M/M//1 queuing system gives [8, 17]:

1Dj(t _ X, t _ 1,. ..,n.(3
Ili-Pi

where pti is the processing (service) rate of computer i.
(vii) We assume that the expected communication

delay from node i to node j is independent of the
source-destination pair (i,j) but may depend on the
total traffic through the network denoted by A where
A = 4>1 J>1 xij. We denote the mean communi-
cation delay for a job by G(A). Modeling the commu-
nication network as an M/M/1 queuing system gives

(3)

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:22:06 UTC from IEEE Xplore. Restrictions apply.

_ tG(A) ltA At (4)
and the objective function for the communication sub-
system can be expressed as:

where t is the mean communication time for sending
and receiving a job. Note that Di(Ci) and G(A) are
increasing positive functions.

(viii) we classify the nodes in the following way as
in [17]:

* Sink (S): only receives jobs from other nodes but
it does not send out any jobs.

* Idle source (Rd): does not process any jobs (i -
0) and it sends all the jobs to other nodes. It does
not receive any jobs from other nodes.

* Active source (Ra): processes some of the jobs
that arrive and it sends the remaining jobs to other
nodes. But, it does not receive any jobs from other
nodes.

* Neutral (N): processes jobs locally without send-
ing or receiving jobs.

The network traffic A can be expressed in terms of
the variable /i as

(5)
1n

A = ...Lloi -N2=
(ix) We define the following functions:

a 1
di(i)= lnD-[Di() - -

g(A) - a_ tnG(A) t
OAln()(1 -tA)

d7'(x) - { o - if x> I

if x. 1
-ai

4. Cooperative Load Balancing

In this section, we formulate the load balanc
problem as a cooperative game among the comput
and the communication network. We consider an n
player game where the n computers try to minirr
their expected response time Di 3p) and the (nA+ 1
player, the communication subsystem, tries to mn
mize the expected communication delay G(A). So,
objective function for each computer i, i 1,... , n
be expressed as:

(6)

(7)

f+I (X) - G(A)

where X = [p', .-7l, 7, A] is the set of strategies of
the n + 1 players.

Definition 4.1 (The cooperative load balancing
game) The cooperative load balancing game consists
of:

* n computers and the communication subsystem as
players;

* The set of strategies, X, is defined by the following
constraints:

Pi < pj i =1)... ,n

i} n

Eat =J:i =@,
i-=1 i=-l

di > O, i=l,.=.,n

* For each computer i, i = 1,...,n, the objec-
tive function fi(X) = Di(Qi); for the communica-
tion subsystem, the objective function f,+i (X) =
G(A); XN [r', ,-i,n,,A]T. The goal is to mini-
mize simultaneously all fi (X), i 1, . .. , n + 1.

* For each player i, i 1, . .. ,n + 1, the initial per-
formance u0 fi(XN), where X° is a zero vector
of length n + 1.

Remark 4.1 In the above definition, we can assume
that 1j < jii to satisfy the compactness requirement for

(8) X where ji -/ie for a small e > 0. For simplicity
we ignore this in the sequel. We also assume that all
the players in the above game are able to achieve per-
formance strictly superior to their initial performance.

ing Theorem 4.1 For the cooperative load balancing game
ters defined above there is a unique bargaining point and
A- 1 the bargaining solutions are determined by solving the
Hi7JE following optimization problem:
L)th
ni-
the
can

7T

m* [G(A) Dj7af)]
i=1

subject to the constraints (11) - (13).

(9) Proof: In the Appendix.

[8, 17]:

(10)

(11)

(12)

(13)

(14)

fi(X) Di (.i)

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:22:06 UTC from IEEE Xplore. Restrictions apply.

Theorem 4.2 For the cooperative load balancing game
defined above the bargaining solution is determined by
solving the following optimization problem:

minLZ[lnDi(/li) +lnG(A)1
i=l

subject to the constraints (11) - (13).

Proof: In the Appendix.

(15)

(19)As (a) = [d- 1(a) Ji]
A(s(a)

Rd(a) - {ildi(O) > a + g(As(a))} (20)

Ra(a) - {Idi (0i) > a + g(As((a)) > di(0)} (21)
AR(a) = 1: oi + 1: [oi - d- (a + g(As(a)))]

iCd (a) i Ra (a4)

N(a) - {ila < di(q$) < a + g(As(a))}
(22)
(23)

Theorem 4.3 The solution to the optimization prob-
lem in Theorem 4.2 satisfies the relations

Thus, if an optimal a is given, the node partitions in
the optimal solution are characterized as

Rd =Rd(a),Ra = Ra(a),N = N(a),S = S(a) (24)

and
A - As - AR - As(a) - AR(a) (25)

di(di) > a + g(A), di = (i GRd) i

diA)= a + g(A), 0 < i < i (i eRa),
at+g9(A) >di(~i) >a, Ai = i (i cN),
di(Ai) =a, Ai>i (i cS),

(16)
subject to the total flow constraint,

Zd-'(a) + + E d7'(a +g(A)) = (17)
icS iCN iGR,

where a is the Lagrange multiplier.

Proof: In the Appendix. El

Since obtaining a closed form solution for a from eq.
(17) is not possible, we use a simple method such as a

binary search to solve eq. (17) iteratively for a as in
[73. Also, from Theorem 4.3, the following properties
which are true in the optimal solution can be derived
and their proofs are similar to those in [7].
Property 4.1

di(0) > a+g(A), iff i =0°,
di(0) > a +g(A) > di(0), if O </i < bi,

a < di(i) < a + g(A), iff i = i,
a > di(i) I iff i > Oi

Property 4.2 If is an optimal solution to the prob-
lem in Theorem 4.2 then we have

,Si = o, i c= Rd7
=d7-(av + g(A)), i Ra,

Sj oiXi t E N7
/j=d3-jqa$,ii S.

Property 4.3 If is an optimal solution to the prob-
lem in Theorem 4.2 then we have A-s- A, where

AS = ;ics[dT '(a) -i]l
ARt = ScRd i + ZcRa[~id-dy(a + g(As))]-

Based on the above properties, we can have the fol-

lowing definitions (eqs. (18) - (23)) for an arbitrary a

(>0).
(18)

We now present an algorithm (CCOOP) for obtain-
ing the Nash Bargaining Solution for our cooperative
load balancing game.
CCOOP algorithm:

Input:
Node processing rates: Itl, p.2*-, ;
Node job arrival rates: l1, 02, . ;
Mean communication time: t.

Output:
Load allocation to the nodes: ,B1,2, *--

1. Initialization:
/3i +- o; i c N; i = 1,..., n

2. Sort the computers such that
di (01) < d2(02) < ... dn(On)

If di(01) +g(0) > d12(n)1), STOP
(No load balancing is required)

3. Determine a (using a binary search):
a d=1(1)

while(1) do
As (a) - 0
AR(Ca) 00

2
Calculate: S(a), As(a), Rd(a), Ra(a),
and AR(a) (eqs. (18) - (22)) in the
order given for i
If (I As(a) - AR(a) < e) EXIT
If (As(a) > AR (a))

b+- a
else
a eoa

4. Determine the loads on the computers:
,i 0, for i C Rd(a)

/1 v- dyl'(a + g(A)), for i c Ra(a)
- d- '(a), for i c S(a)iv ,S(a) fildi(oi) < al

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:22:06 UTC from IEEE Xplore. Restrictions apply.

pji v- ci, for i C N(ca) (eq. (23))

Remark 4.2 (i) In step 2, we STOP when the total
(node + communication) time for a job to be trans-
ferred from a more powerful to a less powerful node
exceeds the node time on the less powerful node, if the
network traffic equals 0. This means that a job will
run faster on the 'origin' node than if transferred to a
different node. (ii) The running time of this algorithm
is O(nlog n + n log 1/e), where e denotes the accept-
able tolerance used for computing ca in step 3 of the
algorithm. (iii) This algorithm must be run periodi-
cally when the system parameters change in order to
recompute a new load allocation.

5. Experimental Results

5.1. Simulation Environment

We developed a simulation platform to evaluate the
performance of our CCOOP scheme. The performance
metrics used in our simulations are the expected re-
sponse time and the fairness index. The fairness index
[5], is used to quantify the fairness of load balancing
schemes. We perform simulations to study the impact
of system utilization and heterogeneity on the perfor-
mance of the proposed scheme. We also implemented
the Overall Optimal Scheme (OPTIM) [7] and the Pro-
portional Scheme (PROP) [1] for comparison. In the
following we present and discuss the simulation results.

5.2. Performance Evaluation

Effect of System Uttilization. System utilization
(p) represents the amount of load on the system and
is defined as the ratio of the total arrival rate to the
aggregate processing rate of the system:

p. Z. . .

Table 1. System configuration
Relative processing rate 1 2 5 10
Number of computers 6 5 3 2
Processing rate (jobs/sec) 10 20 50 100

are given in Table 2. The mean communication time t
is assumed to be 0.001 sec.

Table 2. Job arrival fractions qj for each com-
puter

C..omputer 1-2 3-6 7-11 12-14 15-16
qi 0.01 0.02 0.04 0.1 0.2

In Figure 2, we present the expected response time
of the system for different values of system utilization
ranging from 10% to 90%. It can be seen that CCOOP
performs as well as OPTIM for p ranging from 10% to
40% and is better than PROP for p ranging from 50%
to 60%. CCOOP approaches PROP at high system
utilization.

Figure 2. System Utilization vs Expected Re-
sponse Time

(26)

We simulated a heterogeneous system consisting of
16 computers to study the effect of system utilization.
The system has computers with four different process-
ing rates. The system configuration is shown in Table
1.

For each experiment the total job arrival rate in the
system b is determined by the system utilization p and
the aggregate processing rate of the system. We choose
fixed values for the system utilization and determined
the total job arrival rate (. The job arrival rate for
each computer qij, i 17 ... , 16 is determined from the
total arrival rate as Oi qij:, where the fractions qi

In Figure 3, we present the fairness index for differ-
ent values of system utilization. The CCOOP scheme
has a fairness index of almost 1 for any system utiliza-
tion. The fairness index of OPTIM drops from 1 at
low load to 0.89 at high load and PROP maintains a
fairness index of 0.73 over the whole range of system
loads.

Effect of Heterogenleity. In this section, we study
the effect of heterogeneity on the performance of load
balancing schemes. One of the common measures of
heterogeneity is the speed skewness [161. We study the
effectiveness of load balancing schemes by varying the
speed skewness.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:22:06 UTC from IEEE Xplore. Restrictions apply.

Figure 3. System Utilization vs Fairness Index

We simulated a heterogeneous system of 16 comput-
ers (2 fast and 14 slow) to study the effect of hetero-
geneity. The slow computers have a relative processing
rate of 1 and the relative processing rate of the fast
computers is varied from 1 (homogeneous system) to
20 (highly heterogeneous system). The system utiliza-
tion was kept constant (p = 60%) and the mean com-
munication time t is assumed to be 0.001 sec. In Table
3, we present the processing rates (jui jobs/sec) of the
computers in the systems and the total arrival rates
(D) for some of the cases. Cl and C2 represent the
fast computers and C3 through C16 represent the slow
computers.

Figure 4 shows the effect of speed skewness on the
expected response time. For low skewness, CCOOP be-
haves like the PROP. But, as the skewness increases,
the performance of CCOOP approaches to that of OP-
TIM which means that in highly heterogeneous systems
CCOOP is very effective.

Fig 5 shows the effect of speed skewness on the fair-
ness index. It can be observed that CCOOP has a
fairness index of almost 1 over all range of speed skew-
ness. The fairness index of OPTIM and PROP falls
from 1 at low skewness to 0.92 and 0.88 respectively at
high skewness.

Table 3. System parameters
Speed skewness 1 4 8 12 16 20
pi of C1,C2 10 40 80 120 160 200

pof C3-C16 10 10 10 10 10 10
D (jobs/sec) 96 132 180 228 276 324

6. Conclus'ion

In this paper we presented a game theoretic ap-

proach to solve the static load balancing problem in

Figure 4. Heterogeneity vs Expected Re-
sponse Time

0.7
2 4 6 8 10 12 14 16 18 20

M.. Speed / Mi. Speed

Figure 5. Heterogeneity vs Fairness Index

distributed systems where the computers are connected
by a single channel communication network. We used
a cooperative game to model the load balancing prob-
lem. Our solution is based on the NBS which provides
a Pareto optimal and fair solution to the distributed
system. For the proposed cooperative load balanc-
ing game we derived an algorithm for computing the
NBS. The performance of our scheme is compared with
that of other existing schemes under simulations. We
showed that our scheme is not only fair but also is
comparable with that of OPTIM in terms of the mean
response time.

Acknowledgements

This work was supported in part by National Science
Foundation under grant CCR-0312323.

Some of the reviewers comments which helped im-
prove the quality of the paper are gracefully acknowl-
edged.

Append'ix
In this section we present the proofs of the results

used in the paper.
Proof of Theorem 4.1

M I A(W W)K W
l!"

9 - -7 1

8 -

3 E3 E3 E3 E3 E3 E3 E3 1
7 -

CCOOP
OPTIM

6
PROP E3

-110 '20 30 40 50 60 70 80 90

... ... -.-

CCOOP
OPTIM -

I PROP E3

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:22:06 UTC from IEEE Xplore. Restrictions apply.

The objective function for each player fi (X) (Defini-
tion 4.1) is convex and bounded below. The set of con-
straints is convex and compact. Thus, the conditions
in Theorem 2.1 are satisfied and the result follows. El

Proof of Theorem 4.2
The objective vector function {fj} j E 1,... , n + 1

(Definition 4.1) of the players is a one-to-one function
of X. Thus, applying Theorem 2.1 the result follows.El
Proof of Theorem 4.3

Let ui and vi denote the network traffic into node i
and the network traffic out of node i respectively. From
the balance of the total traffic in the network, we have

n 7n

S iu - Vi
i=1 i=1

The load flj on node i can then be written as

W3 - qi + ui -vi

(27)

(28)

Remark We ignore the constraint in eq. (33) since all
the associated multipliers will be zero if we introduce it
in the lagrangian.

The optimal solution satisfies the following Kuhn-
Tucker conditions:

DL
- di(Oi + ui- vi) - a + &j + hi - 0

=:L1,...,n (37)

DL 72
.. -di(q5 + ui -vi) + g(Lvi) + aDvi i=1

-6j+ioj,0 i=1,... n

nD 7

,,-,. Li + Evji =

(38)

(39)

and the network traffic A can be written as

A -5Vi
i=1

(= Eui)
i=1

(29)

Hence, the problem becomes:
72 72

min E(u, v) [ln Di Oi + ui -vi) + lnG(vi)]
i=1 i=1

(30)
subject to

qi + Ui-Vi>> ,-' +uO i-Vi) - 0,

ui.<O, ih.O,1 ..., (40)
Ui > °, 77jui = °, 77i < O, i =I, , n............. ? (41)
vi >, 4jivi O0, O, i = 1L,...,n (42)

In the following, we find an equivalent form of eqs.
(37) - (42) in terms of /l. By adding eqs. (37) and
(38) we have, -g(vi) =i + i , i = 1, ... , n. Since
g > 0, either 7li < 0 or Oi < 0 (or both). Hence, from
eqs. (41) and (42), for each i, either uiu 0 or vi 0O
(or both). We consider each case separately.

Pi = i +ui-vi >O, i =1, . .., n
72 72

-Eui + Vi -0
i=l i=l

dj = oi +ui - vi < ,pi, i = 1,.n

ui > O, i = 1 ...,

vi > O, i = n@.,

(31)

(32)

(33)
(34)
(35)

The objective function in eq. (30) is convex and the
constraints are all linear and they define a convex poly-
hedron. This imply that the first-order Kuhn-Tucker
conditions are necessary and sufficient for optimality
[101.

Let a, 6i < O, 77 < O,47i < 0 denote the Lagrange
multipliers [101 The Lagrangian is

L(u, v, a, d, , b-E(u, v) + a(-5uj + 5 v)
i=1 i=1

n n n

+ 5 6i(Oi + ui - vi) +5L iui +5 bivi (36)
*-1 -i1 i'1

* Case I: ui = 0,vi = 0: Then, we have f3j = i.
It follows from eq. (40) that ji 0O. Substituting
this into eqs. (37) and (38) gives

dj(G3) - a - hi > a (43)

dj(:3) =a±+g(A) + g<(a+ g() (44)
From the above, we have

a < dj(/i) < a +g(A) (45)

This case corresponds to neutral nodes.

* Case II: ui = 0,vi > 0: Then, from eq. (42), we
have)ij 0. We consider the following subcases.

- Case 11.1 vi < qO: Then, we have 0 <I3j <
qi. It follows from eq. (40) that Jj = 0.
Substituting this into eqs. (37) and (38) gives

(46)

(47)
This case corresponds to active sources.

di(i) - ag-(i a

di(i) =9(A) +a

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:22:06 UTC from IEEE Xplore. Restrictions apply.

- Case II.2 vi - qi: Then, we have /3 = 0 and
eqs. (37) and (38) gives

di (:i) =at- i -Ti > at (48)

di(Q3) = a +g(A) - i > a +g(A) (49)
Thus, we have

di(/i) > a + g(A) (50)

This case corresponds to idle sources.

Case III: ui > 0,vi - 0: Then, we have /i > q.
It follows from eqs. (40) and (41) that 6i - 0 and
T/i - 0. Substituting this into eq. (37), we have

di (/i) - a (51)

This case corresponds to sinks.

Eq. (39) may be written in terms of /i as

11

4) lffli = b(52)
i. 1

Using eqs. (47) and (51), the above equation becomes

dT'(a) + Z i + d'(a+g(A)) = (53)
iCS iCN iCR,.

which is the total flow constraint. cz

References

[1] Y. C. Chow and W. H. Kohler. Models for dynamic
load balancing in a heterogeneous multiple processor
system. IEEETrans. Comput., C-28(5):354-361, May
1979.

[2] D. Fudenberg and J. Tirole. Game Theory. The MIT
Press, 1994.

[3] D. Grosu and A. T. Chronopoulos. A game-theoretic
model and algorithm for load balancing in distributed
systems. In Proc. of the 16th IEEE International
Parallel and Distributed Processing Symposium, pages
146-153, Ft Lauderdale, Florida, USA, 2002.

[4] D. Grosu, A. T. Chronopoulos, and M. Y. Leung. Load
balancing in distributed systems: An approach using
cooperative games. In Proc. of the 16th IEEE Intl.
Parallel and Distributed Processing Symp., pages 52-
61, Ft Lauderdale, Florida, USA, April 2002.

[5] R. Jain. The Art of Computer Systems Perfor-
mance Analysis: Techniques for Experimental De-
sign, Measurement, Simulation, and Modeling. Wiley-
Interscience, 1991.

[6] H. Kameda, J. Li, C. Kim, and Y. Zhang. Opti-
mal Load Balancing in Distributed Computer Systems.
Springer Verlag, London, 1997.

[7] C. Kim and H. Kameda. An algorithm for optimal
static load balancing in distributed computer systems.
IEEE Trans. on Computers, 41(3):381-384, March
1992.

[8] L. Kleinrock. Queueing Systems - Volume 1: Theory.
John Wiley and Sons, 1975.

[9] J. Li and H. Kameda. A decomposition algorithm for
optimal static load balancing in tree hierarchy network
configuration. IEEE Trans. Parallel and Distributed
Systems, 5(5):540-548, May 1994.

[10] D. G. Luenberger. Linear and Nonlinear Program-
ming. Addison-Wesley, Reading, Mass., 1984.

[11] A. Mas-Collel, M. D. Whinston, and J. R. Green. Mi-
croeconomic Theory. Oxford Univ. Press, New York,
1995.

[12] A. Muthoo. Bargaining Theory with Applications.
Cambridge Univ. Press, Cambridge, U.K., 1999.

[13] J. Nash. The bargaining problem. Econometrica,
18(2):155-162, April 1950.

[14] T. Roughgarden. Stackelberg scheduling strategies.
In Proc. of the 33rd Annual ACM Symp. on Theory of
Computing, pages 104-113, July 2001.

[15] A. Stefanescu and M. V. Stefanescu. The arbitrated
solution for multi-objective convex programming. Rev.
Roum. Math. Pure Appl., 29:593-598, 1984.

[16] X. Tang and S. T. Chanson. Optimizing static job
scheduling in a network of heterogeneous computers.
In Proc. of the Intl. Conf. on Parallel Processing, pages
373-382, August 2000.

[17] A. N. Tantawi and D. Towsley. Optimal static load
balancing in distributed computer systems. Journal
of the ACM, 32(2):445-465, April 1985.

[18] H. Yaiche, R. R. Mazumdar, and C. Rosenberg. A
game theoretic framework for bandwidth allocation
and pricing in broadband networks. IEEE / ACM
Trans. Networking, 8(5):667-678, October 2000.

B3iographies

Satish Penmatsa received his B.Tech. in Com-
puter Science from Andhra University, India in 2000
and a M.Sc. in Computer Science from the Univer-
sity of Texas at San Antonio in 2003. He is currently
pursuing a Ph.D. degree in Computer Science at the
University of Texas at San Antonio. His research in-
terests include parallel and distributed systems, grid
computing and game theory. He is a student member
of the IEEE.
Anthony T. Chronopoulos received his Ph.D. at

the University of Illinois in Urbana-Champaign in 1987.
He is a senior member of IEEE (since 1997). He has
published 39 journal and 51 refereed conference pro-
ceedings publications in the areas of Distributed Sys-
tems, High Performance Computing and Applications.
He has been awarded 13 federal/state government re-
search grants. His work is cited in over 220 non-co-
authors' research articles.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:22:06 UTC from IEEE Xplore. Restrictions apply.

