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Abstract—Cloud computing infrastructure offers the com-
puting resources as a homogeneous collection of virtual ma-
chine instances by different hardware configurations, which is
transparent to end users. In fact, the computational powers
of these virtual machine instances are different and behaves
as a heterogeneous environment. Thus, scheduling and load
balancing for high performance computations become challeng-
ing on such systems. In this paper, we propose a hierarchical
distributed scheduling scheme suitable for parallel loops with
independent iterations on a cloud computing system. We
also evaluate various performance aspects associated with our
distributed scheduling scheme.

Keywords-Cloud computing, Heterogeneous, Scheduling,
Load balance.

I. INTRODUCTION

High performance scientific computing problems have
been solved using cluster computing, or computational Grids
in the past. Now, Cloud Computing is emerging as the
next generation of large-scale scientific computing plat-
forms, eliminating the need of expensive computing hard-
ware and providing user friendly concurrent programming
environments. Scientific applications usually contain large
loops, which are the largest source of parallelism for high
performance computing research. Some independent loop
iterations can be divided and allocated to different processors
or computers to reduce the total execution time on shared
memory or distributed memory computing systems. Previous
research [1] [2] [3] [4] proposed some loop scheduling
schemes to assign various chunks to each processor. And
loop scheduling can be categorized into static and dynamic.
Static scheduling schemes determine the task allocation to
the processors prior to the execution of the application.
Dynamic scheduling (or self-scheduling) is an automatic
loop scheduling method in which idle processors request
new loop iterations to be assigned to them during run
time (the execution of the application). An algorithm for
the Feedback-Guided Dynamic Loop Scheduling (FGDLS)
to schedule a nested serial/parallel loop is proposed in
[5]. An adaptive chunk self-scheduling scheme is proposed
(in [6]) to reduce the scheduling overhead. In [7] [8],
the authors have proposed new improved self-scheduling
schemes named NGSS and ANGSS. A two-phase scheme is

proposed to solve parallel regular loop scheduling problem
in heterogeneous grid computing environments in [9]. A
version of the FSS algorithm is proposed and considered for
implementation in virtual machine scheduling in cross-cloud
environment [10]. Some results [11] also focus on loops
with dependencies. Recent research results [12] [13] have
been reported for designing loop self-scheduling methods
for grid. In [14] [15] [16], the heterogeneity of different
cluster systems was considered, in order to get better load
balancing.

Presently, cloud computing platforms are growing in
popularity. It provides scalable, flexible, reliable and on-
demand computing and storage resources over a network.
There are some commercial cloud providers, such as Ama-
zon EC2, Microsoft Azure, Salesforce Service Cloud and
Google Cloud. Some open source cloud projects for re-
search and development also exist, for example, OpenStack,
Eucalyptus, CloudStack and Ganeti. The cloud systems are
introduced in [17] and references there in. There are also
much research for cloud systems. In [18], a provisioning
technique that automatically adapts to workload changes
related to applications with Quality of Services (QoS) in
large, autonomous, and highly dynamic environments is
proposed. [19] extends Grid workflow middleware to com-
pute clouds in order to speed up executions of scientific
workflows. Energy consumption of large scale data centers
cloud systems has become a prominent problem and re-
ceived much attention. A hierarchical scheduling algorithm
for applications, to minimize the energy consumption of
both servers and network devices is proposed in [20]. The
problem of provisioning physical servers to a sequence of
jobs, and reducing the total energy consumption is studied
in [21]. In [22], a Master-Worker model is used for a case
study of an application of a parallel simulation optimization
deployed on a private Cloud. [23] reported that the effect of
some critical parameters (allocation percentages, real-time
scheduling decisions and co-placement) on the performance
of virtual machines. Cloud computing can be used for solv-
ing some computational intensive jobs in high performance
computing research area. Clouds are becoming an alternative
to clusters, grids, and parallel production environments for
scientific computing applications. However, virtualization



and resource time-sharing may introduce performance over-
heads for the demanding scientific computing workloads.
The performance of cloud computing services for scientific
computing workloads is studied in [24].

Cloud computing platforms provide computing service
to users by virtualization technology [25]. For high per-
formance computing applications, we can use cloud to
virtualize clusters on cloud systems. These virtual machines
can share the same physical hardware or different physi-
cal hardware with various system load and user load and
cloud system use a fair-share balancing algorithm that gives
equal time to each virtual machine. However, because of
limited resources, the virtualized cluster is not private and
the resources are shared by many users, which means the
virtualized cluster may act as a heterogeneous computing
environment at running time. Thus, the heterogeneity should
be taken into account to improve resource utilization and
reduce load imbalance. MapReduce [26] is a general con-
current programming framework for scheduling job-tasks
on cloud systems. However, MPI concurrent programming
yields higher performance than MapReduce. Previous re-
search [27] [28] [29] reported that the performance on virtual
machines is lower than the physical system. They analyzed
message passing (MPI) parallel applications on different
cloud systems and reported that communication overhead
is a substantial slowdown factor for cloud systems. In this
paper, we design a distributed Master-Worker model for self-
scheduling schemes on cloud. We implement these schemes
on the FlexCloud system. Our experiments demonstrate the
good load balance and good performance of the proposed
schemes.

The rest of the paper is organized as follows. In Section 2,
we review simple loop self-scheduling schemes. In Section
3, we describe the distributed schemes. In Section 4, exper-
iments and results are presented. In Section 5, conclusions
are drawn.

II. LOOP SELF-SCHEDULING SCHEMES

In this section, we review some previously proposed
dynamic loop scheduling schemes. These loop scheduling
schemes were implemented using a Master-Worker archi-
tecture model

A. Notations:

The following are common notations used throughout the
whole paper:

• I is the total number of iterations or tasks of a parallel
loop;

• p is the number of workers (i.e. processors) in the
parallel or heterogeneous system which execute the
computational tasks;

• P1, P2, ..., Pp represent the p workers in the system;

• A few consecutive iterations are called a chunk. Ci is
the chunk-size at the i-th scheduling step (where: i =
1, 2, ...);

• N is the number of scheduling steps;
• tj , j = 1, .., p, is the execution time of Pj to complete

all its tasks assigned to it by the scheduling scheme;
• Tp = maxj=1,..,p (tj), is the parallel execution time of

the loop on all p workers;
In a generic self-scheduling scheme, at the i-th schedul-

ing step, the master computes the chunk-size Ci and the
remaining number of tasks Ri:

R0 = I, Ci = f(Ri−1, p), Ri = Ri−1 − Ci (1)

where f(., .) is a function possibly of more inputs than just
Ri−1 and p. Then the master assigns to a worker processor
Ci tasks. Imbalance depends on the execution time gap
between tj , for j = 1, . . . , p. This gap may be large if the
first chunk is too large or (more often) if the last chunk
(called the critical chunk) is too small.

The different ways to compute Ci have given rise to
different scheduling schemes. Some widely used examples
are the following. These methods are studied or extended in
[1], [30] and references therein.

Trapezoid Self-Scheduling (TSS) Ci = Ci−1 − D,
with (chunk) decrement : D =

⌊
(F−L)
(N−1)

⌋
, where: the

first and last chunk-sizes (F,L) are user/compiler-input or
F =

⌊
I
2p

⌋
, L = 1. The number of scheduling steps

assigned: N =
⌈

2∗I
(F+L)

⌉
. Note that CN = F − (N − 1)D

and CN ≥ 1 due to integer divisions.
Factoring Self-Scheduling (FSS) Ci = dRi−1/(αp)e,

where the parameter α is computed (by a probability distri-
bution) or is suboptimally chosen α = 2. The chunk-size is
kept the same in each stage or round (in which all processors
are assigned a chunk of the same size) before moving to the
next stage. Thus Ri = Ri−1 − pCi ( where R0 = I) after
each stage.

Guided Self-Scheduling (GSS) Ci = dRi−1/pe. In the
last steps too many small chunks are assigned. It assigns
large chunks initially, which implies reduced communica-
tion/scheduling overheads only in the beginning. A modi-
fied version GSS(k) with minimum assigned chunk-size k
(chosen by the user) attempts to improve on the weaknesses
of GSS.
Remark 1: The schemes described above have been called
Simple Loop Self-Scheduling Schemes. In the distributed
versions of these schemes (called: DTSS, DFSS, DGSS) the
master takes into account the computing rates of the workers
in determining the sizes of the tasks to be assigned [?].

III. DISTRIBUTED LOOP SCHEDULING SCHEMES

In this section, we review the methodology for distributed
loop scheduling schemes. Distributed schemes (DTSS,
DFSS, DGSS) are derived from the corresponding simple



loop scheduling schemes by considering different computing
powers of workers.

A. Terminology:

• Vj = Speed(Pj)/min1≤i≤p{Speed(Pi)}, j = 1, ..., p,
is the virtual power of Pj (computed by the master),
where Speed(Pj) is the processing speed of Pj . That is
a standardized computing power in the current cluster.

• V =
∑p

j=1 Vj is the total virtual computing power of
the cluster.

• DC is the distributed chunk size for one worker re-
quest, in a single scheduling step of distributed self-
scheduling scheme.

Master:
• (1) Compute Vj for each worker

(a) Receive Speed(Pj);
(b) Compute all Vj ;
(c) Send all Vj ;

• (2) Assign work and get the results
(a) While there are unassigned tasks, if a request

arrives, put it in the Request Queue.
(b) Pick a request from the queue and get its

virtual power Vj . If there are computed results in this
request, Result Collector receives them first. Then
Task Scheduler compute the next chunk size DC to
assign. The followings are DTSS, DFSS and DGSS
algorithms to compute the next chunk DC:

DTSS:
Current is chunk size in the current step of TSS.
Initialization: F =

⌊
I
2V

⌋
, L = 1, N =

⌈
2∗I

(F+L)

⌉
,

D =
⌊
(F−L)
(N−1)

⌋
, Current = F

DFSS:
DCsum is the assigned work in current stage.
Initialization: R = I, α = 2.0, DCsum = 0

DGSS:
Initialization: R = I

Algorithm 1 Calculate DC, DTSS
DC = 0;
for k = 1→ Vj do
DC = DC + Current;
Current = Current−D;

end for
return DC;

Algorithm 2 Calculate DC, DFSS
DC = dR/(αV )e ∗ Vj ;
DCsum = DCsum +DC;
if (Master has assigned all the work in the current stage)
then
{ Goto next stage and update the remaining work. }
R = R−DCsum;
DCsum = 0;

end if
return DC;

Algorithm 3 Calculate DC, DGSS
DC = dR/(A)e ∗ Vj ;
R = R−DC;
return DC;

Worker :
• (1) Send Speed(Pj);
• (2) Send a request;
• (3) Wait for a reply;

IF (There is unassigned work)
{

Compute the new work;
Return the results and send another request;
Go back to (2);

}
ELSE

Terminate;

IV. IMPLEMENTATION AND RESULTS

A. Applications

• Mandelbrot Set
The Mandelbrot Set is a doubly nested loop without
dependencies. The computation of one column of
the Mandelbrot matrix is considered the smallest
schedulable unit. The following loops are used for
computing the Mandelbrot Set.

MSetLSM(MSet,nx,ny,xmin,xmax,ymin,ymax,maxiter)
BEGIN
FOR iy = 0 TO ny-1 DO
cy = ymin+iy*(ymax - ymin)/(ny - 1)
FOR ix = 0 TO nx-1 DO
cx = xmin+ix*(xmax - xmin)/(nx - 1)
MSet[ix][iy]=MSetLevel(cx,cy,maxiter)

END FOR
END FOR

END

MSetLevel(cx,cy,maxiter)
BEGIN
x = y = x2 = y2 = 0.0, iter = 0



WHILE(iter<maxiter)AND(x2+y2<2.0)DO
temp = x2 - y2 + cx
y = 2*x*y + cy
x = temp
x2 = x*x
y2 = y*y
iter = iter + 1

END WHILE
RETURN(iter)

END

• Adjoint Convolution
This application is decreasing load imbalance, some
iterations at the beginning take most of running time,
the ith iteration’s running time is O(N2 − i).
BEGIN

FOR I = 1 TO N * N DO
FOR J = I TO N * N DO

A(I) = A(I) + X * B(J) * C(J - I)
END FOR

END FOR
END

B. Cloud Platform

We use FlexCloud of Institute for Cyber Security(ICS)
at University of Texas at San Antonio. The ICS FlexCloud
is one of the first dedicated Cloud Computing academic
research environments. It offers significant capacity and
similar design features found in Cloud Computing providers,
including robust compute capability and elastic infrastruc-
ture design. FlexCloud highlights currently include:

• 5 Racks of Dell R410, R610, R710, and R910s con-
sisting of 748 processing cores, 3.44TB of RAM, and
144TB of total storage.

• Redundant 10GB network connectivity provides high
performance access between all nodes.

• Powered by Joyent SmartDataCenter [31] providing the
highest performance virtualization and analytics. And
Joyent SmartOS provides a combination of hardware
and operating system virtualization to support efficient,
reliable and high performing cloud computing.

– Joyent uses the HPC model of management: one
headnode PXE boots compute nodes

– SmartOS is a RAM disk based image (nothing
stored on disk) which makes it very easy to up-
grade headnodes/computenodes

– SmartOS uses the disks on the local nodes to back
the SmartMachines and Virtual Machines using
ZFS

– SmartOS has DTrace which allows for monitoring
all VMs with little overhead for maximum observ-
ability

– SmartOS has the best multitenant defenses to pre-
vent one tenant from affecting others on the box

C. Results

In this section, we compare the performance of simple
scheme and distributed schemes with 8 and 16 workers
(processors or virtual machines). The Mandelbrot Set com-
putation domain is [-2.0, 2.0] × [-2.0, 2.0] and its size is
10K × 10K and 20K × 20K. The Adjoint Convolution has
a size of

√
9K ×

√
9K and

√
16K ×

√
16K. And the arrays

are generated randomly.
For all experiments, we initialize 19 virtual machine

instances with one virtual core instance, 1GB memory and
10GB storage. Each instance is loaded with an Ubuntu
Linux 10.04 image. GCC/G++ and OpenMP are installed.
Because the cloud’s utilization is low and the virtual machine
instances’ computation powers may be the same, we use
Stress [32], a simple workload generator, to add various
system/user load to the instances. That can help get a more
realistic heterogeneous computing environment. The com-
puting power of each virtual machine instance is measured
using run time tests. The computing power ratio of virtual
machine instances is 8, 8, 8, 5, 2, 2, 2, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1. Each worker can get work proportional to
its computing power. If all the virtual machine instances
are treated the same, which is a homogeneous computing
environment, there is no need to measure the computing
power before running and all the ratios are 1. In that case
all workers get the same amount of work.

The following loop scheduling schemes are implemented.
Simple schemes: TSS, FSS, GSS; distributed schemes:
DTSS, DFSS, DGSS. All the schemes are implemented by
C++ and MPI.

We note that the parallel time Tp =
max{Tcomp1

, Tcomp2
, . . . , Tcompp

} + Time (for
communication and scheduling overhead), where Tcompi

is
the ith worker total computation time. The maximum-times-
difference in the workers computation times is a measure of
the imbalance of the workers computational load. (I) Figure
1 and Figure 2 present the maximum-times-difference for
Mandelbrot Set with sizes of 10K × 10K and 20K × 20K
using 8 and 16 workers. And (II) Figure 3 and Figure 4
are for Adjoint Convolution with sizes of

√
9K ×

√
9K and√

16K ×
√
16K. It can be observed that the differences in

the case of simple schemes are quite substantial and hence
there is considerable load imbalance among the workers.
The differences in the case of distributed schemes are much
smaller.

From Figures 5 – 8, it can be observed that the ex-
ecution time of distributed schemes are less than simple
schemes. Because distributed schemes use the computing
powers for each virtual machine instance before computing
the work chunks. Thus, more work is assigned to faster
workers which leads to balanced workloads and improved
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Figure 1. maximum-times-difference for Mandelbrot Set with 10K × 10K
size between simple and distributed schemes
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Figure 2. maximum-times-difference for Mandelbrot Set with 20K × 20K
size between simple and distributed schemes

resource utilization. Figures 9 – 12 present the speedup
comparison between simple loop scheduling schemes and
distributed loop scheduling schemes with 8 and 16 workers.
The speedup is computed by Sp = T̂1

Tp
, T̂1 is the execution

time for the simple TSS scheme with 8 workers. It can
be observed that, as the number of workers increases, the
speedup of distributed schemes improves which shows that
the schemes are scalable. All the speedups of distributed
schemes are better than simple distributed schemes’ with 8
and 16 workers.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we studied and implemented (in MPI) dis-
tributed loop scheduling schemes. The distributed schemes
for loop self-scheduling schemes on a cloud system present
better performance, especially due to better properties. In
the future, we will implement a hierarchical distributed loop
scheduling schemes on cloud systems to test the scalability
and efficiency.
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Figure 3. maximum-times-difference for Adjoint Convolution with
√
9K

×
√
9K size between simple and distributed schemes
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Figure 4. maximum-times-difference for Adjoint Convolution with
√
16K

×
√
16K size between simple and distributed schemes
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Figure 5. Performance for Mandelbrot Set with 10K × 10K size between
simple and distributed schemes
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Figure 6. Performance for Mandelbrot Set with 20K × 20K size between
simple and distributed schemes
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Figure 7. Performance for Adjoint Convolution with
√
9K ×

√
9K size

between simple and distributed schemes
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Figure 8. Performance for Adjoint Convolution with
√
16K ×

√
16K size

between simple and distributed schemes
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Figure 9. Speedup for Mandelbrot Set with 10K × 10K size between
simple and distributed schemes
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Figure 10. Speedup for Mandelbrot Set with 20K × 20K size between
simple and distributed schemes
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Figure 11. Speedup for Adjoint Convolution with
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9K ×

√
9K size

between simple and distributed schemes
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