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ABSTRACT

A nonlinear conjugate gradient method has been introduced and analyzed by J. W.
Daniel. This method applies to nonlinear operators with symmetric Jacobians. The
conjugate gradient method applied to the normal equations can be used to approxi-
mate the soultion of general nonsymmetric linear systems of equations if the condition
of the coefficient matrix is small. In this article, we obtain nonlinear generalizations of
this method which apply directly to nonlinear operator equations. Under conditions
on the Hessian and the Jacobian of the operators, we prove that these methods
converge to a unique solution. Error bounds and local convergence results are also
obtained.

1. INTRODUCTION

Nonlinear systems of equations often arise when solving initial or boundary
value problems in ordinary or partial differential equations. We consider the
nonlinear system of equations

F(x)=0 (1.1)

where F(x) is a nonlinear operator from a real Euclidean space of dimension
N or Hilbert space into itself. The Newton method coupled with Gaussian
elimination is an efficient way to solve such nonlinear systems when the
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dimension of the Jacobian is of small. When the Jacobian is large and sparse,
some kind of iterative method may be used. This can be a nonlinear iteration
(for example, functional iteration for contractive operators) or an inexact
Newton method. In an inexact Newton, the solution of the resulting linear
systems is approximated by a linear iterative method. (c.f. [15], [6])

Nonlinear steepest descent methods for the minimal residual and normal
equations have been studied by many authors (c.f. [12] and [14]). |. Fletcher
and C. M. Reeves [8], and ]. W. Daniel [4] have obtained a nonlinear
conjugate gradient method that converges if the Jacobian is symmetric and
uniformly positive definite. These nonlinear methods reduce to the standard
conjugate gradient methods for linear systems. These methods are based on
exact line search at each iteration and thus must solve a scalar nonlinear
minimization problem in order to determine the steplengths. Several authors
have suggested inexact line search and have given conditions under which
these methods would still converge [8]. This is done to avoid solving exactly
the scalar minimization problem whose derivative evaluation involves evalua-
tion of the nonlinear operator.

The conjugate gradient method applied to normal equations can be used
to solve iteratively nonsymmetric linear systems when the condition number
of the Jacobian is small. Some preconditioning applied to the original linear
system can be used to achieve this goal. Two algorithms exist for the
conjugate gradient method applied to the normal equations: the CGNR [I,
11] and CGNE [1, 3] (or Craigs method).

In this article we obtain a nonlinear extension of the Conjugate Gradient
methods applied to the normal equations. We assume that the Jacobian and
the Hessian of the nonlinear operator are uniformly bounded. We prove
global convergence and local convergence results for the nonlinear algo-
rithms. We also give asymptotic steplength estimates and error bounds. These
steplengths can be used in implementing these methods. In section 2, we
review the CGNR and CGNE methods. In section 3, we derive a nonlinear
CGNR method and prove global convergence. In section 4, we derive a
nonlinear CGNE method and prove local convergence. In section 5, we
obtain asymptotic steplength and error estimates.

2. THE CONJUGATE GRADIENT APPLIED TO THE NORMAL
EQUATIONS

Let us consider the system of linear equations Ax =f, where A is

nonsingular, nonsymmetric matrix of order N. This system can be solved by
either of the two normal equations systems:

ATAx = A'f (2.1)
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AATy =f, x=ATy (2.2)

Since both ATA and AA? have the same spectrum, we can apply CG to
either system to obtain an approximate solution of Ax = f.

The CGNR method [11] applies CG to (2.1). Then x, minimizes the norm
of the residual error E(x,) = [ f — Ax,|l; over the affine Krylov subspace

%o+ {ATry. ., (ATA)" ATry)

and the resulting algorithm is the following.

ALGORITHM 2.1, The CGNR algorithm.
Initial vector x,,

ro =f— Axy, po = A'ry

For n = 0 Untl Convergence Do

(A'r,, ATr,)
1. a, = —2L
(Ap,. Ap,)
2. Xpr = %y + dy Pa and Tev1 = T — auApu'
. AAT?"" > A n
3. Pa+1 =A?rn+1 + bnpn Where bn == ( = 2 F )
I Ap,\I°

EndFor.

The CGNE method [3] applies CG to (2.2). Then x, minimizes the norm
of the error E(x,) = |lx* — x,I* over the same affine Krylov subspace as
CGNR, and the resulting algorithm is the following.

ALGORITHM 2.2. The CGNE algorithm.

Initial vector x,

ro =f — Axy, py = Alrg

For n = 0 Until Convergence Do
(r-7,)

l. a, = ——
(Pn->Pn)
2. x,,,=x,ta,p,and r, ., =1, —a,Ap,.
T (A?rn+l’pn)
3. p,o,=Ar,,, +b,p, where b, = — W
pn

EndFor.

Since the spectrum of the matrices AA” and A"A are the same, we should
expect that the performance of CGNR and CGNE is the same. However,
CGNE minimizes the norm of the error and may yield better performance.
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AATy =f, x =AYy (2.2)

Since both A'A and AA’ have the same spectrum, we can apply CG to
either system to obtain an approximate solution of Ax = f.

The CGNR method [11] applies CG to (2.1). Then x, minimizes the norm
of the residual error E(x,) = ||f — Ax,|ls over the affine Krylov subspace

+ {ATrO,.. (ATA)" A r(,}

and the resulting algorithm is the following.

ALGORITHM 2.1. The CGNR algorithm.

Initial vector x,

ro =f— Axy, py = A'r,

For n == 0 Until Convergence Do
(ATrn , ATr")

l.a = ————

" (Ap.. 4p,)
2. Xpe1l T X, + 4y P and Fov1 &7 — auAPn' .
(AA'IrnJrl’ Apn)

Il Ap,I°

3. Pov1 = ATr!l+1 + bn Pn "Vhere bn ==
EndFor.

The CGNE method [3] apphes CG to (2.2}, Then x, minimizes the norm
of the error E(x,) = [z* —x || over the same afﬁne Krylov subspace as
CGNR, and the resulting algonthm is the following.

ALGORITHM 2.2. The CGNE algorithm.

Initial vector Xy ‘

ro=f — Axy, py = A?ro

For n = 0 Until Convergence Do
( rn ? n)

l. a, =
(Pas )
2. Tael — Xy + a, Pn and Fog1 = T — auApn'
. (ATrn+l’ pn)
3. p,., =Ar, ., +b,p, where b, = — T”f—

EndFor.

Since the spectrum of the matrices AA” and A'A are the same, we should
expect that the performance of CGNR and CGNE is the same. However,
CGNE minimizes the norm of the error and may yield better performance.
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The CGNE method is sometimes called Craigs method because it was first
proposed by E. J. Craig.

The following bound error can be obtained {5] for the error functional
E(x):

1-1/p

T l/p) E(xy) (2.3)

E(x,) < 2(
where p = || Allzll A7"||; is the condition number of the matrix.

3. THE NONLINEAR CGNR METHOD

In this section, we generalize the CGNR iteration to a nonlinear iteration
which requires the solution of a scalar equation to determine the steplength.
We then prove a global convergence result under assumptions that the
Hessian and the Jacobian are uniformly bounded.

Let F(x) be an operator mapping of the Euclidean space R" (or, even
more generally a real Hilbert space) into itself. The notation F'(x) and
F"(x) will be used to denote the Frechet and Gateaux derivatives respec-
tively. Also, for simplicity F, and F; will denote F'(x,) and F"(x,)
respectively. We seek to solve iteratively the nonlinear system of equations:
F(x) = 0. In the linear case F(x) = Ax — b and F'(x)} = A.

Assume that F'(x) and F"(x) exist at all x and that there exist scalars
0 <m <M, 0<B independent of x so that the foliowing conditions are
satisfied for any vectors x and w:

m? vl < ((F'(x)TF'(x))v, v) < M2|l? (3.1a)

IF"(x)ll < B (3.1b)

REMARK 3.0. (i) The symmetric definite operators F'(x)'F'(x)} and
F'(x)F'(z)" have the same eigenvalues. Thus, the following inequality holds:

m2llvl® < (F'(x)F'(x) v, v) < M2ll*.

(ii) The left inequality in (3.1a) and the inverse function theorem for
differential operators imply that the inverse F~'(x) exists and it is differen-
tiable.
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From the left inequality in (3.1a) and the inverse function theorem, we
conclude that F~'(x) exists and it is differentiable at all x. We use the mean
value theorem for the operator F ~1(x) to obtain the following equation

(y—x.(y =) = (F()(fy) —f(x)). (y = x)).

Combining this with the right inequality in (3.1a) we obtain:

o 1
Iy — =l < —1F(y) — E(0)lly =l
This inequality implies that

mily — xll < IF(y) — F(x)Il (3.2)

By use of the mean value theorem for the operator F(x) and assumption
(3.1a), we obtain the following inequality

WF(y) — F{x)ll < Mlly — Il (3.3)

Under assumptions (3.1), we consider the following nonlinear generaliza-
tion of CGNR.

ALGORITHM 3.1.  The Nonlinear CGNR Algorithm.

Initial vector x,

ro = —F(xy), py = Fir,

For n = 0 Until Convergence Do

1. Select the smallest positive ¢, to minimize [|[F(x, + cp, 2. ¢ > 0
2. Tprl = Xp + o Pn and Tps1 = _F(xn+l)

T
(Fn+an+lrn+1’Fn+lpn) T

3. b, =~ where p, ., = F ir..1 t b, p,
n HF,H_lp””z p +1 +1 +1 P

EndFor
The scalars ¢, and b, are defined to guarantee the following two orthogo-
nality relations:

(ro, Fipa-1) =0 (3.4)



172 A. T. CHRONOPOULOS AND Z. ZLATEV
and

(E/pu Elpao) = 0. (3.3)
Under the assumptions (3.1), the following lemma holds.

LEMMA 3.1, Let {r,} be the nonlinear residuals and { p.} be the direction
vectors in Algorithm 3.1 then the following identities hold:

(D) (r,, E'p) = E 7 I”

Gi) 1 p,I° = \ETr I + B2 |1l p, _,IIP

Git) |EYETr M1 = IF)p,)I* + B2 NE p,_ I
(iv) mllr,)l < ||2F,,’Tr,,|| < il p,ll

M
(D) llp,ll < —Irll

. m
(i) llr, ll < liry .

PrOOF.  The orthogonality relations (3.4) and (3.5} combined with Step 3
of Algorithm 3.1 imply ()-(iii). Equality (i) and (3.1a) are used in proving
inequality in (iv) as follows:

mlir* <IE r 1> <l p,II°
Equality (iii) and (3.1a) are used in proving inequality (v) as follows:

mllp l < I1E/ p Il < HF/F!Tr Il < M2|Ir|i

Inequality (vi) follows from the definition of ¢,. O

1 .
REMARK 3.1. Let f,(c) denote the scalar function: E”F(In + ep NP Tts

first and second derivatives are given by:

fale) = (F(x, + p,). F'(x, + cp,) p) (3.6)

fi{e) = ((F"(x, + P} P> Pa). F(x, +¢p,)) + IIF'(x + cp,) p,I°
(3.7)



Nonlinear Conjugate Gradient Methods 173

The following upper and lower bounds on f}(¢) can be computed from (3.6),
the assumptions (3.1), and Lemma 3.1 (vi).

I pli*(m? = Bliryll) < mlp,)I* — BlipPlrll <f7(c)  (3.8)
fi(e) <lip (M2 + Blir,ll) < lip, (M2 + Bllr,ll) (3.9)

We next prove that under assumptions (3.1) the nonlinear CGNR iteration
converges globally to a unique solution.

THEOREM 3.1.  Under the assumptions (3.1} on the nonlinear operator
F(x) the sequence x, generated by Algorithm 3.1 is well-defined for any x,,
it converges to a unique solution x* of the nonlinear system F(x) = 0 and

4
lx, —x*ll < —lIF(x, ).
m

ProoF. The proof is divided in four parts.
Firstly, we prove the existence of ¢, in 1 of Algorithm 3.1. The derivative
of the real function f, at zero [because of Lemma 3.1 ()] is:

fi(0) = —=IErI* <0

So there exists ¢ > 0 such that [|[F(x, + ep Il < lr,l. We must prove that
there is a ¢ > 0 such that f,(0) < f,(c). This would imply that there exists
¢, > 0 where f(c} assumes a local minimum. From inequality (3.2) by
inserting x =x, and y =x, + ¢p, we conclude that F(y) grows un-
bounded for ¢ — . This proves that there is a 0 < ¢ such that £,(0) < f,(c).

Secondly, we obtain a lower bound on the steplength ¢,. Taylor's expan-
sion gives fi{c,) =0 = f{0) + ¢, fi(c,), where ¢, =1t,c, for some t in
(0,1). We solve for c¢,. We then use the upper bound in inequality (3.9),
(3.1a), and Lemma 3.1 (v} to obtain

m* m?|lr|I? IE T, |I”

< . < <ec,.
M (M2 %+ Blirgl) ~ lIp JF(M® + Blrgll)  NpP(M% + BlIr,ly ~©

(3.10)
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Thirdly, we prove that the sequence of residual norms decreases to zero.
For & = te for some t in [0, 1] we have

1 2 T 2 02 -
fle) = Slnl -l Bl + S fi (@)

Now b - E!Tr, I b
ow inserting ¢ = we obtain
Y & (M2 + Blirf)

e W = filer) <) < 5 |Inl - Ir
glrall =fulen) <fule) < HUIAE 7 i (M2 + BIn) |

Now using m2lir, ¥ < \E;Tr, 1% [from Lemma 3.1 (iv)] we obtain

1 1 IE r, I .
—lr Mg |1 = MR - lir, i
) Il pfE(M2 + Blir,ll)

If we substitute the fraction term in the square brackets by the left most term
in (3.10), we prove that the norm of the residual is reduced (at each iteration)
by a constant factor that is Jess than one. This implies that [ir, || converges to
zero.

Finally, we prove that the sequence of iterates converges to a umnique
solution of the nonlinear operator equation. By use of (3.2) with x = x,, and
y = %, we obtain that the sequence x, is a Cauchy sequence. Thus, it
converges to x* and F(z*) = 0. The uniqueness and the error bound
inequality in the theorem statement follow from (3.2) with x=x, and
y =x* a

4 THE NONLINEAR CGNE METHOD

Let us assume that (3.1a) and (3.1b) hold in this section. From Theorem
3.1, it follows that a unique solution of F(x) = 0 exists. Next, we introduce a
nonlinear version of CGNE, and we prove a local convergence theorem.

ALCORITHM 4.1. The Nonlinear CGNE Algorithm.
Initial vector x,
ro = —F(xo), po = Fyro
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For n = 0 Until Convergence Do

L. Select the smallest positive ¢, to minimize [|x* — (x, + cp Nz, ¢ > 0
2‘ Xn41 = X, + Cnpn and rn+l = _F(In+1)

(Fn+lrn+1’ pn)

3. b =~ .
I p,tI?

EndFor

— T
where Po+1 ™ Fn+1rn+1 + ann

REMARK 4.0. The error function in step 1 of the algorithm is not
computable because it uses the exact solution. However, it is possible to
determine an approximation to ¢, that guarantees local convergence of the
algorithm to the solution.

Let us denote the true error x* —x, by e,. The scalars ¢, and b, by
definition imply the following two orthogonality relations:

(earrp) =0 (4.1)

and
(Pn+l’pn) =0. (42)

Under the assumptions (3.1) the following lemma holds for Algorithm 4.1.

LemMa 4.1, Let {r )} be the nonlinear residuals and {p,} be the direction
vectors in Algorithm 4.1 then the following identities hold true:

(i) (p,.e,) =(FIr, e,)

Gi) I FFr® =l p P + B2\ lip,_ I
Gii) Mllr,ll = llp.ll

(iv) Mlle,ll = llr Il = mlle,ll

(v) lle, ol < lle,ll

Proor. (i) follows from relation (4.1) and equality 5 of Algorithm (4.1).
We prove (ii) from equality 5 of Algorithm (4.1} and relation (4.2). Part (jii}
follows from (i) and (3.1). By using equalities (3.2) and (3.3) (at the
beginning of section 3) with y =x, and x =x* we prove (iv). Part (v}
follows from the selection of c,. a
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REMARK 4.1. Let us denote by f,(c) the scalar function

117,

. [|x* II? !
sl= —(z, +ep I = Elfen—c;un
The first and second derivatives are:

fie) =clpl* ~ (pa.e.). fre) = lpIP (4.3)
We expand F(x*) = 0 in Taylor series around x, to obtain:
rn =Fﬂen+ (Fr;,eﬂ’en)= (4'4)

where i =x_ + te,. Using Lemma 4.1 (i) and (4.3), we obtain:

faley = cllpl® +Ir,l* = (r,. (F e, e,))- (4.5)

We next prove that under the assumptions (3.1) that Algorithm (4.1)
converges locally to the unique solution of the nonlinear operator equation.

THEOREM 4.1.  Assume that conditions (3.1) hold. Also, assume that x,
2

m
is selected such that ||F(x,)| < 2B Then the sequence x, generated by

Algorithm (4.1) is well-defined converges to the unique solution x* of the
nonlinear operator equation F(x) = 0.

PrOOF.  Firstly, we prove the existence of the nonlinear steplengths ¢,. It
suffices to prove that the first derivative of f,(c) is negative at ¢ = 0 and its
second derivative is positive in an interval [0, ¢, ). By using Lemma 4.1 (iv)
and (v) and the assumption of the theorem we prove the following inequality:

l E! | < Bn Plleqil < B"r‘)“u I* < 1u 1% (4.6)
(rﬂ,( ﬁen,e“)) < = r. el < — r, 5 r.ll®. .

Combining (4.5) and (4.6), we conclude that £/(0) is negative. Also, (4.3) and
(4.6) imply that

Ol = e p)I > Sl (47)
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Now, using Lemma 4.1 (iv), we obtain:
m
lp.ll = Eﬂrnll- (4.8)

This indequality shows that the second derivative of f,(c) is positive if
convergence has not been reached (i.e., r, # 0).

Secondly, we obtain a lower bound on the nonlinear steplength ¢,. Since
f.le,} = 0, we used (4.5) and (4.7) to obtain

_(pn’en ”T"”2 1
n = 3 = s = 7.
.17 20 p,lF ~ 2M?
1 1 5
We insert ¢ = Pyl in f(c)= El]e" —¢p,|I” and we use Lemma 4.1 (iii)

and (iv) to obtainlthe following error bound:

Ir* lip, I (1 - m?)
2 2 n n 2
=2f(c.) = |e - — + —— £ - -
||en+l“ f( n) ” n” 2M2_ 4M4 “en” 4M2‘
This proves the convergence of the iteration and gives also a bound on the
factor of the linear convergence. 0

5. ASYMPTOTIC STEPLENGTH ESTIMATES AND ERROR
BOUNDS

In this section, we obtain asymptotic estimates of the steplengths ¢, near
the solution. We also obtain an asymptotic error factor estimate. We only
obtain these results for Algorithm 4.1. Similar results can be obtained for
Algorithm 3.1.

We next obtain asymptotic estimates of the steplengths ¢, under the
assumptions of Theorem 4.1.

PROPOSITION 5.1.

7,117 1 o - flr, 117 1
5 T L &sC, s 5 T
Ip, > (1+&,) lpII? (1 - &,)

where g, = O(|Ir,|D.
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ProoF. We will prove only the rightmost inequality. The leftmost in-
equality is proved similarly. From equality (4.5) and f,(c,} = 0, we obtain
the following inequality:

2 2
(EM| (E|

Cn -€_ 2 3 = 2 k)
Hp I = Bl e, I®  Np,l°(1 — &,)

s
Bllr,lllle, I
Il p,I°

where £, is the fraction ow, we use Lemma 4.1 (iv) and

inequality (4.8) to obtain:

4B
&g, < —lrl.
m

O
We next obtain an asymptotic error bound for iterates in Algorithm 4.1.

PROPOSITION 5.2. Under the assumptions of Theorem 4.1, we obtain the
Sfollowing inequality on the residual errors:

e, lI? < lle,li’d,,
r+1 n H

where

and

g, = 2M3|r,II.

PrOOF. We note that by using relation (4.1) and Lemma 4.1 () we
obtain:

2
”en+l” = (en+l’ e, — €, pn) = _cn(en’ pn) = _cn(rrH Fr:en)
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Now using equality (4.4) and Lemma 4.1 (iv) we obtain:
le,. I = lle i < —c,lrd* + Blir, Il e, II. (5.1)

Using Proposition 5.1 and Lemma 4.1 (iii), we prove the following inequality:

e llr, I = Irl” 1 > m—glle IP—— (52)
T T p P (L) T METT (Lt g,) '
Now using (5.2) in (5.1) we obtain:
2

”"3‘.1+1i|2 < ||€,,||2Il - Fm + Blir, |l ||€,,||2

The last term in this inequality is less than
le |Fll Mg
n IYE AR
where
o, = Bllr .
0

6. CONCLUSIONS

We have presented and analyzed nonlinear generalizations of the CGNR
and CGNE method. These nonlinear methods apply to nonlinear operator
equations with nonsymmetric Jacobian. We show that under certain uniform
assumptions on the Jacobians and Hessians the nonlinear CGNR is guaran-
teed to converge globally to a unique solution. For the nonlinear CGNE
under the same assumptions as CGNR, we prove local convergence results
and give asymptotic error bound estimates. These results extend the work of
other authors [4, 8] to deriving nonlinear methods for nonsymmetric Jaco-
bians.
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