Mathematics and Computers in Simulation 35 (1993) 211--232 211
North-Holland

MATCOM 938

[terative methods for nonsymmetric systems
in DAEs and stiff ODEs codes *

A.T. Chronopoulos and C.T. Pedro

Department of Computer Science, University of Minnesota, Minneapolis, MN, United States

Abstract

Chronopoulos, A.T. and C.T. Pedro, Iterative methods for nonsymmetric systems in DAEs and stiff ODEs
codes, Mathematics and Computers in Simulation 35 (1993} 211-232.

Past research demonstrated that the Newton method coupled with Krylov subspace iterative methods is more
efficient than the Newton method coupled with Gaussian elimination when used to solve the corrector
equation in stiff systems of Ordinary Differential Equations {ODEs) with large and sparse Jacobian. Some
Krylov subspace methods have been incorporated in the mathematical software codes (such as LSODE), which
solve numerical stiff systems of ODEs. In this article we review the past results on this topic and three iterative
methods for solving nonsymmetric linear systems of equations. We then incorporate these iterative methods in
DASSL, which is a program for numerical integration of systems of stiff ODEs and Differential-Algebraic
Equations (DAEs). We present numerical tests (with systems of stiff ODEs) and timing comparisons on the
CRAY-2 supercomputer.

1. Introduction

A very important problem in scientific computing is the efficient solution of systems of Initial
Value Problems (IVPs) or systems of stiff ODEs and DAEs. Systems of ODEs or DAEs arise
frequently in the modeling of problems from engineering and physics. Systems of DAESs often
arise as systems of ODEs coupled with algebraic equations representing constraints in the
model. Some problems are directly modeled as systems of ODEs or DAEs (e.g., chemical
kinetics, electrical networks, mechanical systems). Problems modeled as time-dependent partial
differential equations (PDEs) when semi-discretized by the method of lines also give rise to
systems of ODEs or DAEs (e.g., fluid dynamics).

Past research in the area of systems of stiff ODEs has resulted in deriving efficient numerical
methods with suitable stability and accuracy properties (see (3,18,22,25,28,36,37]). A system of
DAEs is characterized by its index, which is defined to be the number of time differentiations
that must be applied to all or a few of the equations of the system in order to obtain an explicit
system of ODEs. Stable numerical methods have been proposed to solve systems of DAEs of

Correspondence to: Dr. AT. Chronopoulos, Department of Computer Science, University of Minnesota, 4-192
EE /CSci Building, 200 Union Street S.E., Minneapolis, MN 55455, United States. e-mail: chronos@cs.umn.edu.
* The Minnesota Supercomputing Institute provided time on the CRAY-2.

e e e e s s e e e e A — . -~ - oA T oAt vo¥ oL t

212 A.T. Chronopoulos, C.T. Pedro / Differential-algebraic and stiff ODEs

index zero or onc. Some results also exist for important classes of systems of DAEs of index
higher than one. For more details, see [3,17,19,22,29] and the references therein.

This paper will discuss the application of iterative methods to the solution of systems of
DAE:s of the form

F(y,y',1)=0, ' (1.1)

where the initial values of at least y are given and oF /3y’ is nonsingular. Systems of DAEs of
index one or systems of implicit or explicit ODESs are such problems. Special attention will be
paid to systems of explicit stiff ODes of the form

Fly,y,)=y —g(t, y) =0, y(t,) =y, (1.2)

The Backward Differentiation Formulae (BDFs) can be used to numerically solve (1.1) (see
[29]). In applying a BDF method at time ¢, we replace y'(¢,) with py,/h_, where p is the
difference operator defined by

n?

) .
py,= Eﬁjyn—ja (1.3)
j=1 | |

k is the order of the method, 4, =¢, — ¢, _, is the time step, y,_;, j=1,..., k, are approxima-
tions to the solution computed at previous time steps, and §; are the BDF cocfficients, to
obtain the system of nonlinear equations

Y,
F(,,,’; ,:n)=o. (1.4)

I

The Jacobian of this system equals

B, 3F @F

For explicit systems of ODEs (see (1.2)) the Jacobian reduces to

By ag

h,~ 8y

For more details see [29].

The numerical solution of systems of stiff ODEs or DAEs yields in general nonlinear
algebraic systems which must be solved at each integration step in all commonly used methods.
A substantial portion of the total computational work and storage is devoted to solving these
nonlinear algebraic systems, particularly if these systems are large. These nonlinear systems
cannot be solved via functional iteration (as for nonstiff problems) because stiffness requires
that a Newton-like method be used to solve (the corrector) equation (1.4) in order to avoid a
severe restriction on the stepsize.

A.T. Chronopoulos, C.T. Pedro / Differential-algebraic and stiff ODEs 213

Over the past decade, several efficient iterative methods have been developed to solve large
sparse (nonsymmetric) systems of linear algebraic equations (see [1,7,9,11,12,14,15,21,26,30,34,
38-42] and the references therein). The use of the Conjugate Gradient method or Krylov
subspace methods in codes for stiff TVPs has been studied by several authors (see [4-
6,8,20,24,31,33,35]). These authors incorporated inexact Newton methods coupled with iterative
methods for nonsymmetric linear systems (e.g., Orthomin, IOM, GMRES) in codes implement-
ing the BDF methods for the numerical solution of systems of stiff ODEs.

Theoretical arguments and numerical tests showed that inexact Newton coupled with a
linear iterative solver is superior to inexact Newton coupled with a direct linear solver in terms
of both computational work and storage, when the Jacobian of the IVP is large and sparse. The
selection of the Krylov subspace iterative methods was based on the following (see [20]. (i) The
methods require matrix-vector multiplications for which no explicit Jacobian need to be
computed (matrix-free methods). (ii) The error is reduced faster in the eigendirections of the
Jacobian corresponding to the stiff components of the system of ODEs. These components are
the most inaccurate (by the predictor) and must be corrected in order to maintain stability. (iii)
The eigenvalues of the Jacobian lie in the right half-plane. Krylov subspace based iterative
methods (e.g., Orthomin, GMRES) seem to work efficiently for this type of linear systems. The
adaptive Chebyshev iteration has also been shown to work well for this type of systems and it
has been proved to satisfy properties (i)—(iii) (see [30]).

Recent research results have been published in the area of look-ahead biorthogonal Lanczos
methods with aim to derive robust biorthogonal Lanczos type methods (see [2,16,21,27,32)]).
These methods require two matrix-vector products per iteration (one using the matrix of the
linear system and one using its transpose). Squared (biorthogonal) Lanczos methods have also
been proposed in [7,11,15,26,38,40]. This type of methods do not require multiplication by the
transpose of the matrix of the linear system and they are (in general) faster than the standard
biorthogonal Lanczos methods. We derived a squared Lanczos method (Sqlanczos) by directly
squaring the matrix polynomial of the biorthogonal Lanczos method (see [11]). This method
requires three matrix-vector products. Sqlanczos has been proved to be more robust than the
other squared Lanczos methods (see [11]). For this reason we chose to incorporate this method
in DASSL.

In this paper we review the inexact Newton method and three state-of-the-art iterative
methods (Orthomin [14], GMRES [34] and the Squared Lanczos method [11]) for nonsymmetric
linear systems. We incorporate these iterative methods in an inexact Newton method and use
them in solving the corrector equation in a code (DASSL, see [3]) solving ODEs or DAEs by
use of the BDF methods. All three methods can be applied in matrix-free fashion. Our work
overlaps with previously published articles in this area in using the inexact Newton method
coupled with Orthomin or GMRES in codes for systems of stiff ODEs. However, it differs from
them because we also use a newer method {SqLanczos) from the class of biorthogonal Lanczos
methods and we incorporate these methods in a code for systems of stiff ODEs and DAEs (up
to index one).

The structure of the paper is as follows. In Section 2 we review the inexact Newton methods.
In Section 3 we review the incomplete [.LU preconditioning and the three linear iterative
methods we implemented. In Section 4 we describe the DASSL. code and our modifications for
linking the iterative methods to it. In Section 5 we present the test problems we used. In
Section 6 we discuss the results of the numerical tests. In Section 7 we draw conclusions.

214 AT Ch?onopoulos, C.T. Pedro / Differential-algebraic and stiff ODEs
2. Inexact Newton

A large part of the work needed to solve systems of stiff ODEs or DAE:s lies in solving the
corrector equation at each integration step. This is done using the Newton method for
nonlinear systems of equations.

Algorithm 2.1 (Newton).

Start with initial guess y, m =0

Compute F(y©®)

While ([|[F(y{™) > € and m <M __) Do
(1) Compute the Jacobian

B, 3F dF
=——+— at y™
h, 3y dy

(2) Solve the linear system 4 Ay(™ = — F(y(™)
(3) Update the solution y{™*D =yim 4 Ay0m
(4) Compute F(y{m+D)

EndWhile

Another stopping criterion is [y{™ —y{™ Dl <e. A Newton step entails evaluating the
Jacobian and the nonlinear function, and applying a linear system solver such as Gaussian
elimination repeatedly until the desired stopping criteria are met.

Despite the fact that the Newton method exhibits quadratic convergence, it can be very
expensive to compute the Jacobian (step (1)) and solve for Ay{™ exactly (to machine accuracy)
(step (2)). Inexact Newton methods are usually implemented to use the same Jacobian for a few
steps. The Jacobian is recomputed if Newton fails to converge in the maximum number of steps
allowed. When the Newton method is coupled with a linear iterative solver, then the inexact
Newton consists of an outer (nonlinear or Newton) iteration and an inner (linear) iteration.
Nonlinear iterative methods which are applied directly to the nonlinear system have also been
studied in [10]. Such an inexact Newton has the same form as Algorithm 2.1, except step (2)
becomes

(2) Solve the linear system A Ay{™ = —F(y{™) + rim,
where r{™ is an error vector. This means that the linear system (2) is only solved approximately
with linear residual error equal to r{™. There are two stopping criteria for an iterative method
used to solve (2') that have been considered. It was proved [8] that an inexact Newton method
coupled with Orthomin applied to solve systems of stiff ODES works well if || 7¢™ || < e is used
as a stopping criterion for the inner iteration. Also, if the relative residual errors are bounded:

7]

[F(z, v

then the inexact Newton converges at least at a linear rate (see [13]).
The number of outer iterations in an inexact Newton method coupled with an iterative
method is (in general) expected to be higher than in an inexact Newton method coupled with

T P

A.T. Chronopoulos, C.T. Pedro / Differential-algebraic and stiff ODEs 215

the LU decomposition. However, the overall computational cost for convergence is expected to
be smaller.

Computing and storing the full Jacobian can be avoided because Krylov subspace methods
require the Jacobian only to perform Jacobian times vector products, The Jacobian times vector
product can be computed (in a matrix-free fashion) using a first-order Taylor’s approximation:

P F(t,y,+ev)—=F(t, y,) ’ 2.1)

€
where for example € can be taken equal to the error tolerance in the Newton method.

3. Iterative methods

In the Newton method (see Algorithm 2.1), step (2) requires the solution of the linear
system

A Aye —p, (3.1)

where b= —F(y™).

One of the standard ways to solve this linear system is to use direct methods such as
(Gaussian elimination. We replace the direct method by an inner iteration using a linear
iterative solver. For this purpose we consider three Krylov subspace iterative methods as inner
iteration methods: Orthomin, Generalized Minimal Residual and Squared Lanczos. In these
methods convergence is declared when the norm of the residual [|b —A4 Ay || is less than the
given tolerance e. If the inner iteration method does not converge within the maximum number
of steps allowed, then the Newton iteration is also considered to have failed.

The convergence of iterative methods can be accelerated by applying preconditioning to the
linear system. In preconditioning, we look for matrices P, such that

PA=I

or P A has clustered eigenvalues, and multiplication by P, is easy to perform. One type of
preconditioning is the incomplete LU (ILU(0)) factorization of A (see [39]). The matrix A4 is
written as A =LU + E, where L;;=U;;=01if 4,,=0, and E;; =0 if 4+ 0. The matrices L,
U are lower and upper triangular respectively and F is an error matrix. L and U are obtained
by applying Gaussian elimination only on the nonzero entries of 4. The L and U factors are
computed by the following algorithm.

Algorithm 3.0 (ILU(0) preconditioning).
(1) For i=1to N Do

(2) For j=1to N Do

(3) If A4;;+ 0 then

(4) 5,;=A,;— LMD U,

(5) If i>jthen L;;=s,;

6) If i<jthen U ;=s, /L,

EndIf

EndFor

Endfor

216 A.T. Chronopoulos, C.T. Pedro / Differential-algebraic and stiff ODEs

The preconditioning matrix is P, = (LU)~!. The matrix-vector multiplication by the precon-
ditioning matrix P.r consists of solving the two triangular systems Ly =r and Uv =7, where
the triangular matrices L and U are the incomplete LU-factors computed in Algorithm 3.0.
Solving this type of triangular linear systems on a supercomputer may be slow because the
operations involved are difficult to vectorize. We resolve this difficulty by using the vectorizable
ILU(0) preconditioning approach as proposed in [39].

We next describe the iterative methods that we implemented without the preconditioning
step for simplicity of notation.

3.1. Orthomin

The generalized conjugate residual method GCR (see [14]) for nonsymmetric linear systems
is generalization of the conjugate residual method CR for symmetric and positive definite
linear systems. The main difference between GCR and CR is in computing the direction
vectors. In GCR, the new direction vector is generated from the residual vector forcing
AA-orthogonality against all the preceding direction vectors. In CR, 4™4-orthogonality against
the immediately preceding vector suffices. The GCR method converges for 4 nonsymmetric
with its symmetric part positive definite (see [14]).

The Orthomin(k) method is a truncated version of GCR and requires the storage of k
direction vectors (see [14]). Let the residuals and direction vectors be denoted by r, and p,,
respectively. Let Ay’ be an initial guess (in solving (3.1)) and compute the initial residual
ro=b—A Ay{p.

The Orthomin(k) algorithm is given next.

Algorithm 3.1 (Orthomin(k)).

() py=r,

(2) Compute Ar,

For i = 0 Step 1 Until convergence Do
(3) ¢;=(r,, Ar)/(Ap,, Ap,)

(4) Ayr(uf?-)rl = Ayf(z?;) tcp;

(5) rip1=r—c;Ap,

(6) Compute Ar,, ,

(7N bj" = —(Ar,,,, Ap)/(Ap;, Ap)), j,<j<i, where j,=max(0, i —k + 1)
® pioy=ri + I bip;

9) Ap,,,=Ar;,, + L;_;biAp
EndFor

3.2. Generalized minimal residual (GMRES)

The GMRES algorithm for nonsymmetric linear systems was first introduced by Saad and
Schultz {34]. The Arnoldi method is used to form an orthonormal basis for the Krylov subspace
K, of dimension k generated by the basis {r,, A4r,,..., Ak‘lro}. GMRES then minimizes the
norm of the residual error over the subspace K,. GMRES(k) is a restarted form of the
algorithm using k direction vectors to approximate the solution. Let Ay(%) be an initial guess

A.T. Chronopoulos, C.T. Pedro / Differential-algebraic and stiff ODEs 217

(in solving (3.1)) and compute the initial residual r,=b —A4 Ay{7. We next give the algorithm
performing one cycle (consisting of k iterations) of GMRES(k).

Algorithm 3.2 (GMRES(k)).
(1) 4 =rg/” Fo I
Fori=1,2,...,k Do
(2) Compute Aq; _)
(3) §ip1=Aq,— Xi_ huq; with h;=(Aq;, q), j=1,2,...,i,
4 h’z-l-ll ”‘L+1”
() g1 = q1+1/ht+1,i
EndFor
(6) Form the approximate solution Ay{} = Q,z, + Ay, where Q,=1[q,,...,q;]
(7) Compute r, =b—A Ay{. _
The vector z, (of size k) minimizes J(z) = || llrylle, — H,z[l, where z € R* and e, =
[1,0,...,0]". If [Ir, |l > e, the algorithm restarts with ry=>b—A Ay{?.

The matrix ﬁk (of dimension {k + 1) X k) consists of the upper Hessenberg matrix I;fk
(generated by GMRES(k)) plus the additional (k + 1)st row whose nonzero element is A, ,
in the (k + 1, k) position. Minimizing the error functional J(z) is equivalent to solving

in|b— A Ay + :
zrg K, “ Yno Qk z] ” |
This linear least-squares problem is solved by use of the QR decomposition of the matrix ﬁk.
More details can be found in [34].

3.3. Squared Lanczos

The restarted squared Lanczos method {Sqlanczos) is based on the squared recurrences of
the biorthogonal Lanczos method for solving nonsymmetric linear systems [11]. Unlike the
biorthogonal Lanczos type methods (see [11]), SqLanczos does not require multiplication of the
transpose of Jacobian times a vector. In [11] it was proved that this method is more robust {(as it
has fewer non-breakdown conditions) than the Conjugate Gradient Squared method (CGS)
[38]. Let SqlLanczos(k) denote the restarted form of the method. It consists of two parts. The
first part consists of squaring the matrix polynomials, which represent the direction vector
recurrences in the biorthogonal Lanczos method. The second part consists of squaring the
matrix polynomials, which represent the residual and solution vector recurrences (see [11] for
details). Let Ay{%’ be an initial guess (in solving (3.1)) and compute the initial residual
ro=b-44 y("’) Let the “squared” biorthogonal Lanczos direction vectors and residuals be
denoted by g¢; and r;, respectively. We next give the algorithm performing one cycle (consisting
of k iterations) of the restarted squared Lanczos method.

Algorithm 3.3 (SqLanczos(k)).
Part I
(1) ¥1=0,g,=0
(2 py=qy=ro/llr,ll
Fori=1,...,k Do

218 A.T. Chronopoulos, C.T. Pedro / Differential-algebraic and stiff ODEs

(3) Compute Aq;, A%,

(4) ;= (qla qu)

(5) g;,=Aq; — a4,

(6) Ag, =A%, —a,Ag,

(7 i1 =AG;—a;q,+ 20,0, — 24p; + 7,4, 4

®) ¥iu1=(a1 d;41)

) gie1=Gi1/ Vi
(10) Div1=4d;— D
(11) Ap;,,=Ag,— Ap,
EndFor

Let T, equal the tridiagonal matrix [§,, |, «;, B8,,,), with @, from step (5), 8, = ly;, """

from step (8) and B, = §,, ;sign(y,, ;). Then we use QR decomposition to solve T, z, = |l ry |l e},
where e; =[1,0,...,0]". If T, is singular, then we reduce the size of the cycle to k — 1. It is
guaranteed that at least one of 7, or T, _, is nonsingular. Let i be the number of sign changes
in the sequence B;, for j=1,...,i (see [11].

Part 1I
(D wy=ry/lirgll, B, =0
Fori=1,...,k Do
(2) If i <1 goto (7)
(3) If 2 <i goto (5)
@) w,_=w,_,—z), A~ 1)(!'_2)514%_2
(5) Wiy =[Aw;_; —a,_yw;,_y — B, W, 11/8,
(6) w,=w,_; — 2z, (- 1)Ap,/B,
(7) Compute Aw,
(8) ri=r,_; =2z Aw, + (—1)s(z!)?4%q,
(9) Ay =Ay(™ |+ 228w, — (—1)(z! YAq,
EndFor

Parts I and II are one cycle of the method. If ||r, |l > ¢, the algorithm restarts a new cycle
with ry=r,.

4. DASSL

The Differential-Algebraic System Solver (DASSL) (see [3]) is a software package designed
to numerically solve systems of ODEs or systems of DAEs of index not exceeding one, written
in the form

F(t:v};s y’)=01 y(t(}):y[)y yr(t[]):yéa (4‘1)

where F, y and y’ are N-dimensional vectors. In the underlying theory (see [3,17,22,29]), the
derivative in (4.1) is replaced with a backward difference and then a nonlinear system of
equations is solved at the current time ¢, using the Newton method.

A.T. Chronopoulos, C.T. Pedro / Differential-algebraic and stiff ODEs 219

We next discuss the main aspects of DASSL: the time step advancement, stopping criteria
and our changes to incorporate linear iterative methods.

4.1. Time step procedure

The heart of DASSL is a procedure called DASTP which moves the solution ahead one time
step from ¢, to ¢, ;. This is achieved by applying a predictor-corrector BDF method of variable
order up to five to the system at ¢, in order to obtain a predicted value of y, and y/ at ¢, _,.

From the predicted value of y,, DASSL evaluates the Jacobian matrix (see (1.5)) using
divided differences. The corrector step uses an inexact Newton method with the standard
LINPACK Gaussian elimination routines to solve the system. DASTP allows no more than four
iterations of the Newton method before declaring the failure of the corrector step. The initial
vector y<” in Newton is chosen to be the predicted solution vector y(®.

DASSL uses the fixed-leading coefficients implementation of the BDF methods (see [23]).
DASSL chooses an order for the BDF and a step size h, based on the error in the solution. An
error estimate is obtained under the assumption that the last few time steps were taken at
constant stepsize, at the current order k, and orders at k, —2, k,, — 1 and &, + 1. If these
error estimates increase as &, increases, then the order is reduced; if they decrease, it is raised.
The new stepsize £, | is selected so that the error estimate computed under the assumption of
constant stepsizes h, ., at order k,, satisfies the error test. If the Newton iteration (which
solves the corrector equation) has not converged within four steps, the stepsize A, is reduced
and/or a new iteration matrix is formed based on the current approximations to y, and y’, and
the step is attempted again.

4.2. Stopping criteria for the corrector iteration
IDASSL uses two stopping criteria for the corrector step [3]:

4y < 100& [y, % |4yl <03, p<0.9, (4.2)

where y{™ is the Newton approximation to the corrected solution, A y{™ is the amount of
improvement of the solution in one Newton step, y® is the predicted solution, € is the
machine epsilon and

lay|)”’"
p = rate of convergence = | ————

|ay®]

Satisfying either criterion declares convergence of the corrector step. The first criterion is a
strict convergence test on Ay{™, requiring that the norm of Ay relative to the norm of the
predicted value of y, be less than 100 times the machine epsilon. The second is a looser
restriction based on the rate of convergence, requiring that the solution converges at a linear
rate.

220 A.T. Chronopoulos, C.T. Pedro / Differential-algebraic and stiff ODEs
4.3. Modifications to DASSL

In order to take advantage of the iterative methods, DASSL has been modified. In
particular, parts of the corrector step have been replaced with other subroutines or c¢liminated.
In place of the DASSL subroutine DASLV, which calls the LINPACK subroutines DGESL
and DGBSL to perform the Gaussian elimination for general and banded systems, iterative
methods as described in Section 3 are substituted. The stopping criteria (4.2) were changed to a
simple test of the norm of the (nonlinear) residual:
y n y n—1)

= <e, (4.3)

n

F(t,,, y,;,

where € is the tolerance for the solution of system of ODEs or DAESs.

The substitution of Gaussian elimination by iterative methods creates an additional conver-
gence test for the Newton method inner iteration. This stopping criterion was also based on the
(linear) residual norm:

trll <e.

The combination of these two stopping criteria has been used in [8] for a system of explicit stiff
ODE:s and seems to work well for our test problems. The choice of right preconditioning allows
the computation of the linear residual r;, instead of P.r, (which is computed by the left
preconditioning). However, scaled norms may have to be used as in the DASSL based on
Newton with LU decomposition. If the iterative method was unable to converge within the
maximum number of steps, taken to be 2VN , where N is the size of the Jacobian, the corrector
step is also considered to have failed. The number of allowable Newton iterations per time step
was also modified, increased from 4 to 6.

Since the iterative methods themselves have been enhanced to reduce memory storage {(using
only matrix-free matrix-vector operations), it is no longer necessary to directly compute the
Jacobian matrix J (1.5). Thus we have eliminated from the DASSL procedure DAJAC, which
forms the Jacobian and computes an LU decomposition using the LINPACK subroutines
DGEFA and DGBFA.

5. Numerical tests

To test the modifications of DASSL and the iterative methods, the following three test
problems were used. In the cases presented here, we used 2VN as the maximum number of
iterations allowed by an iterative method per call.

5.1. Heat equation

The first test problem is the linear two-dimensional heat equation as described in [20]:

du

Au=—,
ot

(5.1)

L SR N

A.T. Chronopoulos, C.T. Pedro / Differential-algebraic and stiff ODEs 221

on the unit square 2 ={(x,, x,): 0<x,; <1, 0<x, <1}, where u is the temperature distribu-
tion.
The initial temperature distribution was taken to be

1, (x;,x,)€,

5.2
0, (x5, x,)€00. 5-2)

Ug=

A uniform mesh and a five-point discretization were used to approximate the equation. We
experimented with v = 16, 32, 64 and 128 mesh points in each direction. This yields a system of
ODEs of dimension N = 2. An absolute tolerance of 10~% was used both by DASSL and the
iterative methods as a convergence criterion. This system of ODEs is linear. The Jacobian (see
(1.5)) for this problem is symmetric and positive definite. We used the ILU(0) preconditioning
described in Section 3. However, due to the preconditioning, the Jacobian times vector
products were not performed in a matrix-free fashion.

5.2. Predator—prey equation

The second test problem is based on a reaction-diffusion system arising from a Lotka—Vol-
terra predator—prey model in two dimensions as described in [4]. There are two species
variables c'(x,, x,, t) and ¢*(x,, x,, t), representing the prey and predator species densities
over the spatial habitat £ = {(x,, x,): 0<x,;<1,0<x,<1}, and time ¢ in seconds, 0 <?<3.

The equations used to represent this model (see [4]) are
ac’ 3t ¥ _
— (———+— +fich, e?), i=1,2,

ot N ox? ax?

fic, ey =cl(by—ac?), A, 2y =cP(b,—ayc'), (5.3)
d,=0.05, d,=1.0, b, =1, b,=-1000, ~ a,,=0.1, a, = —100.
The boundary conditions used are homogeneous Neumann:

ac’ ac’
6_x1=0’ on x;=0and x; =1, 5};=0, on x,=0and x,=1. (5.4)

The initial conditions used are chosen to be consistent with the boundary conditions

cl(x,, x,,0)=10~5 cos(wx;) cos(10mx,),

5.5
c?(x;, x5, 0) =17 + 5 cos(10wx,} cos{wx,). 5-5)

The boundary conditions were approximated by first- and second-order one-sided approxi-
mations. For example d¢’/dx, =0 on x; =0 is approximated by either |

ac’ ci{Axy, x5, t) — 0, x,, 1)
—(0, x,, t) = .
axl(%20 1) Ax, (5-6)

222 A.T. Chronopowlos, C.T. Pedro / Differential-algebraic and stiff ODEs

or

ac’ —3c¢H(0, x,, t) +4c(Axy, x,, 1) — (2 Axq, Xy, 1)
_(03 X2, I) = ’
dx, 2 Axy

where Ax;, for i =1, 2, is the mesh size in the x-direction.

A uniform mesh and a five-point discretization were used to approximate the partial
differential equation. We experimented with » = 16, 32 and 64 mesh points in each direction.
This yields a (nonlinear) system of ODEs of dimension N = 2v2. An absolute tolerance of 10~°
and relative tolerance of 10™* was used by DASSL, and a tolerance of 10~® was used in the
iterative methods convergence criterion.

5.3. Krogh equation

The third problem is an ODE model problem (see [20]) given by the following equations. Let

dz .
— = A7 +78(%), (5.7)
dt

where
=[2(1), 2(2),..., Z(N)]", (5.8)

A = Diag(5(:)) (where Diag(-) denotes a diagonal matrix), (§(£)(i) = 7(i)?, for i = 1,..., N,
and

5(1)=—1000, 5(2)=—800, &(3)=—500, &(4)= —300,
. —100(N —i+1) (5.9)

8(i)= N3 , fori=3.

We chose the initial values
FO=[-1, -1,...,-1]". (5.10)

The exact solution is given by

~5(i
z(i)(t) = @) (5.11)

7+ (i) e o0

where the constants c(i) satisfy the initial conditions.

The Jacobian (see (1.5)) for this system of ODEs is diagonal. We can transform this problem
to a system of ODEs with nonsymmetric Jacobian by use of the linear transformation y = BZ.
We consider the matrix

2
B=I——uwT, (5.12)

)

v e 3 i

A.T. Chronopoulos, C.T. Pedro / Differential-algebraic and stiff ODEs 223

where

u=10, 1,1,...,1]", wv=[1,1,1,...,1]". (5.13)
Then the system of ODEs (5.7) is transformed to

dy

E=F(y) = Ay +g(y), (5.14)
where

N N \ 2
g(y)(i)= E B(i,j)(E B(j,k)y(k)) >
=1 \k=1
A =B Diag(6()) B and B~!=B. Then the Jacobian 38F/dy of the transformed system of
ODE:s (5.14) equals B[Diag(8(i) + 22(i))]1B and it is nonsymmetric since B is nonsymmetric.

In our tests we experimented with the following dimensions: N = 162, 322, 64% and 1282 An
absolute tolerance of 107¢ was used in DASSL and in the iterative methods convergence
criterion.

6. Test results

All tests were run on a CRAY-2 supercomputer at the Minnesota Supercomputer Institute.
The CRAY-2 is a four-processor shared-memory machine. Each processor can execute inde-
pendent tasks concurrently. The CRAY-2 at the Minnesota Supercomputer Institute has 512
megawords of central memory. Each processor has cight 64-word vector registers and has data
access through a single path between its vector registers and main memory. Each processor has
16K words of local memory. There are also six parallel pipelines: common memory to vector
register, load /store vector register to local memory, load /store floating addition / subtraction,
floating multiplication / division, integer addition /subtraction, and logical pipelines. CRAY-2
uses 64-bit arithmetic. We compile our codes using the automatic vectorization option. We
measured the execution times using the timing facility of CRAY-2. Although our runs were not
performed in single user mode, we observed that more than 75% of a single processor CPU was
devoted to our execution. Thus the timings are expected to be about as accurate as if they were
performed in single user mode.

We tabulated the following measurements, which can be used to compare the three iterative
methods in terms of efficiency in computing the solution of the test problems. The following
abbreviations appear in the results tables.

Steps: the total number of successful step taken by the integrator.

F-S: the total number of function evaluations of F(t, y, y’).

Calls: the total number of calls to the iterative method.

Iter steps: the number of iterations by the iterative method.

Iter F-S: the number of function evaluations of F(¢, y, v’) done by the iterative method.

Time: CPU run time in seconds.

The following remarks can be made about the results tabulated. For each test problem, we
ran Orthomin(k) (with k =1, 2, 4) and the restarted methods GMRES(k) and SqLanczos(k)

224 A.T. Chronopoulos, C.T. Pedro / Differential-algebraic and stiff ODEs

Table 1

Heat equation without ILU(0) precond; N = 256 (16 X 16 mesh)

Method Steps F-§ Calls Iter steps Iter F-3 Time
QOrthomin(1) 179 997 179 818 818 0.331
GMRES(4) 177 1443 178 1012 1265 0.294
GMRES(8) 177 1798 178 1440 1620 0.396
SgLanczos(2) 177 2746 178 642 2568 0.397
SqLanczos(4) 177 3244 178 876 3066 0.479
SqLanczos(8) 177 4806 178 1424 4628 0.608
Table 2

Heat equation with ILU(0) precond; N = 256 (16 X 16 mesh)

Method Steps F-§ Calls Iter steps Iter F-S Time
Orthomin(1) 177 601 178 423 423 0.348
GMRES(4) 177 1083 178 724 905 0.522
GMRES(8) 177 1780 178 1424 1602 (.838
SgLanczos(2) 177 1754 178 394 1576 0.628
SqLanczos(4) 177 2684 178 716 2506 0.948
SqLanczos(8) 177 4806 178 1424 4628 1.654

(with cycle sizes k =2, 4, 8). Other values of k=1, 2,...,10 were tried but they were not
tabulated because the results did not differ significantly from the ones presented here. The
largest cost in the iterative methods is due to matrix-vector products (Matvec) expressed as

Table 3

Heat equation without ILU(0) precond; N = 1024 (32x 32 mesh)

Method , Steps F-§ Calls Tter steps Iter F-§ Time
Orthomin(1) 206 1847 209 1038 1038 1.130
GMRES(4) 206 3184 209 2380 2975 1.320
GMRES(8) 206 2837 209 2336 2628 1.584
SgLanczos(2) 206 5177 - 209 1242 4968 2.070
SqLanczos(4) 206 5585 209 1536 5376 1.776
SgLanczos(8) 206 7385 209 2208 7176 2.568
Table 4

Heat equation with ILU(0) precond; N = 1024 (32 x 32 mesh)

Method Steps F-§ Calls Iter steps Iter F-8 Time
Orthomin(1) 206 911 209 702 702 1.236
GMRES(4) 206 1454 - 209 996 1245 1.596
GMRES(8) 206 2099 209 1680 1890 2.166
SqLanczos(2) 206 2626 209 604 2416 2.099
SqLanczos(4) 206 3373 209 904 3164 2.698

Sql.anczos(8) 206 5721 209 1696 5512 4.167

8 B Y

A.T. Chronopoulos, C.T. Pedro / Differential-algebraic and stiff ODEs 225

Table 5

Heat equation without TLU(0) precond; N = 4096 (64 X 64 mesh)

Method Steps F-S Calls Iter steps Iter E-S Time
Orthomin(1) 226 3226 226 3000 3000 6.017
GMRES(4) 226 6426 226 4960 6200 7.267
GMRES(R) 226 4762 226 4032 4536 6.986
SqLanczos(2) 226 9498 226 2318 9272 10.644
Sqglanczos(4) 226 9046 226 2520 8820 11.527
SqLanczos(8) 226 10704 226 3224 10478 11.525
Table 6 :

Heat equation with ILU(Q) precond; N = 4096 (64 X 64 mesh)

Method Steps F-§ Calls Iter steps Iter F-S Time
Orthomin(1) 226 1386 226 1160 1160 6.064
GMRES(4) 226 2131 : 226 1524 1905 7.732
GMRES(8) 226 2512 226 2032 2286 8.076
SqLanczos(2) 226 3954 226 932 3728 9.101
Sqlanczos(4) 226 4594 226 1248 4368 12.007
SqLanczos(8) 226 7324 226 2184 7068 17.668

function evaluations (see (2.1)). Orthomin and GMRES require one Matvec/ iteration whereas
Sqlanczos requires three Matvec/ iteration. Both Orthomin and GMRES reduce smoothly the
norm of the linear residual whereas SqlLanczos does not (see [11]). For all the test cases the

Table 7

Heat equation without ILU(0) precond; N = 16384 (128 X 128 mesh)

Method “Steps F-S Calls Iter steps Iter F-§ Time
Orthomin(1) 254 6693 256 6437 6437 37.191
GMRES(4) 260 34066 266 27040 33800 161.964
GMRES(8) 254 13720 256 11968 13464 77.239
SqLanczos(2) 254 20800 256 5136 20544 88.026
Sqlanczos(4) 254 18862 256 5316 18606 80.509
SqLanczos(8) 254 19600 256 5052 19344 85.877
Table 8

Heat equation with ILU®) precond; N = 16384 (128 <X 128 mesh)

Method Steps F-S T Calls Iter steps Iter F-§ Time
Orthomin(1) 254 2571 256 2315 2315 31.698
GMRES®4) 254 4391 256 3308 4135 42.590
GMRES(8) 254 4063 256 3384 3807 41.484
SgLlanczos(2) 254 7384 256 1782 7128 55.923
SgLanczos(4) 254 7746 256 2140 7490 60.214

SqLanczos(8) 254 ' 10110 256 3032 9854 78.487

226 A.T. Chronopoulos, C.T. Pedro / Differential-algebraic and stiff ODEs

Table 9

Predator—prey equation with first-order boundary conditions; N = 512 (16 X 16 mesh)

Method Steps F-S Calls Iter steps Iter F-S Time
Orthomin(1) 1240 7639 1278 6366 6361 4.295
Orthomin(2) 1249 6633 1280 5353 5353 4.025
Orthomin{(4) 1224 6582 1258 5324 5324 4.018
GMRES(4) 1254 9087 1287 6240 7800 4.181
GMRES(8) 1235 12700 1270 10160 11430 5.903
SqLanczos(2) 1230 21678 1262 5104 20416 7.813
SqLanczos(4) 1242 343841 1269 9592 33572 12.185
Sql.anczos(8) 1234 63355 1267 19104 62088 21.476
Table 10

Predator—prey equation with second-order boundary conditions; N = 512 (16X 16 mesh)

Method Steps F-§ Calls Iter steps Iter F-S Time
Orthomin(1) 1142 8509 1151 7358 7358 4.561
Orthomin(2} 1143 8226 1148 7075 7075 4.696
Orthomin(4) 1143 8002 1149 6853 6853 4.814
GMRES(4) 1143 11622 1147 8620 16775 4.953
GMRES(8) 1142 12044 1145 9688 10899 5.503
SqLanczos(2) 1142 23037 1149 5472 21888 8.045
SqLanczos(4) 1142 31063 1145 8548 20918 10.738
SqLanczos(8) 1142 55199 - 1145 16632 54054 18.207

execution time for Orthomin and GMRES are comparable and much less than that of
SqLanczos. However, the Sqlanczos gives the smallest number of iterations. We next make
some observations on the results obtained from each test problem.

(1) The heat equation (Tables 1-8). The system of ODBEs is linear and stiff and the Jacobian
(see (1.5)) is symmetric and positive definite. The preconditioning in this case becomes the
incomplete Cholesky instead of ILU. Due to the ILU(0) computations, the Jacobian times
vector products were not performed in a matrix-free fashion. For symmetric (positive definite)
linear systems, Orthomin{k) with 1 < k reduces to CR. In this case the preconditioned CR is

Table 11

Predator—prey equation with first-order boundary conditions; N = 2048 (32 x 32 mesh)

Method Steps F-S Calls Iter steps Iter F-S Time
Orthomin{1) 1271 21939 1388 20603 20551 28,080
Orthomin(2) 1il6 13199 1168 12038 12031 19.069
Orthomin(4) 1103 10754 1163 9591 0591 17.237
GMRES®4) 1104 16576 1146 12344 15430 18.869
GMRES(8) 1096 13427 1133 10928 12294 17.151
SqLanczos(2) 1104 35067 1147 8480 33920 33.151
Sqlanczos(4) 1103 40217 1143 11164 39074 37.890

SgLanczos(8) 1103 59147 1141 17848 58006 55.119

i

A.T. Chronopoulos, C.T. Pedro / Differential-algebraic and stiff ODEs 227

Table 12

Predator—prey equation with second-order boundary conditions; N = 2048 (32X 32 mesh)

Method Steps E-S Calls Iter steps Iter F-S Time
Orthomin(1) 811 14163 831 13333 13332 17.343
Orthomin(2) 811 13087 831 12257 12256 17.726
Orthomin{4) 811 12119 825 11295 11294 18.703
GMRES(4) 809 19594 814 15024 18780 21.867
GMRES(8) 809 16345 811 13808 15534 21.386
SqLanczos(2) 809 39548 828 9680 38720 40.552
Sqlanczos(4) 809 39819 815 11144 39004 40.473
SqlLanczos(8) 809 54897 817 16640 54080 50.457
Table 13

Predator—prey equation with first-order boundary conditions; N = 8192 (64 X 64 mesh)

Method Steps F-S Calls Iter steps Iter F-S Time
Orthomin(1) 1310 64312 1480 62914 62832 222.088
Orthomin(2) 1282 51165 1452 49784 49713 199.093
Orthomin(4) 1082 24535 1162 23378 23373 117.297
GMRES(4) 1102 69914 1219 54956 68605 200.381
GMRES(8) 1081 30643 1123 26240 29052 108.511
SqLanczos(2) 1079 77043 1267 18944 75776 222.854
SqLanczos(4) 1075 75936 1134 21372 74802 219.623
Sqlanczos(8) 1075 101309 1131 30824 100178 289.464

the optimal Krylov subspace method for solving such linear systems. Also, GMRES(k) reduces
to the restarted CR, which (for k small} is less efficient than standard CR. The use of
preconditioning reduces by about 50% the number of iterations and total function evaluations.
However, the reduction in total execution time varies in each case. Modest reduction is
observed in Orthomin(1), while higher reduction is observed in SqlLanczos and GMRES (e.g.,
for N =1282%). This happens because (in the unpreconditioned case) for large Jacobian
dimension the cycles of size k =2, 4, 8 are too small and several cycles are spent in order to
obtain a small linear residual error.

Table 14

Predator-prey equation with second-order boundary conditions; N = 8192 (64 X 64 mesh)

Method Steps F-§S Calls Iter-steps Iter F-S Time
Orthomin(1) 892 32284 951 31340 31333 128.781
Orthomin(2) 875 29923 935 28991 28988 126.329
Orthomin(4) 370 27124 920 26206 26204 137.231
GMRES(4) 868 57756 911 45476 56845 170.557
GMRES(8) 868 37055 875 32160 36180 129413
Sqlanczos(2) 868 83280 1176 20526 82015 239.965
SqLanczos(4) 868 80387 979 22688 79408 235.914

SqLanczos(8) 868 96405 907 29384 95498 281.423

228 A.T. Chronopoulos, C.T. Pedro / Differential-algebraic and stiff ODEs

Table 15

Krogh equation with ¥y =0; N =256

Method Steps F-S Calls Tter steps Iter F-S Time
Orthomin(1) 176 844 177 667 667 0.320
Orthomin(2) 176 844 177 667 667 0.316
Orthomin{4) 176 843 177 666 666 0.320
GMRES(4) 176 1322 177 916 1145 0.343
GMRES(8) 176 1770 177 1416 1593 0.481
SqLanczos(2) 176 2425 177 562 2248 0.468
Sql.anczos(4) 176 3075 177 828 2898 0.594
SqLanczos(8) 176 4805 177 1424 4628 0.880
Table 16

Krogh equation with ¥ =0; N =1024

Method Steps F-§ Calls Iter steps Iter F-S Time
Orthomin(1) 168 855 169 686 686 0.809 .
Orthomin(2) 168 853 169 684 684 0.872
Orthomin{4) 168 854 169 685 685 (.853
GMRES(4) 168 1309 169 912 1140 0.945
GMRES(8) 168 1690 . 169 1352 1521 1.368
Sql.anczos(2) 168 2433 169 566 2264 1.450
SqLanczos(4) 168 2997 169 808 2828 1.766
SqLanczos(8) 168 4563 169 1352 4394 2.113

(2) The predator—prey equation (Tables 9-14). The system of ODEs is nonlinear and stiff (see
[4D and the Jacobian (see (1.5)) is nonsymmetric. Since this problem is nonlinear and the
Jacobian times vector operations are performed in a matrix-free fashion, we did not implement
the ILU preconditioning for this problem. The second-order approximation to the boundary
conditions seems to give the best performance results. This is expected as the partial derivatives
are also discretized using second-order differences.

(3) Krogh’s ODE model equation (Tables 15-22). This system of ODES is {(non)linear and
stiff. Since the Jacobian is mildly nonsymmetric, the Orthomin method is the most efficient for

Table 17

Krogh equation with ¥ = (; N = 4096

Method Steps F-§ Calls Iter steps Iter F-8 Time
Orthomin(1) 162 895 164 731 731 2.786
Orthomin(2) 162 893 164 729 729 2.696
Orthomin(4) 162 804 164 730 730 2.867
GMRES(4) 162 1409 164 996 1245 2.052
GMRES(8) 162 1649 164 1320 1485 3.801
SqLanczos(2) 162 2508 164 586 2344 4385
Sql.anczos(4) 162 3076 164 832 2912 5.342

SqLlanczos(8) 162 4480 164 1328 4316 7.369

L e g <

e R a bR

A.T. Chronopoulos, C.T. Pedro / Differential-algebraic and stiff ODFEs 229

Table 18

Krogh equation with ¥ =0; N =16384

Method Steps F-S Calls Iter steps Iter F-S Time
Orthorin(1) 158 890 159 731 731 9.727
Orthomin(2) 158 891 159 732 732 10.687
Orthomin(4) 158 891 159 732 732 10.716
GMRES(4) i58 1475 160 1052 1315 12.196
GMRES(8) 158 1627 160 1304 1467 13.685
SqLanczos(2) 158 2583 159 606 2424 17.832
SgLanczos(4) 158 3072 160 832 2912 20.051
SgLanczos(8) 158 4372 160 1296 4212 26.121
Table 19

Krogh equation with ¥ =1; N =256

Method Steps F-S Calls Iter steps Iter F-§ Time
Orthomin(1) 176 905 206 699 699 0.353
Orthomin(2) 176 905 206 699 699 0.363
Orthomin(4) 176 903 206 697 697 0.367
GMRES(4) 176 1474 204 1016 1270 0.421
GMRES(8) 176 2030 203 1624 1827 0.562
SqLanczos(2) 176 2684 204 620 2480 0.601
SqLanczos(4) 176 3521 203 948 3318 0.697
SqLanczos(8) 176 5507 203 1632 5304 1.140
Table 20

Krogh equation with ¥ = 1; N=1024

Method Steps F-S Calls Iter steps Iter F-S Time
Orthomin(1) 169 926 203 723 723 0.848
Orthomin(2) 169 932 203 729 729 0.972
Orthomin(4) 169 928 203 725 725 0.948
GMRES®#4) 169 1544 204 1072 1340 1.221
GMRES(8) 169 2040 204 1632 1836 1.606
Sqlanczos(2) 169 2807 207 650 2600 1.596
SqLanczos(4) 169 3622 206 976 3416 1.886
SqLanczos(S) 169 5535 205 1640 5330 2.898
Table 21

Krogh equation with ¥ = 1; N = 4096

Method Steps F-S Calis Iter steps Iter F-S Time
Orthomin(1) 163 1005 219 786 786 3.169
Orthomin(2) 163 1004 219 785 785 3.505
Orthomin{4) 163 1008 219 789 789 3.206
GMRES(4) 163 1767 217 1240 1550 4.135
GMRES(8) 163 2159 215 1728 1944 5.385
SqLanczos(2) 163 2992 216 694 2776 5.806
SqLanczos(4) 163 3898 216 1052 3682 7.263

SqLanczos(8) 163 6014 216 1784 5798 10.805

230 AT Chfonopoulos, C.T. Pedro / Differential-algebraic and stiff ODEs

Table 22

Krogh equation with y=1; N =16384

Method Steps F-S Calls Iter steps Iter F-S Time
Orthomin(1) 158 1024 229 795 795 12.061
Orthomin{(2) 158 1024 229 795 795 11.829
Orthomin{(4) 158 1024 229 795 795 13.970
GMRES#) 158 1840 230 1288 1610 16.962
GMRES(8) 158 2299 229 1840 2070 22.204
SqLanczos(2) 158 3152 232 730 2920 24.446
SqlLanczos(4) 158 4053 231 1092 3822 29.604
SgLanczos(R8) 158 6366 230 1888 6136 45.506

both the linear and the nonlinear case. The number of function evaluations for the nonlinear
case Is higher than the linear case for all three methods (as expected).

7. Conclusions

We reviewed past research results in the area of iterative methods applied to large and
sparse linear systems arising in the numerical integration of systems of stiff ODEs. We discuss
the problem of using inexact Newton coupled with iterative methods in the numerical solution
of systems of DAEs. We incorporated in a ODEs or DAEs code (DASSL) an inexact Newton
method coupled with three iterative methods (Orthomin(k), GMRES(k) and SqLanczos(k)).
We also included ILU(0) preconditioning for linear systems of ODEs. We tested this modified
code on three problems which are systems of stiff ODEs.

In almost all tests, Orthomin needed the fewest number of total function evaluations and
required the least amount of CPU-time. It was only in the nonlinear predator—prey test
problem with first-order boundary conditions and 32 X 32 or 64 X 64 mesh points that GMRES
became comparable to Orthomin. Other than this case, Orthomin was more efficient than
GMRES and Sqlanczos in total evaluations and CPU-time. Similarly, GMRES was more
efficient than Sqlanczos. SqlLanczos gave the lowest total number of iterations. However, in
SqLanczos three Matvec/iteration are performed versus one Matvec/iteration for either
Orthomin or GMRES. This accounts for the low efficiency demonstrated by SqLanczos. One of
the reasons for the superior efficiency of Orthomin is due to the fact that the Jacobian in these
test problems is very close to symmetric. For symmetric (positive definite) linear systems
Orthomin reduces to CR. Also, the restarted GMRES(k) reduces to restarted CR, which (for
small k) is not as efficient as CR.

The addition of the incomplete Cholesky preconditioning in the heat equation test problem
resulted in a decrease in both the total number of iterations, and the number of function
evaluations performed by the iterative method of 30-70%. The CPU run time increased in all
cases except for the largest dimension (128 X 128 mesh points). The CPU run time is expected
to further decrease for larger dimensions.

Acknowledgements

The authors thank the anonymous referees whose comments helped enhance significantly
the quality of presentation of this article.

iy

SN

A.T. Chronopoulos, C.T. Pedro / Differential-algebraic and stiff ODEs FAY

References

[1] O. Axelsson, A generalized conjugate gradient, least square method, Numer. Math. 51 (1987) 209-227.

[2] D. Boley, S. Elshay, G.H. Golub and M.H. Gutknecht, Nonsymmetric lLanczos and finding orthogonal
polynomial associated with indefinite kernels, Numer. Algorithms 1 (1991} 21-43.

[3] K.E. Brennan, S.L. Campbell and L.R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Alge-
braic Equations (Elsevier, New York, 1989).

{4] P.N. Brown and A.C. Hindmarsh, Matrix-free methods in the solution of stiff systems of ODEs, SIAM J. Numer.
Anal. 23 (3) (1986) 610-638.

[5] P.N. Brown and A.C. Hindmarsh, Reduced storage matrix methods in stiff ODE systems, Appl. Math. Comput.
31 (1989) 40-91.

[6] G.D. Byrne, Pragmatic experiments with Krylov methods in the stiff ODE setting, in: J. Cash and I. Gladwell,
eds., Numerical Ordinary Differential Equations (Clarendon Press, Oxford, to appear); also: Invited talk at the
IMA. Conf. on Computational ODEs, Imperial Coliege, London, 1989.

[71 T.F. Chan, L. De Pillis and H. van der Vorst, A transpose-free squared Lanczos algorithm and application to
solving nonsymmetric linear systems, Tech. Report CAM 91-17, Univ. California, Los Angeles, 1991.

[8] T. Chan and K. Jackson, The use of iterative linear-equation solvers in codes for large systems of stiff IVPs for
ODESs, SIAM J. Sci. Statist. Comput. T (2) (1986) 378-417.

[5] A.T. Chronopoulos, s-step iterative methods for (non)symmetric (in)definite linear systems, SIAM J. Numer.
Anal. 28 (6) (1991} 1776-1789.

[10] A.T. Chronopoulos, Nonlinear CG-like iterative methods, J. Comput. Appl. Math. 40 (1) (1992) 73-89.

[11] A.T. Chronopoulos, On the squared unsymmetric Lanczos method, J. Comput. Appl. Math. (1994), to appear;
also: Tech. Report UMSI 91/310, Supercomputing Inst., Univ. Minnesota, 1991.

[12] P. Concus, G.H. Golub and D.P. O’Leary, A generalized conjugate gradient method for the numerical solution
of partial differential equations, in: J.R. Bunch and D.J. Rose, eds., Sparse Matrix Computations {Academic
Press, New York, 1976) 309-322.

{13] R.S. Dembo, S.C. Eisenstat and T. Steihaug, Inexact Newton methods, SIAM [Numer. Anal. 19 (1982)
400-408.

[14] S.C. Eisenstat, H.C. Elman and M.H. Schultz, Variational iterative methods for nonsymmetric systems of linear
equations, SIAM J. Numer. Anal. 20 (1983) 345-357.

[15] R.W. Freund, A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems, Tech.
Report 91.18, NASA Ames Research Center, Moffett Field, 1991.

[16] R.W. Freund and N.M. Nachtigal, OMR: A quasi-minimal residual method for non-Hermitian linear systems,
Numer. Math. 60 (1991) 315-339.

[17] C.W. Gear, Simultaneous numerical solution of differential algebraic equations, JIEEE Trans. Circuit Theory
CT-18 (1) (1971) 89-95.

[18] C.W. Gear, Numerical Initial Value Problems in ODEs (Prentice-Hall, Englewood Cliffs, NJ, 1971).

[19] C.W. Gear and L. Petzold, ODE methods for the sotution of differential algebraic systems, SIAM J. Numer.
Anal. 21 (1984) 716-728.

[20] W. Gear and Y. Saad, Iterative solution of linear equations in ODE codes, SIAM J. Sci. Statist. Comput. 4
(1983) 583-601.

[21] M.H. Gutknecht, The unsymmetric Lanczos algorithms and their relations to Padé approximation, continued
fractions and the QD algorithms, in: T.A. Manteuffel, ed., Proc. Copper Mountain Conf. on Iterative Methods,
Univ. Colorado, Denver, CO (1990).

[22] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems,
Comput. Math. 14 (Springer, New York, 1991).

[23] K.R. Jackson and R. Sacks-Davis, An alternative implementation of variable step-size multistep formulas for
stiff ODEs, ACM Trans. Math. Software 6 (3) (1980) 295-318.

[24] K.R. Jackson and W.L. Seward, Adaptive linear equation solvers in codes for large stiff ODEs, Tech. Report
(S-91-33, Dept. Comput. Sci., Univ. Waterloo, Ont., 1991,

[25]1 C. Johnson, Error estimates and adaptive time-step control for a class of one-step methods for stiff ordinary
differential equations, SIAM J. Numer. Anal. 25 {1988) 908-926.

[26] W.D. Joubert, Generalized gradient and Lanczos methods for the solution of nonsymmetric systems of linear
equations, Report CNA-238, Univ. Texas, Austin, 1990.

{
[|

232 A.T. Chronopoulos, C.T. Pedro / Differential-algebraic and stiff ODEs

[27] S.K. Kim and A.T. Chronopoulos, An efficient nonsymmetric Lanczos method on parallel vector computers, J.
Comput. Appl. Math. 42 (3) (1992) 357-374.

[28] F.T. Krogh and K. Stewart, Asymptotic absolute stability (A 5) for BDFs applied to stiff differential
equations, ACM Trans. Math. Software 10 (1984) 45-56.

[29] P. Lotstedt and L.R. Petzold, Numerical solution of nonlinear differential equations with algebraic constraints
I: Convergence results for backward differentiation formulas, Math. Comp. 46 (1986) 491~516.

{301 T.A. Manteuffel, The Tchebyshev iteration for nonsymmetric linear systems, Numer. Math. 28 (1977} 307-327.

[31] W.L. Miranker and IL. Chern, Dichotomy and conjugate gradients in the stiff initial value problems, Tech.
Report RC 8032, IBM, T.]. Watson Research Center, 1980.

[32] B.N. Parlett, D.R. Taylor and Z.A. Liu, A look-ahead Lanczos algorithm for unsymmetric matrices, Math.
Comp. 44 (1985) 105-124.

[33] G. Rockswold and A. Chronopoulos, Implementation of some matrix-free iterative methods in stiff ODE codes,
Tech. Report UMSI 96 /16, Supercomputing Inst., Univ. Minnesota, 1991.

[34] Y. Saad and M. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear
systems, SI4AM J. Sci. Statist. Comput. 7 (1986) 856—869.

[35] P.E. Saylor and R.D. Skeel, Linear iterative solvers for implicit ODE methods, Tech. Report 90-51, ICASE,
NASA Langley Research Center, 1990. ‘

[36] L.F. Shampine, Implementation of implicit formulas for the solution of ODEs, SIAM J. Sci. Statist. Comput. 1
(1) (1980) 103-118.

{371 R.D. Skeel, Computational error estimates for stiff ODEs, in: Computational Mathematics I {(Boole, Dublin,
1985) 1-20.

[38] P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric systems, SIAM Sci. Statist. Comput. 10 (1989)
36-52.

[39] H. van der Vorst, A vectorizable variant of some ICCG methods, SIAM Sci. Statist. Comput. 3 (3) (1982)
350-356.

[40] H. van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 13 (2) (1992) 631644,

[41] O. Widlund, A Lanczos method for a class of nonsymmetric systems of linear equations, SIAM J. Numer. Anal.
15 (1978) 801-812.

[42] D.M. Young and K.C. Jea, Generalized conjugate gradient acceleration of nonsymmetrizable iterative methods,
Linear Algebra Appl. 34 (1980) 159-194.

B

