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Abstract. Muliproccssor awvchitecturss cofabining vector and paraliel processing capabilities on a ywo-dovel
Mmmmmmewlmmﬁmmw
algarithims possess good dace locality in onder 1o achieve high performance extes. The s-step Comjugate Gradient
mmm.mamwmmﬁmwmmmmpm
propertics. Heen we show how to implemant efficiently the Ineemplote Cholorky and Polynoemial Procondition-
ing with »-CG on multiproocssors with memory Metscchy.

of preconditicaing, ALLIANT FX. /2,

1. Introaduction

Memory contention on shared memary machines constitutes a severs bottlensck for achiey-
irg the maximum performance. The algorithm ghould not only lend itself to vectorization and
parallsization but it must provide good data locality; that is, the organization of the algorithm
thould be such that the data can be kept as long as possible in fast registers or local mamaories
and hgve many arithmetic operations performed on them. A good First measure of the data
locality of a set of vector operations is the size of

Ratio = {(Memary References) /(Floating Point Operations). (1.1)
The data locality of the computation is good if this ratio is much less than one.

Some dense linear algebra algorithms for efficient use of local memaries have been studisd
in, [6,9]. Here we are concerned with aigorithms for larga sparse problems. We consider the ose
of preconditioned conjugate gradient methods in approximating the solution of a sparse N X N
symmetric and positive definite (SFD) linear system of equations

Axm=f, (1.2)
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The multiprocessor implementation of CG bas two difficulties in achieving high speedups.
Firstly, the inner products in each iteration require synchronization of all the processors in a
paralief system. Secondly, temporary vectors are moved very frequently (even within one
iteration) between the global memary and the local memaries of the processors. Van Roeendale
[£9] studied the data dependencies of inner products in OG and vsed yecursive formuias to
precompute the ioner products of an iteration from parameters computed in past iterations.
Barkai et al [2] and Saad [14] present a meodificstion of the CG algorithm which does one
sweep of the global memory per iteration.

In [4] we obtained on s-step form of the Hestenes and Stiefel OG 8] which does cne memary
swoep per » CG iterations and allows simultaneous execution of the 25 required inner pracucts.
In the s-O(G iteration » new directions are formed simultanecusy from {r, ar,..., 4"~ 'r} and
the preceding x directions. All r directions are chosen to be A-arthogonel to the preceding «
directions. The approximation to the solution is then advenced by minimizing an emror
functional simultanecusly in sll 5 directions. This intoitively means that the progress towards
the solution in one iteration aof the s-step method equals the progress made over » consecutive
steps of the ane-step method. This is proven to be true. If the matrix is banded the s-step
method can be organived so that only one global memory sweep is required to complete one
atep of 8-CG (or & successive steps of OG). This means that one of the reasons that this methad
is faster than the standard OF is the efficient use of the fast local memories in A memary
hierarchy system,

We shotld point out that the s-atep CG is different from two iterative methods with which it
may seem to overlap in the goals achieved. These methods are the block CG [13] and the
Lanczos glgorithm for solving linear systems [15]

The block CG is used to sodve AX' = B with dimensior of X = ¥ X m. Thix, for exempie, is
thecauwthGuusudtomivedx=bfarmnghb—hnndudu.'meutanGuapphndw
solve the Enear system with 4 single right-kand side.

In the Lanczos method on orthonormal basie ¥, = [vy, ..., 4.} it build for the Krylov space
{rg, Ary, ...} starting from the residual vector r, =5 — Az At the same time the symmetric
tridiagonal reduction matrix 7, of the matrix A is formed. After convergence is reached the
approximate solution is obtained by inverting the tridiagons] reduction matrix. The size of the
matrix is approximasely equal to the total number of steps in O using the same stopping
criterion. Details can be fonnd in [15] The Lanczos algorithm forms zerizlly the wectors
Uy J=1,..., m using & matrix multiply with the preceding vector and two inner products per
iteration. Thus it has the same shortcomings for paralle]l processing as the standard CG
method.,

Our main goal in this paper is show that the preconditionsd »-CG method can be efficiently
implemented so that only one global memory sweep (per ¢ C(F iterations) is required. We use
miethod comphtes

(Ko, (RAYEn, . (KA 7 K ) (1.3)

with X~ 4~! at each iteration. For the polynomial preconditioner [10,14], we show that this
caomputstion can be organized in a way similar to the plain »CG because X is simply a
polynomial expression A. However, for the Incomplete Cholesky (IO [17,15] thix i not the
case even for the vectorizable incomplete Cholesky preconditioner (VICP). The fact that in Xu
there is & forward siep whach must be completed before the backward step can start prevents
computing (1.3) with only ope main memory sweep. This motivated us to extend (VICP) to a
omnpl.ewlypuallelprmndmomr Although we have considered three distinet preconditioners
(VICP, PICP, PP} in the theoretical implementation study we only include numerical experi-
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ments with VICP and PICP. We impiementsd PICPE only with CG to show that it is an effective
i
It should be noted that the preconditioned s-step OF is different from the m-step precondi-
tioned CG [I], In the latter, the preconditioner has the form X=([+ G+ --- + ™" 1) p!
with G= P! and A =P — is a splitting of 4.

2. A model problem

Large, sparse, and atructured finear systerns arise frequently in the numerical integration of
partial differential equations (FDEs). Thos we horrow our model problems from, this ares. Let
us consider the second-order elliptic PDE in two dimensions in a rectenguler domain 3 in R?
with homogeneaus Dirichlet boundary conditions:

~{mu,), — (ba,}, + (o) + (Bhu), + =g (2.1}

where u=H on 84, and a(x, p), b(x, y), e(x, y), e(x, y) f(x, y) and g(x, y) are suflfi-
ciently smooth functions defined on 2, and a, 5> Q, ¢ > 0 om §2. If we discretize (2.1} using the
five-point centered difference scheme o a uniborm X » grid with k= 1/(n + 1), we obtam a
linsar syatem of equations

Ax=-f

aof order N =n? It e(x, y)=h(x, )=, then (2.1) is self-adjoint and A is symmstyic and
weakly disgonally dominant {181 If we use the natural ordering off the grid points, we get a
biock imidiagonal metrix of the form

A=[C 1, T, G}, 1kkxn,
where T, C, are matrices of order »; and €, = G, = 0. The blocks have the form
C _diq[ci"" ckl '[b* 1a afk:l bik]: 1‘:’-‘":

with ¥ <0, o <0, B =8=0, and a* >0,

Suppose the three-dimensional problem were considered with 7-point [ne discretization and
with natural ordering applied to the planes and to the discretization points in each plene, The
matrix A would then be symmetric, weakty diagonally dominant, block tridiagonal of order »’
and have the form

A= [‘Dh j_"k. DI']’ I1ck=<n,

where, Dy = diagldf,..., dj] with 4} <{ and the blocks T, have the form of the matrix far
the 2.D case (just dizcuzzed).

3. The preconditioned conjugate gradient method

If X is a symmetric and positive definite matrix, then appiying the conjugate gradient
method to the transformed system [KV24K /21K 12 = K'/2f gives rise to the following
algorithm. The matrix I{'ucalledthepmnondmonmgmunxmdmsekcwdumappm
tiom to the inverse of A.
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Algorithm 3,5, The preconditioned conjugate graditent method (PCG).
Po=Kny=K(f— Ax,)

2

3. a=(x, Kn)/(p. 4p,)

4 X, =xtd,p

5. nyy=r—adp,

6. Compute (v,.1, &7%,.,)

7 b,"‘(?}.,,], K"!‘t*l}f(rh Xr)
B Py =&n, +bp

Storage is required for the entire vectors x, Xr, p, 4p and maybe the mawix 4 (or X).
Note that steps 2 and 3 must be coropleted before steps 4 and 5, and steps 6 and 7 moust be
cormpletsd before step 8. This foroes double access of vectars r, p, Ap from the main memory
at each CG3 srep.

Al the ith step the residual error E(z) = (k—x, A(k — X)), where h = A™Y/, i3 minimized
aver the transleted i-dimengional Krylov subspace x, + { Kiy,..., KA~ 'y ). Thus comvergence
occurs (in infinite arithmetic) in &t most N itermions. 'I'hl:purpouofpmoondmnmngu to
dmumewknoededmmlwﬁwsﬁmmnumnpklhudlfkusgmdtppmmm-
tion to the inverse of A because the preconditioned system has smaller condition mumber than
the original system. We note that the mmber of iterations required for convergance does not
exoeed the degree of the misimal polynomizl of 7, and CG tends to treat tight clasters ¥s single -
eigenvalties, Hence, 2 good preconditioner should aiso group the cigenvaiues of 4 into tight
clustexs. The preconditioned systam requires fewer steps to comvergence. This is also good for
stebility because fewer direction vectors must be generated.

The sequential and paraliel complexity of a single step of OG for the 2-D and 3-D madel
problem is shown in Tabie 1 (1, = the number of nonzerp diagomals of 4), For the matrix X
we assume that polynormial or incomplete Cholesky preconditioning is uzed, For the purposes
of Table 1, the parallel system is assumed to have at least (N processors. For uniprocessors
or multiprocessors with a small number of processorz (eg. four or «ight processors) the
matrix-vectar products dominate the computation whereas on paralle] systems (c.g. Hypercube)
the inner products dominate beckuse they require global communication (synchronization of all
processors} of the system, Performing an inner product on & paraliel system can be thought of
a5 a binary tree height reduction with the nodes of the tree being the processors of the system.

For shared memary systems with few processors, processor synchromization is fast but
zcoessing data from the main memory may be slowe, Thus in this case the data locality of the
three parts of the computation determine the actual time complexity of the algorithm, The data

Table |

Eerial and parslie} complexity of OG parts

Operatton Sequienrial Pacalls
Vestor updates (M) 1)
Tnsier products N iog: X¥)
Matrix-vector

products LEPH Y . OCogang)
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toclity of Algorithm 3.1 is poar. For exampie the inner products and the vector updates
provide a ratio (as defined (1.1)} of one and 3 /2 respectively.

The preconditioning cost should be such that the total runtime for PCG is less than that of
CG. On a scalar prooessor this can be calculatod in terms of the tots] number of floating-point
operations (ops) performed. PCG requines fewer iterations to converge thant OG but each
iteration imvoives the additional ops of a matrix vector multiplication by the matrix X. On a
vecior or paraliel system the different parts of OG (inner products, vector updates, rmltipli-
clions by A) may be muning a1 differeat speeds and thus it is possible that the choice of & fast
precanditionsr shonld not be based on introducing the fewest number of aps.

4. The satep preconditioned conjogate gradient method (5-CG)

The s-step Conjugate Gradient [4] is a generalization of the Hestenes and Stiefe] CG (8] with
improved data locality and parailel properties. The s-step method can be organized 3o that only
one sweep through the datz is required to complete one step of &-CG (equivalent to # sucoessive
steps of (X3). This meanx that the methnd makes mors efficient use of slower memory in a
memary hierarchy system than the standard OG method. Also, the method can be organized zo
that the 2r inner products required for one s-step iteration are exacuted simnitancously. This
reduces the need for frequent global communication in & paralle] system znd cnhances the
performance of the method by pipelining the 2z inner products.

Gnew:ytoobMMMHtepmqjugnmmdimtmhodhmmtheaﬁmlymdepmdml
directions {#,..., A"~ 'r} to lift the iteration 1 dimensions out of the ith step Krylov subspace
{7+ ., A°rp ). These directions must be made A~conjugate to the preceding » directions, which
we will call { p]_....., p{_;]}. Finally, the ervor functional E(x) must be minimized sistalta-
noously in all ¢ new directions to obtain the new residual ,,,. This method is cutlined in the
following algorithm,

Algorithm 4.1. The s-step Conjugate Gradiemt Method (s-0OG).
Xoo Bo=to=f~ AXoy..., Po=A*"'ny
For i = 0 Untl Convergence Do
x,+1=x,+a}pf+ ve- 4alpy
Select af to minimize E(x) over L = { x, + i a!pl}
Comprre r, . =f—~Ax..3, A, A
Seloct { B} (o force A-cmUgALY of { plyys-- .o phai}s § Phae-s pi } whese
Py bopy + BRI & o g0
Phos = An., + BG4 Sy

0 g 1t e
Plor=A" "+ B"Up 4+ -+ 4leg
or

The parameters {521’} and a/ are determined by solving s+ 1 linear sysiems of equations
of arder =. In order to describe these systems we need to introdoes some notation.

Remark 4.1. Let W, = {{ p{, 4p})}, L & . % 5. W, is symmeatric. Lt is nonsingular if and only if
Phe... p, are linearly independent.

Remark 4.2. For j~1,....5 l&t {5*P}, 1&/&s be the parameters used in updating the
direction vector p;. We use the following rdimenzional vectars to denote them (for simplicity
we drop the index ¢ [rom the veclors):

AT Lt L A Lo 1 L
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For p! to be A~conjugate to { pj_y..... 7_,} it is necessary and sufficient that
W F+e=0,.. W_5+e=0 (4.1)
where the vectors ¢, 1 <J % ¢ are

& =[(ny A1) lr 47t)]

=[(4, Ag s (A0, Ap2)]T
Bemark 4.3. Let a=[a],..., a7]" denote the steplengthx nsed in updating the solution vector at
the ith iteration of the method. It is uniquely determinad by solving

Wa=m=[(r. pt}.-...(n, 2O} {4.1b)
Remark 44, Let R; and P, be the s-dimensional spaces (r,, Ar,,...,A“lr,} and { pl,.... '}
respectively.

The foliowing theorem guarantees the convergence of the 3-CG method in &t mwost N/y

steps.

Theovem 4.1. Let m be the degree of the minimal polynomial of ry, and assiune m > (i + 1}2. Then
the direction spaces P, and the residualr R, gewerated By the 3~CG process for i =0, 1... satisfy
the following relations:

(1) P, iz A-conjugate to P, for j <1,

(2) R, ir A-conjugare o R, for f<i—1,

(3) P, R,, j=0,.... i form bases for the Krylov subspace V,= {ry, Arg,..., A ¥ In},

(4) r, iz orthoporal o ¥V, _,.

Proof. Induction on i is used [4] or [5], QO

Proposition 4.1. The following recurrence formula holds:

i
[A(H“rr- -"':—1} = ﬂ(-‘%—:} {(«‘{k-ﬂ- r:) +a|(:l-_1h('d,rr’ r'—l)

+ﬂ'§i_:*+1](4(‘+1}r:a: r‘_l} e
a4 1)
Jork=1,...,5— 1 and (A'r,, r,_)= —(r,, r}/ ai_..
Proaf. By induction and use of Theorem 4.1 [4,5]. O

The following corollary of Theorem 4.1 combined with Proposition 4.1 reduce the compua-
tion of the vectors ¢ 1o the first r moments of r,.

Corollary 4.1. The right-hand side vectors ¢'...., " for the linear systemsy (4.1) become
¢ =[0,....0, {7, A'rI_I]]T

o2 - [0....,0. (Ar. 47 y), (47, A‘r._l)]T

ot = (A7 A (5, g )]
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The following coroilary reduces the computation of W, to the first 2 moments of r, and
scalar work,

Corollary 4.2. The matrix of inner products W, (Pf.@fll(fj{:mﬂbefwvmdﬂmth

wrxq(nandrhewﬁmmmfmnbﬁ v s andel,.. .l

Prood.
(P, Ap?) ={d'r, An)+¥Te. O

The [ollowing corollary reduces the vector #1, to the frst 1 moment of r,.
Corolizry 4.3, The pecror m, ca be devived from the momenta.

Proof.
LS (G SRR 3 ) (CHEY NN RV | A =

We now reformulate the &CG algorithm taking into account the results of Theorem 4.1. We
will use

P=lp....pl.  @=[¢"q']

to denote the dirsction planes in the odd and even iterates respectively.

If X is an SPD mairix, then applying the sCG method to [KVUEV2 K-V = K172
gives rise to the following algorithm. Here p°...., p**~! denote the moments of the vectar
r=f—Ax, with respect to the mairix AKX and the inner prodoct (-, X:). For example
Hor Pr. gy are (7, Kn), (AKr, Kn), ((AK)%r, Kr) respectively.

Algorithr 4.2. The s-step preconditioned conjugate pradient method (s-CG).
Select xp
Set P=10
Cainpute Q“EKfu‘K{f Axg) (KA) Ky, .. (KA) 'Ky ]
Compute u’,..., p**!
For i = (1 Until Convergence Do
Call Scalar Work
if {{ even) then
Q=0+ P[¥,.... ¥
xi+l:‘\rl+g‘l
P=[Rr..=K(f- Axm)‘ (BKAVKY, e (KA 7K, 4]
Compute p®,.. ., pg27!
Efse
P=pP+QIF,..., ¥
JrH_1 = x + Pa
=‘[K?',-‘ T K(f ‘{x! 1); {H)Krwis O(KA}’-IKer
Cm;:rputcp ’-

EmIFur

R

Flapo s
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Bealar Work Routine

If {i =0} then
Form and Decompose W,
Solve Woa = m,

Fise
Solve W,_ 0/ + ¢/ =0, j=1,...,5
Form and Decompose W,
Solve Wa=m,

EndIf

Rebhan

End

Vector products needed w advance one iteration in the s<tep OG are performed by
mulﬁplyingnnevecwrhypowersnf:hemtﬁx.lzdnunm:umpmaiblemtnhadmmgeof
llﬁsfnctﬁorefﬁcicntnsenf!ocalmmmiuunhu!hemanixhus.regnlzrlpanilysmmlure.
Wo will demonstrate this possibility for a linear system arixing from the nemedcal solution of
the model probiem.

In the next twa seclions we describe the two different choices of X which are used for the
efficienmt thearetical implementation of the preconditionad -G in Section 7. It the case of the
incomplete Cholesky preconditioning, we also derive a completely paraliclizable farm of the
precouditionsr. The usefulness of this new form for the efficient implementation will becorne
clear in Section 7.

5. Incompiete Cholesky preconditioned conjugate gradient (ICCG)

If A is the matrix resulting from the symmetric 2-D model problem, then the zero entries are
given by the set P={(i, j3 i—j=#0,1, n). We demand that the inverse of the IC precondi-
tioning matrix, K~' = LDLT has zero entries given by P. and we denote the nonzero entries of
K'' by &(+), b(i). &1). They can be derived by the recurrences

bliY=5b(i), &(i)=cld),
[BG-D]*  [eti-n)}
d(i—1) &#(i-n) ’

with the undefined elements replaced by zeros. We can scale the linesr system symmetricaily
((DADYD 'x)=Df where D is a diagonal matrix) to obtzin (i) = 1. Then

A=K '~ R=(I-E-~F)I-E-F) +R

where ET is a matrix consisting of the upper disgonal elements 5(7), FT of the upper dizgonal
elements c({), and R is the error in the approximation of X! 1o A.
To determine v = Kz we must solve

(I-E-F)z=v and (I-ET -FN)y=;:
or. in bleck form

a(i)y=ali)~

1gign?

(I-E}z=w,+Fz ., and (I-Ef)y=2+E%

irl

for j=1,...,n to complete the forward and the backward incomptlete Cholesky steps, Note
that v, z, are vectors of n components.
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3.1, Vectorizable IC

Note that for the forward step (similarfy for the backward step) there are two dependencies
in the expression defining each component of the block vector z,, one on the preceding
component {of the same block 7) and one on the components of the preceding hlock z,_; The
Eame is true for the components of b, Thus the computation must be performed serially. The
finst dependency can be removed if we use & series expansion for (7 — E,)~* [17]; the squation
becomesx

y={I+E+ Bl + - + BN ) (it By )
where m = 2 is usnally sufficient for 2 good approximation [17]. This computation can only be
vectatived or parailelized by blocks (since a hlock dependency persists). Black vectorization is
efficient bt parallelization is problematio unless the block size ix much larger than the number
of processars times the length of the vector pipetine.

3.2. Parallelizable IC

In order to have a parallel preconditioner (PIOCG) we must remove the block dependency.
This is achicved by using a series expansion for (1 — K, - F)~'. Using the first m terms of the
Von Neuman series, the approximate computation of Ku={(/— ET— FT)" {1~ BE— F)~ 1y
amounts 1o

z=[I+(E+F)+ - +(E+F)"]«,
p={f+(ET+FT)+ o +(ET+ FTY"] 2.
Next we show that the selection of a small value for m is sufficient in the truncated power

series approximation of (7 — E — F}~ ', We can write

A=K'+S+R
where X! is the approximation to X7 it the truncated series expansion is used, Following the
analysis [17] we now show that the norm of the matrix § (truncation error in Van Neuman
sexies) 15 comparable to the norm of R (approximation error in incomplete Cholesky decom-
position), 5o that we can expect that the preconditioner is effective. If we write W = £ + F, then

(Fe W W™ = (T W)= w1y
It follows that X~' =(f — WYJ — W)=Y~ W)}~ W=*""YT. By simple manipula-
tion we gt

(J-W)T= WY = [~ W (I— W™= W) o W §
Thercfors the matrix S can be expressed as

S=—5(r-w) ~(I-w)§F - 557
The matrix /- W is bounded: |7~ W| € 1+ 8+ y, where 8 = max{ (1)}, y= max{c(i)}.
We can now obtain a bound on the norm of the matrix § for small B 2nd y:

ISI<(1+B8+y)B+y)™ {1 (B+v)™ ) = (1+B+y){A+7)™L.
Neglecting the SST term we obtain

ISt <2A1+8+y)(B+y)™ "

Theutofmmtﬁuofﬂmnminsthnmf={(f. iy =7l # n— 1}, Moreover, the two
nonzero diagonais have b(i)c{i — 1) as entries. Hence (| R = 2 max, | B(f)e(i — 1} |



46 A.T. Chromapovics, CW. Gear / Comjugate grodient nwithods on multiprocessors

Suppose A is the 5-paint difference operator obtained from the discretization of the 2-D
Puiuunaqun.:imwithDiriclﬂmbomdnrymndmmsonIheunilsqnuu.'l‘hanb(r)—c(i}-—
0.25, and || R| =0.15. The bound on || S| is =0.57 for m=2. Thus the bound on the
iruncation error is comparable to the spproximation emor made using the incomplete factoriza-
tion. This shows that the parailelizable incomplate Cholesky preconditionmg is effective.

The PICCG for m=2 is worth using for the 2-D model problem if the mumber of steps
needed for convergence is no more than half that of plaix CC. Thia follows becanse 16X ops
are needed to form Xu compared to the 19N ops of one step of plain OG. This is the case in the
test problems that we include here. Since (7+ W+ W2+ W™ )u can be computed as (I +
WY1+ W)x which needs 19N ops for the 2-D case, we can choose m =3 in the series
truncation.

6. Polynomial preconditioned OG

If polynomial preconditioning is used, then X = g{.A4), whers g(A) iz a polynomial ap-
proximation to the inverse of the mairix A [10]. 4 stabie way 10 compute Kr, is
&
(1 C4-a))r
where g, are the roots of the degree & polynomial g(A}.
One choice for ¢ is the Chebyshev polynomial with roots in the interval [A .. A ] Then
1—e{A 0
sy = L))

where
c(A)=T

Arax T A min — 2A
Acas — Aqun

where T{X) is the Chebyshev poiynomial of degree k + 1. This choice of polynorniai precondi-
i : mimizes il
[4-g(a)4) = max [1-Ag(A)]

where u(A)uthespectmmcIA 'I’Iusreqmrﬂmuumamofth:speclmmofd The choice of
a palynomaial can also be based on minimizing other norms. Johnson. et al. {10] have reported
tests where polymontial preconditioning was used based on minimization of the L-norm of
|1~ A, qg(X,)| over the interval [A ., Ao, ] with respect to a weight function w; they report
results comparable to that obtained using the Chebyshev poalynomials,

When both OG and polynomial PCG are iterated to convergence, the residual polynomials
gencrated by the two methods should have comparshle degrees for polynorial PCG Lo be
efficient. This means that approximately the same number of matrix-vector products must be
performed in either case. On z parallel system, the inner products, vector updates and
matrix-vector products may be running at different speeds. Thus polynomial PCG may invoive
more matrix-vector products than CG and still be faster,

7. Implementation of preconditioned »-CG with efficient use of local memory

In thix section we show how the different parts of +-OG can be implemented efficiently on a
vector processor with local memory. Such a sysiem can have either 2 ‘register-to-register’ (e g.
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Tabhe

Ops for 5 steps of OG (versus ane atep of 3-CG) aod (men, transfery) fope

Vector operatinn 5-Cx37/ops 3-0G fratia G /ops G /ratio
Dotprodact 0N 11/20 0N 1

Lineay comhingtion 60N 161 N 3/2

ALLIANT FX /8 or CRAY-2) or a ‘memory-io-memory’ (e.g ETA-10) organization. In the
first case the functional units are supplied with operands from the registers; in the ssoond case,
operands are brought directly from the memory of the system. Although all computations in
one jteration ¢an be performed with one sweep through the data we will consider separately the
three parte (inner pro:iucts, Enear combinations, matrix-vector products) because it is easier to
implmmlnndcmpammCG.WcmﬁderonJythcm:=i

7.1. Linear combinations

For the [inear combinatjons we partition the vectars Plreeos Pl Proveeen, Py and %, x,
inwoqualsubwcmoflmgzhmsuchtha:(Zs+2}m(IocalnmmmysimTheD0]oopfaraﬂ
the Jinear combinations consists of an outer loop of N/m steps and an inver loop of m steps.
By using matzrix mmﬁonwecanducribelhisufnﬂm{whmmembmript k designates z
horizontal section of length m);

Do k=1 N¥/m
Po= P+ O\[¥...., &]
(val)}‘(xr)k+Pk¢

2.2, Inner products
The et inner products
(r. Bn), (AKr, Kr), ((4K)'r. &), ... ((AK ), (KA)'RR),
{(4K)r, (K4) k)

are computed. Note that ibe ratio for exccuting the inner products is about 1,/2 because 11
veotor references are noeded. We must compute 10 inner products involving 11 vectors
elficiently using the Jocal memary. We partition the vectors in N/m equal subvectors of length
n Wenmdlﬂsuhwcm{of[mg:hm,ruidinginthelocﬂmy:hmughoutme
computation) holding the partial resuits of the inmer preducts. Thus (Il + 10m) < local
memary size. The DO loop for &l the inner products consists of an outer loop of N/m steps
and an inner loop of m steps computing simuitanecusly the 10 inner products. Int Table 2 we
showrhnm-kandmtioufglobalnmnwrymfcmaeaperopsfor the inner products and linear
combinations of one iteration of 5-OG and five iterations of CG. Although the rumber of ops
doubles for the [inear combinations the data locality is improved.

7.3, Marrix-vector products
The multiplication by 4 can be written in vector form:
Ap{i)=c(i—n)s p(i-n) te(f)epli+a)+b(i—1}xp(i—1)
+b(i)» p(i+ 1)+ a(i)= p(i).
Assuming s = 5, we need to form the following matrix vector products:
Kr, (KA)Kr,. (KAY Kr,, (KAY Ky, (KA)'Kr, A(KA)Kr..
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(a) Polynomial preconditioning: Multiplication by the preconditioning matrix amounts to
(T15-1{A — p,))se. We can combine the muitiplication by 4 and one factor of X or two factors
of X and keep all the data in the local memory. Let a horizontal section of order n be the
submatrix A, =[C,_,, Ti, C,], k=1,..., . Also, l&t »,, v, be subvectors (of order n) of «, v
corresponding to the block A,. If the Jocal memory can simultansously acoommodate two full
sections of A and seven full subvectors, we can carry out the computation

o = Ay

Dok=1 n—1
Byyy=(Apyy — pXx], mi ., 114-:]1‘
W= (A —tXok 1 o, o]

Compute w,

(where p, =0, or p,), while keeping the matrix in the local memory. If thess blocks do not fit
in the memory, they must be further sectioned.

This idea can be generalized to do du, (A4 — py) 4w, ..., 15 (4 — p,))Au while the required
catrics of 4 reside in the Jocal memory. However, k + 1 sections of the matrix and 3(k + 1}
subvectars must fit in the local memory. This can be useful even on & sequential machine when
the two levels of memory that must be used efficiently are the main memory gnd a slow
secondary storage device,

The same idea can be applied to the 3-D probiem. Here the horizontal sections of order n?
are: A, =[D,.T,, D}, 1<k&n For a ressonable resolution without need of secondary
storage, n* =10 {(because of the main memory Limits), s0 #? = 10* and a good portion of a
section: can be kept in a local memory of size 16k (CRAY-2, ALLIANT FX/8).

(b) Incomplete Cholexky preconditioning: The vectorizable IC involves the forward and
backward incompiete Cholesky steps

(I_ EJ}‘-‘; =k ‘Ezz-l and (I_E;TJU.'= ZJ+‘F;THJ*1

which cannot be combined (keeping the matrices in local storage) beczuse the forward step
must be completed before the backward step can start. Thus we can only combine ¢ither the
backward step (of the multiplication by X ) with the multiplication by 4 in forming the ( K4)r.
The ?nmlklizable [C involves muitiplication (of a wvector) by the uni-diagonal matrices
E. E', F, F". Since the nonzeros of these matrioes are the entriex of A, the computation can
be argenized in a way similar 10 the Dolaop of the polynomisl preconditioning, Multiplication
by 4 and X will be combined ta read the data once from the main memory.

8. The experimental environment

The experiments were conducted on the ALLIANT FX /8 multiprocessor system at the
Center [or Supercomputing Research and Development of the University of Illinois,

The FX/8 is an exsmple of a supercomputer architecture with memory hisrarchy. The
configuration of the FX/8 contains 8 Computational Elements (CEs), which communicate 1o
each other via a concurrency control bus used as a synchronization device. Each CE has a
computational clock cycle of 170 ns. The maximum performance of one CE is 11 Mflops
{million ops/s) for single precision and 5.9 Mllope for double precision computations. Thus
when the 8 CEs run concurrently the peak performance can reach 47.2 Mflops, Fach CE is
cormnecled via a crossbar swich to a shared cache of 16k (64 bit) words, implemented in four
quadrants. This connecticn is interleaved and provides a peak bandwidth of 47.12 MW /5. The
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cacheismnneowdmmﬁMWinmImwdglobalmmyvianbmwithabnndﬁdmahhmz
23.5 MW /s for sequential read and about 19 MW /s for sequential write access. The systen
aimhuﬁintuucﬁvepmmmu(l?s)umdfmop&mﬁngmmrdxwdhmcﬁmsmdlfo
operations,
mmnaﬁmmmmmm:wmmmmumndm
%ﬁ:mrr@muuﬂudghtmmysm.mmrmmtmﬁmm
fmnmmmﬁaﬁxmwmwdmah:r@smﬁcmmulﬁpbmdaddhnmﬁm;
cmbeo@tpped.ltiswthmﬁnglhﬂthcmﬁwmulﬁpb%%cw]upﬂdmt
whﬂelhemmradd/subtmct/mvmmkeonecytleanddiﬁﬁmtahdghlcyduMnlti-
prmninghmalimdbyoanmmcyinsmmﬁoanhichpmnﬁtaloopmbcmwd
mm@mm&mmpmhminmiuwdmadumbymmtmﬂafa
subroutine wiich assign one task 1o each CE.
ThnALLIANTFX/BnpﬁnﬁmrmﬂmmpﬂermmmmmaFORTRAde:bnedmdam

dnpmdmymbﬁsfmmﬂu,m,mdmumtmﬁmAFORTRANpmgrmm
emumhmofthemﬂmdnsmodu:mﬂar,mmr,xﬂumml,wﬂmmrmnor
Sonicurrent-outer /vector inner. We illustrate the modes of execution on the following loop:

DO1I=i N

1 AN=A(N+S
For N = 8192 we have
~ Scalar: A(1), A2),..., A(B192),
— Vector: A(1:32), A(33:64),.... A(8161 1 §192).
—~ Comcurrent:

CE, - A(1), 4(9),.... A(8188)

CE,: A(2), A(10),.... A(3186)

CEy: A(8), A(18),..., 4(8192),

Vecror comcurrent:
CE,: A(1:249:8),.... A(7937:8185:8)
CE;: A(2:250:8),..., A(7938:8186:8)

CEy: A(1:256:8),..., A(7944:8192:8),
— Corcurrent outer / vector inner:

CEy: A(1:32),..., A(592:1024)

CE;: A(1025:1056),..., 4(2017: 2048)

CE,: A(T169:7200),.. . A(8161:8192),

There is a timiog facility which ir accesxible viz a FORTRAN subroutine call and seems to
give stable results with a resolution of 10~ 5 measurements. The computational rates which
willbeprumwdwmnmwithalaxg:uxial(non-conmmt)oumloopinmdermobuin
religble timing data. To do time measurements the programe were run more than three times,
Although the execution was not in single user mode no other sizable jobs were running at the
samtime,mdtheﬁnﬁngvnriatimwmonhcord:rofonepmt.

3. Computational rates of CG and »-CG parts

Table 3 contains the rates of the different parts of the computation in one iteration of the
3-step and standard CG respectively. All the rates cited are for vector lengths between 104 and
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Tahle 3
Compatational rates b the 5-CGoagd OG parls

Vector aperxtion 5CG /MIops O /M flops

Voclkor update
Datpraduct
Norm
Mlairiaector {A)
Matriz-woctor { X')
T i

e
i am® o
ET.]

Basmi

10%. The matrix vector product runs at = 14 Mflops from the cache However for sizes of the
matrix 4 exceeding the cache capacity this rate is = 8 Mllopa. The implementation discuseed
in Section 7 was ouly followed for the lincar combinations and the inner products. Combining
the matrix-vector operations Ap and 4% with proper cache management did not produce rates
higher than 8 Milops. Thus this part of the thaoretical implementatinn was oot realized. ‘The
low rate of the matrix product (even from the cache) is mainly due to the low rate of the vector
product operation. This part, involving half the ops of OG applisd to the modet problem, has
not been sped up and it is 2 slow part. Thus, the speedup of 5-COG compared to CG is not
expected ta be very good, taking inta acoount the fact that there is an extra matrix-vector
product (in 5-CG} per five steps of CG.

1t is worth noting that the linsar combinations mn at 16 Mflops if vector concurrent mode ia
used and at 22 Mflops if concurrent guter/vector inner mode is used. Since there are twice as
many ops in the linear combinations as in the vector updates and the rawe for the linear
combinations is four times that of the vector updates, we have sped up this part by a (actor of
two.

The inner products were computed by assigning cach cne of cight inner products 1o one
processor and computing each onec of the two remaining norms separately. If all ten ipner
products are carried out together in concurrent outer /vector inner mode, then this may yield a
higher rate. [t is worth noting that there is a primitive function DOTPRODUCT, which is
designed to compute only one inner product at a time in vector mode on a single proocssor, or
vector concurrent mode. The inner products rate may have been higher if two inner products
were computed by keeping the same dats in the vector registers. Since the rate for the two innet
praducts for CG ix 11 Mflops, we have sped up this part by only about filty percent.

10. Test problems

We include test results on two problems with the matrix being the Laplace aperator for the
standard and 5-step CG, and the vectorizable preconditionad standard and 3-step ICCG. We
aleo include test results for the parallelizable preconditioned ICCG. The first problem is a
discretized PDE with known solution. The second problem is & linear system. The matrix was
stored in three diagonals of order N o sinmutlate the general five-point difference operator.

Problem 1. —(av, ), — (bu,), = g on the unit square with homogeneous boundary conditions
and a=b=1 and w(x, y)=c*” sin{+x) sin{«p).

Pinlﬁnml{]'he[inearsysm Az=f where 4 is the pentadiagonal matrix of problem 1 and
A7) = i .
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Tahis 4
Exvcuticn times for the O or Problem 1 and Prablem 2
g Problem 1 Problem 2
Btops Time /s Svepd Time/x
54 138 1.08 19¢ 1.5
100 209 466 ? 1.2
128 265 10.21 395 15.66
140 i 21.26 494 3228
200 411 41.39 21 82 245
256 X35 922 T [40.51
300 £13 145.01 Pl nix
Tibiz 5
&ummumwuus-oahumm} and Probler 2
vy Prohbem | Probles: 2
Stens Tima/x Braps Time/s
54 27 11 k-] 1.58
100 Al 424 51 6.13
128 53 358 Fy ] 319
50 2] 1652 99 251
200 &1 1291 124 4926
256 a7 42 150 (4550
k1] 123 11058 187 16815
Tadle 6
mmmmmvammxmdmmz
v Probies | Probibse 1
Steps Timmw/s Srepy Time,/2
&4 52 108 75 145
100 T2 344 115 518
128 90 17 147 11.37
160 1311 1402 32 21.56
200 i 15,32 217 314
56 1H 5226 .t 1 5.3
300 203 B452 k) 1333
Table ¥
Mmmwmsmmmmxmmz
' Problem 1 Problem 2
Sreps Time /5 Steps Time /4
&4 il 1.27 16 1.54
Ica 15 34 23 545
128 18 6.58 k1| 1047
180 hr [1.54 7 1943
200 b} 2.1% A4 40
258 35 4574 55 1.2
G 41 7555 &5 12000
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Tabic §
Exocution times for the PICCG Problent 1 and Probizw 2
w Probben: 1 Problers 2
Stepa Time /s Srape Time /2

64 5 il ) 25 151
100 25 431 12 £35
125 107 9.29 160 14.18
150 133 124 198 2797
200 165 3807 47 5.5
156 205 7539 315 1153
300 245 122.96 k7)) 189

The termination criterion used for preoonditioned OG was (7, K,)'/2 < 107¢ and (r,, r,)/?
< 107¢ for all the other cases.

Tables 4-7 contain test results for CG, 5-CG, VICOG and 5-VICOG. The dimension N of
the problems varied from 64* 10 300°. The number of iterations and exscution time were
meagured for each dimension, It is worth noting that the number of OG (VICOG) iterations is
five times the 5-CG (5-VICCG) iterstioms applied to the same problem of the same size. This
verifies Theorem 4.1. We can compute the speedup factor for the various methods from the
resclts in Tablex 47, These fzctors are

CG/5-0G = 1.3, VIOCG/5-VIOOG = 1.15.

The matrix-vector muitiply by X has a rate of about 7 Mtlops and 12N ops and in the
proconditionied OG the slow parts invalve about seventy percent of the totai number of ops and
this gccounts for the drop in the speedup factor.

Tnthshcmthep&fmmamoﬁhepmpmdPuﬂe!lCOGmﬂhod(PICCG}Comm
ing it to the OG method (borh in number of steps and execution times), we conclude that it ix &
reasonably good preconditioner, The performance of the vectorizable 100G is far better mainly
becauge PICOG involves 16N ops (to compute Kv) compared 0 12N for YICOG for the
truncated series approximation with m = 2. Also, block parallelization is sufficient for eight
CEs with vector register length 32, For example for # = 256, there is a complete set of data for
all CFs il parallelization is carried out block-wise. Finally interprocessor communication is not
apmblcmbecmuotthefuulmndcmhemdthefm:hatmulﬁpﬁcaﬁmbythemdi-
tioner X is slow (7 Mftops).

11. Conclusions

We have presented the sstep preconditioned conjugate gradient method for symmetric and
poﬂﬁmdeﬁ:ﬁmsy:hmsofﬁnqume:hmmpkmChdukyandﬂmpow
preconditioning we showed thearetically how this method can be efficiently implemented on a
system with memaory hierarchy. Numerical tests on linear systems arising from the discretiza-
tianofdlip:icPDEuhaw:hatanamu]tipmem:rsy:mwithmunmyhicramhytheﬂwp
pmconditionodCG(Eorz=Slisfumthmlheslandudprmdiﬁonedﬂﬁ.Theimplummu
tion of the s-step preconditioned CG on message passing architectures remains 1o be done.

Wehwaﬂdﬂhmmﬂemkwﬁdﬂywmﬁﬁmﬁng[lﬂmnmﬁdh—
ahlepmmndiﬁmﬁng(HOCGLAthwmicalanﬂynhaflhemmtmncnin;thetmpow
series mvolved in the multiplication by the preconditioning matrix shows that keeping the first
two or three terms i8 sufficient for the preconditioning to_be effective. Tests included here
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mmmmmmﬂmmdmdmmnwmimsmmmmmz-n
probiem. However the vectorizable ICOG was faster on the parallel system (with eight
processors) used for the experiments. This is because thers is an overhead in ops involved in
HCCGWW@.M[MVICCGMMMMWMMW
pnmﬂdsmﬁmhumumpuﬂummwimmmmmmqumdw
determine the advantages PICOG.
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