TRANSPORTATION RESEARCH RECORD 1566

Traffic Flow Slmulatlon Through

Parallel Processing

ANTHONY THEODORE CHRONOPOULOS AND GANG WANG

Numerical methods for solving traffic flow continuum models have
been studied and efficiently implemented in traffic simulation codes in
the past. Explicit and implicit methods have been vsed in traffic simu-
lation codes in the past. Implicit methods allow a much larger time step
size than explicit methods to achieve the same accuracy. However, at
each time step a nonlinear system must be solved. The Newton method,
coupled with alinear iterative method (Orthomin), is used. The efficient
implementation of explicit and implicit numerical methods for solving
the high-order flow conservation traffic model on parallel computers
was studied, Simulation tests were run with traffic data from an 18-mile
freeway section in Minnesota on the nCUBE2 parallel computer. These
tests gave the same accuracy as past tests, which were performed on
one-processor computers, and the overall execution time was signifi-
cantly reduced.

Macroscopic continuum traffic model flow based on traffic flow
volume, density, and speed has been used in studying the behavior
of freeway traffic in the past (/-6). These models involve partial
differential equations defined on appropriate (road) domains with
suitable boundary conditions, which describe various traffic phe-
nomena and road geometries.

Such a model is the semi-viscous model (SVM) (4). This mathe-
matical model for the traffic flow is adopted for our research. Qur
main goal is to derive efficient methods to paratlelize the numerical
solution of SVM. This choice is not a restriction. The same methods
can be applied to other continuum models (2,5). -

We next outline the SVM equations. Let k(x,2), q(x.1), and u(x,7)
be the traffic density, volume and speed, respectively, at the
(road)space-time point (x,£). Let usbe the free flow spsed and &, the

- jarn density (7). Let the relaxation time T (which is assumed to vary
with density &) be

T=r0(1 + ﬁ) (1)

where £, > 0 and 0 < r < 1 are model parameters. Let u,be the traf-
fic free flow speed.

The generation term g(x,f) represents the number of vehicles
entering or leaving the traffic flow in a freeway with entries and
exits.

U , BE
MY o B o
6t Ox z @

where U, E, and Z are the following vectors:

k
=
(q) 3

A. T. Chronopoulos, Department of Computer Science, Wayne State Uni-
versity, 5143 Cass Ave., Detroit, Mich. 48202. G. Wang, EE/CSCI Bldg.,
University of Minnesota, 200 Union Street S.E., Minneapolis, Minn. 55455,

31
ku
E = uik + ﬁ_:_gkﬂ-ﬂ (4)
8 ’ .
“ 7 B -+ g | ©)

where v and (are model parameters. If speed data are not available
from the real traffic data measurements, then a ¢ — k curve based on
occupancy data (7} is used to generate the speed data.

The improvement of computational efficiency in the continuum
traffic models has been the focal point in the development of traffic
simulation programs. It is understood that the computer execution
time to solve traffic flow problems depends not only on the size of
the freeway and the complexity of roadway geometries but also on
the model equations and numerical schemes used in their dis-
cretization, Explicit and implicit numerical methods have been used
to compute the solution of traffic flow continuum models (3,8).
Implicit numerical methods require the solution of nonlinear sys-
tems of equations at each time step.

In this work, the Lax method (explicit) and the Euler method
(implicit) applied to solve the momentum conservation model on the
nCUBE2 parallel computer were parallelized. Implicit methods
allow a much larger time step size than explicit methods for the same
accuracy. However, at each time step a nonlinear system must be
solved. The Newton method coupled with a linear iterative method
{Orthomin) was used. The convergence of Orthomin with parallel
incomplete LU factorization preconditionings was accelerated. A
code (in C} was written simulating a freeway with multiple
entry/exit traffic flow on the nCUBE2 parallel computer located
at the Sandia National Laboratory. The nCUBE2 is a distributed-
memory MIMD parallel system. Communication of data between
processors is more time consuming than computation. Thus, a
method is fast not only if its tasks can be computed in parallel but also
if it does not require frequent data exchanges among the processors.

Tests were conducted with real data from an 18-mile freeway sec-
tion of I-494 in Minneapolis, Minnesota; 427 space grid points were
used in the discretization, only parallelizing the space dimension
and computing serially along the time dimension. The Lax method
reguires very little communication and thus achieves very good
speedup, which scales well up to 128 processor nodes, The Euler
method on a 16-processor configuration runs about four times faster
than on a two-processor configuration. Because of the construction
of the preconditioning, we could not run the Euler case on a single
processor. However, the Euler does not scale well when the number
of processors increases because of the frequent cormunication
required by the iterative method and the preconditioning,

32

FREEWAY MODEL

Two schemes were used to add and subtract entry-exit (ramp) traf-
fic volumes to the main-lane traffic volume in SVM.

1. Point entry-exit—Ramp volumes are assumed to merge into
(diverge from or exit from) the freeway main lane at a single space
node. This treatment is necessary to simplify the modeling and
reduce computation time at such main-lane nodes, -

2. Weaving entry/exit—This is used when the ramp is directly
connected to another freeway and is explained in more detail below.

The weaving scheme is outlined as follows: consider the traffic
fHow volume in a freeway section, presented in Figure 1, at a fixed
discrete time. In Figure 1, volume v, represents the through traffic
volume flow from link A to link B, and volume v, represents the
diverging volume from link A to link F, and g, = v, -+ vs; v3 is the
merging volume from link E to link B, and volume v, is the through
volume from link E to link F; and g. = vy + v,. It is obvious that
qr = v, + vyand gz = v; + v;. Because there are interchanges of v,
and w, traffic friction at link B and link E in this case is greater than
the case of a single-entrance ramp or exit ramp. Thus, this must be
taken into account by calibrating (locally) the i, parameter in the
mathematical model for these space nodes. Also, only merging

dynamics at an entrance ramp must be employed if v, = 0. Similarly,

only diverging dynamics must be employed if gz = 0.

‘When the distance between links E and F is less than 180 m (600
ft), merging and diverging movements must be completed within a
short distance. However, since both ¢ and g require lane changing
in the same lirnited length of roadway at the same time, the sum of
gg and gp must be included in the generation term of the model. If
the generation term g > (, the short weaving section is treated as a
single on-ramp; if the generation term g < 0, it is treated as a single
off-ramp. The generation term then becomes

g = (ge ~ ge)lAx. ')

PARALLEL IMPLEMEN&‘ATION ON NCUBE2

In this section, we outline the basic features of nCUBE2 and discuss
the parallelization of the Lax and Euler methods.

nCUBE2 PARALLEL COMPUTER

The nCUBEZ2 is a multiple instruction multiple data (MIMD) hyper-
cube parallel computer sysiem. A hypercube model is an example

TRANSPORTATION RESEARCH RECORD 1566

of a distributed-memory, message-passing parallel computer. In a
hypercube of dimension ndim, there are p = 2™ processors. These
processors are labeled by 0,1, . . ., p — 1. Two processors i and j are
directly connected if the binary representation of { and j differs in
exactly one bit. Each edge of the hypercube graph represents a direct
commection between two processors. In a hypercube of dimension
ndim, each processor is connected to ndim other processors. Thus,
any two processors, in a hypercube graph, are connected by a max-
imum distance of ndim edges. Figure 2 shows a hypercube graph of
dimension ndim = 4. The number of processors to be active is cho-
sen by the user but must be a power of two.

Table 1 summarizes interprocessor communication times for
neighbor processors and the basic floating point operation times
for nCUBE2 (9). 1t indicates that communication even between
neighbor processors is several times slower than floating point
operations.

In a hypercube with a high communication latency, the algorithm
designer must structure the algorithm so that large amounts of com-
putation are performed between communication steps.

The two important factors that influence the delivered perfor-
mance of this machine are load balancing and reduction of commu-
nication overhead. A program is load balanced if all the processors
are kept busy. An efficient algorithm is one for which both compu-
tations and data arc distributed among the processors so that the
computations run in parallel, balancing the computational loads of
the processors as well as possible.

PARALLELIZATION OF LAX AND
EULER METHODS

Let p be the number of processors available in the system, The par-
allelization of the discrete model is obtained by partitioning the
space domain (freeway model) into equal seginents Sego, ...,
Seg,- and assigning each segment to the processors Pig o es Pjpfl.
The choice of indexes ji, . . . ,j,—1 i§ called mapping of the segments
10 the processors.

. The computations associated with each segment have as their
goal to compute the density, volume, and speed over that segment.
The time dimension is not parallelized. This essentially means that
the quantities k;, q;, ; are computed by processor P, if the space
node jAx belongs to the segment Seg;. This segment-processor
mapping must be such that the communication delays for data
exchanges, required in the computation, are minimized. Such & map-
ping of a linear array of sets onto a hypercube is achieved by the
Gray mapping, described elsewhere (9). For example, assume that
V. V), ¥, V3 are four vectors mapped on the processors of a hyper-
cube. Also, assume that the computations for vector V; may require

FIGURE 1 Weaving flows in freewsy.

Chroropoulos and Wang

33

21101

fy -

41001

#1111

1011

R

FIGURE 2 Hypercube graph of dimension ndim = 4.

some components of the vector ¥, or V4 (Whenever the indexes
are defined). Then the sequence of vectors Vy, ¥, Vs, V3 is mapped,
in order, to-the processor sequence Py, Py, P3, P, on the hypercube
by the Gray mapping.

The Lax method is parallelized naturally by mapping the road
segments onto processor nodes. The only data exchange occurs
between immediately adjacent processors nodes (as indexed in the
Gray mapping). The data at the boundaries of the road segments are
exchanged at each time step. This means that only one communica-
tion point is required during each time step of the method.

The Euler method advances each time step by solving a system.of
nonlinear equations. This system is solved using Newton and a lin-
ear iterative method [preconditioned Orthomin (8,10, 11)]. Thus the
computation of the Jacobian mairix and right-hand side are required
together with the computations of the iterative method. The compu-
tation of the Jacobian A and right-hand-side vector (rhs) for the lin-
ear systems, which are solved in the discrete model, requires data
that may be located in an adjacent segment. Because of the Gray
mapping, the processors storing these data are immediate neigh-
bors. Thus, the least amount of commainication will be required in
computing A and #ks. Computation of rhs is performed at each time
step, but the Jacobian A is computed very infrequently (/0). The
Jacobian A and the rhs vector are computed, in paralle], by the
processor, which is assigned the corresponding space nodes.

Most of the execution time in the Euler-Momentum method is
spent in the solution of linear systems. In the parallel implementa-
tion of the Orthomin method to solve the linear system, four main
computations are parallelized: a linear combination, a dotproduct, a
matrix times vector product, and a preconditioning step. Only the
matrix times vector and the preconditioning will be explained. The
parallelization of the dotproducts and linear combination is studied
elsewhere (9,12).

TABLE 1 Computation and
Communication Times on nCUBE2

Operation Tirme | Comm/Comp
8 Byte transfer | 111 p sec -

8 Byte Add 1.23 psec 90 times
8 Byte Multiply | 1.28 usec 86 times

Let n = 2pg + s be the dimension of the linear system, where
1 =gand s = 2(p — 1). The special choice of » is not really
& restriction, and it is made for discussing the parallelization
of domain decomposition preconditioning. We distribute the matrix
A and rhs data in rows to the p processors so that each processor
gets 2g + 2 rows, except for the last (in the Gray processor
mapping) processor, which gets 2g rows. Figure 3 shows an
example of the matrix of coefficients and the vector of unknowns
for maxj = 12(pumber of space nodes), or n = 22 (dimension of
matrix and rhs vector), which is assigned to four processors of the
nCUBE. ’

Although nCUBE2? is an MIMD computer, these algorithms are
data parallel. This means the implementation is such that each
processor executes the same instructions on different data. Also,
care has been taken to divide the data equally and assign them to
processors so that the processors are load balanced. The only imbal-
ance occurs when a few processors handle the ramp data calcula-
tions while the rest of the processors remain idle. However, these
calculations take less than 1 percent of the total execution time.

INCOMPLETE LOWER-UPPER
PRECONDITIONINGS

In determining a preconditioner (mairix) P,, we look for a matrix
so that either P, == A~! or AP, has clustered eigenvalues. The matrix
P, must be easily computable, Equivalently stated, the system P,”Lx
= b must be easy to solve.

The basis for the incomplete lower-upper (ILU) factorization
method is that the matrix A is decomposed into upper (I/) and lower
(L) triangular matrices such that A = LU + ©, where P,~! = LU and
© is an error matrix. Also, we assume that if the entry A; ;, is zero,

-then both Uy j, and L, j = 0. In other words, L and I/ have the same

sparsity patterns as A. This is the ILU(0) preconditioning method.
ILU preconditioning can improve the convergence rate of the itera-
tive solvers considerably if it is implemented properly on a parallel
computer (13).

Two different parallel implementations of ILU reconditioning
are: (2) overlapped submatrix regions (OSR) ILU by Radicati di
Brozolo and Robert (14) and (b) domain decompositien (DD) ILU
(11), discussed earlier.

In method (a), the matrix is partitioned into a number (p, equal to
the number of PEs) of overlapping submatrix regions. The ILU of

34 TRANSPORTATION RESEARCH RECORD 1566

T 1T00h =
! AUl

by a6 &
0-h1 00h -
faea by azca da ,
0-hl1800h ”
faeabyaaos ds
0 -hl1 0 0h
f4 es by a4 4 dy
0 -h1 00 h "
fs es bs as s ds
0-h1060h
Jo €6 s a5 &5 ds
6 -h1 6 0h
frer b areq dr
0-h100h
faes bs as cs da

Fo

B

ath

P Al

0-h100h

fo €a B 6o cs dy Al

nl

0 -h1 00k -
Al

Froerebro2iocindc)
0 -h1 0D
fnﬁnbuﬂu

Ally

FIGURE 3 Original structure of matrix 4 and vector AU,

each region is computed independently and the average solution is
computed on the overlapped regions. More details on (a) may be
found elsewhere (I3,14). Figure 4 illustrates OSR ILU.

Figure § presents the coefficient matrix and vector of unknowns
after being reordered and mapped onto the four processors (7). In
Figure 5, only the nonzero entries are shown. The matrix and right-
hand-side are partitioned into sets and assigned to the processor
sequence by the Gray mapping (Po, Py, P3, P3).

RESULTS

The Euler-Momentum method has been implemented on the
nCUBE2 parallel computer located at the Sandia National Labora-
tory. The freeway test site was a multiple entry-exit freeway section
in the Minneapolis, Minnesota, freeway network: a section of east-
bound 1-494 that extends from the Carlson Parkway 10 Portland
Avenue. It is 18 miles long and has 21 entry ramps and 18 exit
ramps. To test the program, the time stepsize selection was made as
follows. For the Euler method, the time stepsize was increased so

P, Regiony

Py Region:

P, Region,

p—1

FIGURE 4 Processor assignment for OSR ILU.

that the maximum error did not exceed that of the Lax method (8).
To test the programi, the time and space mesh sizes were At ="10sec
and Ax = 61m (200 ft). For the Lax method At = lsec and Ax =
61m (200 ft). Our results are distinguished into two units: compar-
isons with real data and performance timings. a
Let N be the number of discrete time points at which real traffi

flow data are collected. Traffic data are collected at the upstream-
downsiream boundaries of the freeway section and at check-station
sites inside the freeway section. The simulation computed volume
and speed data are compared with the check-station site data. The
following error is used to measure the effectiveness of the simula-
tion in comparison with actual data:

Maximum Relative Error with 2 — Norm

' Eil(()bserved,- ~ Simulated)® &
=17 7

Zil Observed;

The error statistics are summarized in Table 2. The relative errors
are at about 10 percent for the volume but are lower for the speed
measurements. This accuracy range of agreement with the measured
data is acceptable (3,4,8). The simulation errors are independent of
the number of processors. This is expected because of the parallel
implementation of data and the fact that only the space dimensions
were parallelized.

The execution times for a varying number of processors arelisted
in Table 3. It is clear that the lowest times are attained by the Lax
method. The Euler method program was not run on more that 16
processors because there was a slowdown in performance.

Speedup is defined as the ratio

T
5= = @)
P
TP
where T, is the execution time on two processors, and 7, is the exe-
cution time on p processors. For the Euvler method, we consider the
relative speedup:

Chronapoulos and Wang

35

A Al
100k “’_ -
by a; ¢ dy At
0 -hi 0 6 h o
faea b af e dz __AUz

100 & 0 -h .
by a4 cq dy Joeq At
0 -hi @ 0 h -
fs es by as s ds Als
1040 0 h T .
b'{ ar 7 d— f7 =1] AUT
0 -h1 0 0 b N
fa ¢s bg ag o5 dy Als
T 00 h th .
f10 G10¢10 A1 Froez) Al
0 -h1 0 -
fren bu eyl _hAU“
0 -0 h 10 -
faedes dy b3 az Als
0 -K0 h 10 ~
fo ed co. ds bs ag Als
0 -k h 10 -,
fo ed eo do by o _LA Us
Pu PCI PU
A A £
15 b B
Bl B By
FoPy RP
B PPy f'.’a BP, BP

FIGURE 5 Partition of linear system and mapping to processors in DD ILU,

9

where T, is the execution time on two processors, and T, is the exe-
cution time on p processors. Relative speedup is considered because
the preconditioning code was designed to run on more than one
processor, and thus the timing could not be obtained on a single
PTOCESSOr.

" The speedups on nCUBE2 are summarized in Figures 6-8. For
the Euler method, the communication costs -are higher in the DD
ILU case in the matrix and rhs construction and in the ILU compu-
tations. Also, the dotproducts seem to take an unusually long time
because of the high communication cost involved in computing
them-(9). Because the size of the problem is kept fixed, the refative
speedup decreases as the number of processors increases. The Lax

TABLE 3 Simulation Execution Times

TABLE 2 Error Statistics for Traffic Flow Volume (1-494)

Error Statistics for ’I;raﬂic Flow/Speed
Volume error (veh/Gmin) Speed error (mile/hour)
Sites | Lax | OSR ILU | DD ILU || Lex | OSR ILU | DD 1L
1 .12 0.12 0.12 .03 03 .03
2 .10 0.11 0.13 S04 07 .08
3 | .09 0.09 0.13 | .04 08 .08
4 .05 0.05 0.16 .03 07 07
5 A1 0.11 0.17 05 13 A1

Procs No. | Laz | OSRILU| DD LU
1 ios46| - -
2 145 | 4878 | 5142
4 75.7 | 2056 | 2543
8 104 | 1807 | 1501
16 22.9 135.5 175.1
32 14 ; -
64 0.6 - .
128 7 -

50 T T 1 T T T
Speedup vs. Processors ——

45 _ 4

25 -

speedup

10 b) -

1 : 1 t i L L

20 40 - 60 80 100 ©120
number of processors

FIGURE 6 Speedup for parallel Lax on nCUBE2. '

4 — T T i T 1 T T T
Speedup/Processor ——

| | | 11 1

2 4 6 8 10 i2 14 16
no. of processors

FIGURE 7 1-494 speedup for parzllel ILU version on nCUBE.

Chronopoules and Wang

37

speedup
(%]
(5]
I

I 1 T
Speedup/Processor <—

1 | I

10 12 14 16
no. of.processors

FIGURE 8 1-494 speedup for domain decomposition version on nCUBE,

method requires very little communication, and thus it parallelizes
very well up to 128 processors.

CONCLUSIONS AND FUTURE WORK

We studied the parallelization of the solution of a traffic flow con-
tinuum mode! using the Lax and the Buler methods. For the same
accuracy, implicit methods allow much larger time step size than
explicit methods. However, at each time step a nonlinear system of
equations must be solved; this study used the Newton method cou-
pled with 2 linear iterative method {Orthomin}; the convergence of
Orthomin was accelerated with two paralle] incomplete LU facior-
ization preconditionings.

These methods were implemented on the nCUBE2 paralle] com-
puter located at the Sandia National Laboratory. On the nCUBE2,
the parallel Euler-Momentum method on the 16 processors runs
about four times faster than on the two processors. However, the
Euler does not seale well when the number of processors increases
because of the frequent communication required by the iterative
method and the preconditioning. The Lax method requires very lit-
tle communication, and thus it achieves very good speedup, which
scales well up to 128 processor nodes.

In terms of future work, one could investigate other types of pre-
conditioning and extend the simulation of traffic flow in 2 network
of two or more freeways. For the solution of these problems, a larger
number of processors would be used. Another area of future work
would be in the use of these methods in applications such as real-
time traffic prediction and control.

APPENDIX

Orthomin Iterative Method

Orthomin ierative method is next described to solve Ax = rhs,
where A is nonsymmetric matrix of order N. The Orthomin applies
to nonsymmetric linear systems with the symmetric part of 4 being
positive definite. Let &, be a positive integer. We describe the
Orthomin iterative method with preconditioning as follows. In this
algorithm, j; = max(0, { — kg + 1), P, is the right preconditioner
(£A = I} which is obtained by the LU decomposition of the matrix
A (10). Algorithm I, Orthomin (ko):

1. Choose xy = 0
2. Compute ry = rhs — Ax,
3. Po=n

Fori = 0 step 1 Until convergence Do
_ ‘(rf:Api)

4. g, =
(Api:Apl’)
5. 5y =x+ ap
6. Yim1 =8 — Q.'Ap,'
7. Compute ARy,
i (AP, r"r+1,Apj}
8 b= ——
{(Ap:Ap)

9 pior =P+ 2;=jj_b;pj _
10. Ap,-+| =AB?’;+| + 2-;=ji b_;AP_,

Endfor

38

Domain Decomposition

'The parallel algorithms are given for the complete LU factorization
a matrix and solution of a linear system using the domain decom-
position method (/1,15). In this study, the LU factors were obtained
only once and were used to solve the linear systems of the precon-
ditioning step in the Orthomin iterations. This is a domain decom-
position ILU (0)-type method (6).

Consider the partition of the linear system in Figure 5. Let 5 =
2(p — 1) be the number of unknowns in the separator set § = US,
where §; are the separator nodes between the sets &; and &, De-
note by 4,, . . . ,KP the first p diagonal submatrix blocks (each of
size 2¢ X 2¢4) and by A, the last diagonal submatrix block (of size
s X 5). Denote by B; the vertical border submatrix blocks (each of
size 2¢ X s) and by the horizontal border submatrix blocks C; (sach
of size 5 X 2g). Assume, for simplicity, thatn = 2pg + 5.

Algorithm (Block LU Factorization)

- The parailel domain decomposition complete LI/ factorization is the
following:

1. On every processor, do LU decomposition A; = LU/, i =
L....p _

2. Onevery processor, solve the systems A,Z, = B,i=1....,p

3. On every processor, form CZy,i=1,....,p

4. Onevery processor, broadeast C;Z; so that every processor has
thedata C;Z,,i=1,...,p _ o

5. On all processors, form 4 = A, ~ 3L, CZ; and compute the
LU decomposition of A

Algorithm (Block LU Linear System Solution)

The paralle]l domain decomposition forward elimination and back-
substitution is the following: :

1. On every processor, solve the system Z,Ei =bh,i=1.... Ny

2. On every processor, form Gz, = 1,...,p

3. On every processor, broadeast C;Z; so that every processor has
thedata Czpi=1,...,p = _ _ T

4. On all processors, form b = b, — 2;’% 1 Gz,

5. On all processors, solve the system Ax, = b

6. On every processor, formg; = b; -~ Bix,i=1,...,p

7. On every processor, solve the system 4,%, =7, i = 1,. .., p

ACKNOWLEDGMENTS

This work was funded in part by the Minnesota Department of
Transportation (MNDOT) and in part by the National Science

TRANSPORTATION RESEARCH RECORD 1566

Foundation (CCR-9496327). The Sandia National Laboratory is
acknowledged for providing access to its nCUBEZ2 parallel com-
puter system. David Berg of MNDOT provided the traffic data.

REFERENCES

1. Leo, C. 1., and R. L. Pretty. Numerical Simulation of Macroscopic Con-
tnuum Traffic Models. Transportation Research, Vol. 26B, No. 3,
1990, pp. 207-220.

2. Lighthill, M. H.,, and G. B. Witham. On Kinematic waves: IL A Theory
of Traffic Flow on Long Crowded Roads. Proc., Royal Society, London,
Series A229, No. 1178, 1955, pp. 317-345.

3. Lyrintzis, A. 8., et al, Continuum Modeling of Traffic Dynamics. Proc.,
2nd International Confarence on Applications of Advanced Technolo-
gies in Transportation Ergineering, ASCE, Minneapolis, Minn., Aug.,
1991, pp. 36-40. :

4. Michalopoules, P. G., P. Yi, and A. $. Lyrintzis. Development of an
Improved High Order Continuum Traffic Flow Model. In Transporia-
tion Research Record 1365, TRB, National Research Council, Wash-
ington, D.C., 1992, pp. 125-132,

5. Payne, H. J. FREFLO: A Macroscopic Simulation Model of Freeway
Traffic. In Transportation Research Record 722, TRB, National
Research Council, Washington, D.C., 1979, pp. 68-75.

6. Mikhailov, L., and R. Hanus. Hierarchical Conirol of Congested Urban
Traffic—Mathematical Modeling and Simulation. Mathematics and
Computers in Simulation, Vol. 37, 1994, pp. 183-188.

7. Gerlough, D. L., and M. I. Huber. Special Report 163: Traffic Flow
Theory. TRB, National Research Council, Washington, D.C., 1975.

3. Chronopoulos, A. T., et al. Traffic Flow Simulation Through High
Order Traffic Modelling: Mathematical Computing Modelling, Vol. 17,
No. 8, 1993, pp. 11-22,

9. Kim, §. K., and A. T. Chronoponlos, A Class of Lanczos-like Algo-
rithms Implemented on Parallel Computers. Parallel Computing, Vol.
17, 1991, pp. 763-778.

10. Chronopoulos, A. T., and C. Pedro. Iterative Methods for Nonsymmet-
ric Systems in DAEs and Stiff ODEs Codes, Mathematics and Comput-
ers in Simulation, Vol. 35, 1993, pp. 211-232.

11. Ortega, J. M. Introduction to Parallel and Vector Solution of Lirear Sys-
tems. Plenum Publishing Company, 1988.

12. McBryan, O. A, and E. F. Van Der Velde. Matrix and Vector Opera-
tions on Hypercube Paralle]l Processors. Parallel Computing, Vol. 5,
1987, pp. 117-125.

13. Ma, S., and A. T. Chronopoulos. Implementation of Iterative Methads
for Large Sparse Nonsymmetric Systems on Parallel Vector Computers.
International Journal of Supercomputer Applications, Vol. 4, 1990, pp.
9-24.

14, Di Brozolo, G. R., and Y. Robert. Parallel Conjugate Gradient-like
Algorithms for Sparse Nonsymmetric Systems on a Vector Multi-
processor. Parallel Computing, Vol. 11, 1989, pp. 223-239.

15. Rodrigue, G. Domain Decomposition: A Unified Approach for Solving
Fluid Mechanics Problems on Parallel Computers. In Parallel Process-
ing in Computational Mechanics (H. Adeli, ed.), Dekker, 1991, pp.
297-330.

16. Meurant, G. Domain Decomposition Methods for Solving Large Sparse
Linear Systems. In Computer Algorithms for Solving Linear Algebraic
Equations; The State of the Art (E. Spedicato, ed.), NATO ASI Series,
Series F: Computer and Systems Sciences, Vol. 77, Springer-Verlag,
1991, pp. 185-206.

